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Abstract. When
a new mdividual is formed (independently of the reproduction process)

it inherits harmful iuutations. Moreover,
new mutations are acquired even in the genetic code

formation, most of them deleterious
ones.

This might lead to a time decay in the mean fitness

of the whole population that, for long enough time, ,vould produce the extinction of the species.

This process is called &Iutational Meltdown and such question used to be considered in the

biological literature
as a

problem that only
occurs

in small poiJulations. In contrast with earlier

biological assumptions, here
we present results obtained in different iuodels showing that the

mutational meltdown
can occur in large populations,

even m sexual reproductive ones. We used

a bit~string model introduced to study the time evolution of age-structured populations and
a

genetically inspired model that allows to observe the time evolution of the population mean

fitness.

1. Introduction

'Why people get old?' It. is a question that we ask ourselves at Ieast once a year. However,
this question should be more properly formulated in trie terms: 'Why do we become at each

year weaker and slower? ivhy
in

the Iater years increases the probability to sulfer new and

worse disease?' One of trie most important assumptions trying to answer these questions is

that we mherit deletenous mutations from ouf parents. Moreover, when ouf genetic code is

formed by the junction of our parent's gametes, new mutations con occur, most of them are

deleterious mutations. If one of these deleterious mutations Ieads a serious disease that Will

be developed in childhood, before one attains the reproductive age, it has a Iow probability

to spread in trie whole population. A harmful mutation that attacks the individual before the

breeding age wiII reduce the population growth, being therefore more dangerous for the ~n.noie

species. Otherwise, if a mutation Ieads to diseases in adulthood or old age it wiII be given
belote to the ofLspnng and therefore wiII spread in the population reducing tue survival rate

in further generations, i e., reducing the fitness of the next generation. The accumulation of

deletenous mutations is the strongest theory trying to explain the agemg problem il, 2]. One
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important question that arises in this context is: if we take into account the accumulation of

deleterious mutations from one generation to the following, is it possible that the reduction of

the fitness for several generations wiII cause the extinction of the species? This question was

introduced some years ago and is known as Mutational Meltdown. In the past few years it

has been an important theme for debate [3-9] although often ignored in the aging Iiterature.

In asexual populations this process was described as a progressive Ioss of the most genetic
capable individual: first the extinction of individuals free of harmful mutations, afterwards of

that of individuals carrying one harmful mutation in a progressive process of accumulation of

deleterious mutations m
the whole population (MuIIer's ratchet) [10], which Ieads to a decaying

with time of the fitness of aII individuals. It is important to note that the frequency of backward

mutations (reverse mutation deleting harmful ones) is about 1/100 the frequency of forward

mutations [6]. Diploid reproduction or sexual reproduction with recombination might be ways

to avoid this transmission of deleterious mutations to further generation, by the creation of

new gene combination Ill,12].
Charlesworth et ai. suggested that the mutational meltdown only occurs among "small

asexual populations or very small sexual populations with highly restricted recombination

or outcrossing" [4], which agrees with results obtained by dilferent authors [6-8]. In contrast

with these results, Monte Carlo simulations on asexual age-structured populations showed that

mutational meltdown occurs even in big populations, though is possible to avoid it by changmg

some parameters (mutation rate, birth rate etc) [13-16,19]. One important question that arises

from reading these dilferent papers is that some authors fixed the total of individuals during
the simulation, calculating the important variables assuming that the population behaves in a

quasi-stable equilibrium [4, 5, 7,8]. Of course this kind of fixed population prescription should

be applied only if one is sure that the system is m a stable configuration, otherwise it con

obscure the results. Moreover, the theories of ageing working with constant population growth

rate do not allow the study of mutational meltdown il,19].
In this spirit, we present here some results obtained by using two dilferent mortels. The

first mortel was introduced by Charlesworth et ai. [5] to calculate the time evolution of the

population mean fitness by changing several parameters: mutation rate, recombination rate,

type of reproduction etc. The second mortel was introduced by Penna and Staulfer to describe

the temporal behaviour of age-structured asexual populations. Extensions of this mortel showed

its robustness [19]. Now we apply this mortel to sexual reproduction, introducing some simple

aspects. It is important to note that we consider only mherited mutations or those occurring

m
reproduction process, that means, we do not consider somatic mutations, which coula be

acquired durmg Iife (skin cancer as a example) but are not transmitted to its olfspring, though
other simulations took into acount this feature [16].

2. Trie Charlesworth Model

First of ail, some relevant concepts for people Iike the editor that never have Iistened

about flowers and bees. Dur genetic constitution genotype is coded within aII ouf ceII

nuclei m strings called chromosomes, that carnes some specific chemical compounds, which

wiII define the entire inherited charactenstics of the living being. These are the genes. The

chromosomes occur m pairs (homologous) in the ceII nucleus and each gene occurring also

twice occupies a defined place, called locus. Each gene con occur m various form alleles

(corresponding, for example, to blue, black, green or brown eyes etc). When one gene

occurs in dissimilar allehc forms at a specific locus it is called heterozygous, and trie phenotype
(observed) characteristic wiII be given by the dominant form. The recessiue allele determine

the phenotype only when present in both alleles. When the same allele occurs at a
specific
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Fig. 1. Schematic representation of the mating process. Parent is a
diploid cell with two paired

(homologous) chromosomes. A recombination event generates the gamete g1. Similarly, the gamete
g2 is generated from the parent 2. The fusion of these two gametes results m the zygote. For details

and description
see text.

locus (dominant
or recessive, does not matter) it is called homozygous. The usual cell division

is known as mitosis and the resulting two daughter cells are copies of the mother ceII (not
considering eventual random mutations). If aII nuclei divided by mitosis, a sex ceII or gamete
would contain the same number of chromosomes as every other cell of a multicellular organism,

aII of then derived from the same zygote. Consequently, the number of chromosomes pet zygote
would increase in successive generations, since the zygote is a combination of two gametes. The

chromosome number does not increase from one generation to the next, however. This stability

is possible because gametes contain only one member of each pair of chromosomes.

Most of the species (plants and animais) show a complex way for reproduction. Before

sexual maturity, certain special cells in the sex glands divide by the same mitotic process.
However, when the individual becomes sexually mature these cells wiII divide by a dilferent

process: meiosis. The two members of each pair of chromosomes present iii the ceII nucleus

come together in close union and the strings duplicates, twist and cross over, breaking at

identical positions. The broken ends exchange, recombtning the genes. Now, each chromosome

has a fuit set of genes, but not identical with which it started. The two doubled chromosomes

then pull away from each other to the potes of ceII segregating at random. The mother ceII

divides and divides agoni, resulting m four daughter cells gametes each with half of the

number of chromosomes (one of each pair). When a mole gamete unites with a female gamete

a fertilized egg ceII results: zygote. A gamete is a haploid germ cell having a single set of

unpaired chromosomes and a zygote is a diploid ceII having paired homologous chromosomes.

Obviously it is a simplified description of the reproduction process, but we beheve it clears

the terms used below. Figure 1 shows a picture of the mating process: c and c' represent
the homologous chromosomes m a diploid ceII. In parent 1 one has one crossover whereas m

parent 2 one has two crossovers (occurnng at random). The first part of cl' recombine with

the second part of cl giving the gamete gl, a
haploid ceII. Similar process gives the second

gamete g2. The fusion of these two gametes gives a zygote, restoring a diploid ceII.

In this genetically inspired mortel a population of N hermaphrodite individuals is defined,
each of them represented by its diploid, 1-e-, by two paired chromosomes, which are here defined

as a sequence of computer words and each bit in this sequence represent a locus (typically

we used chromosomes with 1024 loci) and therefore each gene might be expressed in two
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allelic forms. The type of reproduction m this mortel is defined by S, a self reproduction

parameter in the interval 0 up to 1. The S
=

value means entirely self reproduction (the
gametes that produce a descendent come from one parent), uniparental or diploid-asexual
reproduction, while for S

=
0 one has outcrossing reproduction, that one can consider as a

sexual biparental reproduction. The evolutionary process is as follows: first we define an initial

population and then mutation events take place. Thereafter one has the mating process and

selection. After generating a population of N descendents the mutation process is resumed.

Each combination of mutation, reproduction and selection represents one time step or one

generation. The mutations occur in loci selected at random in the entire genome and one

assumes a Poisson distribution of mutation events with average rate mutr (typically mutr
=

0.1

or
0.5). Nevertheless back mutations are not accepted.

After mutation have been performed in ail diploids, the reproductive process takes place. In

order to generate one zygote, first one chromosome is drawn at random from a individual and

the number of crossovers Nr is calculated, assuming a binomial distribution of recombination

events with recombination rate recr
(typically

recr =
0.00001 up to 0.001). By choosmg at

random these Nr crossovers locations we recombine the two individual chromosomes (taking
and linking parts of each one, according the locations calculated before) and we have the first

gamete. No,v, the second gamete is made: if S
=

1 the gamete comes from the same parent
and in the other extreme, for S

=
0, the second gamete is drawn from another parent chosen at

random. The second gamete is obtained by using the same recombination procedure described

above. The "fusion" of these two gametes results in the zygote, in ouf picture two new sets of

computer ~vords. The number of heterozygous and homozygous alleles are computed and the

fitness is calculated (explained below). Followmg Charlesworth et al prescription, the fitness

is compared with a random number between 0 up to 1. If the fitness is less than this random

number, the zygote is rejected, otherwise it is accepted and the entire process is resumed until

one has a number of surviving zygotes equal to N, 1-e-, the total population remains constant

during the simulation. After reproduction-selection is finished new mutations occur in the

population (described above) and this process continues through the generations.

For several sets of parameters the mean fitness of the N individuals decays with generation
(how fast or slow will depend on these parameters), that means, in later generation one needs to

produce more babies than m the earlier. Since one needs to create more and more descendents

generation after generation, this mortels has an increasing time dependent birth rate. This

procedure obscures the time evolution of the population, as one cari see below. Moreover, in

later papers Charlesworth et al observed that the fitness depends on the initial size of the

population: for increasing N the fitness decreases slower. From this fact, Charlesworth et

al state that the problem of mutational ineltdown arises only in small population, when the

fitness decreases fast.

As is well known the survival propabilities of individuals are not changea for some inherited

characters (such
as blood groups, for instance). However, as discussed above, it is clearly not

true for many others characters, where changes can produce individuals better fitted to sui-vive

with better reproductive performance and hence contributing with more surviving olfsprmgs

to the next generation. Therefore any realistic mortel must make some allowance for selectton.

We assume that the fitness f of the favoured genotype m any selection is f
=

1. By introducing

one harmful mutation in trie genotype, its fitness will decrease by a factor of (1 s)
m

the

case of homozygous mutations or (1 hs) for heterozygous, being 5 the coejficient of selectton

and h the dominance coejficient. In this paper we will take into account only positive values

of s, though negatives values might be considered [6,20]. When h
=

0 the fitness of the new

zygote is the same as that of the favoured genotype, i e., the initial allele is dominant, iv.hereas

for h
=

1 the new fitness decreases by a factor of (1 s) and the harmful allele is dominant.
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Fig. 2. Population
mean

fitness versus generation m outcrossing populations S
=

0 obtained for

different population sizes: N
=

50, 100, 200, soc, 1,000 and 10,000 using multiplicative selection. Trie

meaning of trie symbols are presented in the legend. For populations size 50 up to 1,000 trie results

were averaged
over 20 samples while for N

=
10, 000 the result obtained for one sample is shown. In

text are mentioned the value of distinct parameters.

We bave found in hterature controversial experimental values for the selection coeffient: from

s +w
0.0025 [21] up to s +w

0.2 Ii?i From this definition, the multiplicative [18] fitness of a new

zygote with
~1

homozygous and 6 heterozygous mutations is given by

f
=

(i s)v(i hs)@ (i)

Some authors compared results obtained using dilferent selection regimes [5, ii, for example,

to simulate the cases when two pairs of genes alfecting the same trait interact phenotypically
by superposition, antagonism or cooperation (epistasis). From this assumption of synergistic
selection the fitness is calculated from the "effective number of mutations" [5] n =

h6 + ~1
by

lfl~2
f

= exp -on
,

(2)
~

where
a

and fl are defined coefficients.

Firstly we present our study m fitness behaviour. We show results for simulations on out-

crossing populations (S
=

0) usmg multiplicative fitness, although the behaviour we are going

to describe is qualitatively the same for synergistic fitness. Since our interest is to study the be-

haviour of fitness with population size, we used a typical set of parameters used in Charlesworth

et al paper, namely the selection coefficient against homozygotes for the mutant alleles s =
0.1,

dommance coefficient of these alleles h
=

0.2, recombination rate recr =
0.00001. Mutation

rate was assumed as mutr
=

ù-1- We start the simulations clearing ail the bits in the diploids
of the whole population, i e., starting with a mutation-free genotype. Starting with a distri-

bution of mutations as clone by Charlesworth gave similar results. Figure 2 shows ouf results

for fitness versus generation in outcrossing populations with dilferent sizes, namely N
=

25,
50, 100, 150, 200, 300, 500 and 1,000, which represent average over 20 samples. The behaviour

of the fitness is about the same as observed by Charlesworth et al. For small populations the
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Fig. 3. Time scaling of the population mean fitness presented in Figure 2. Here the time step for

each generation was multiplied by the factor exp(-cv(N~ No)), where No
=

25 and N, vary from 50

up toi,000.

fitness decays faster than for large populations. In the case with population N
=

500 and

N
=

1, 000 the fitness seems to stabilize around 0.9.

To understand this behaviour we scaled ail the fitness curves for a population size of No
"

25,
finding a typical exponential scaling, that means, for

a given population size N~ we multiplied
the time t~ by the factor exp(-a(N~ No )) and used t'~

= t~ exp(-a(N~ No) as a new time

variable. We have obtained a +w
0.015. Figure 3 shows this scale applied to the results shown

in Figure 2. For population size No
"

25 the curve is the same as m Figure 2. The fitness for

N
=

50 decays similar to the one for No
"

25 whereas the curves for the other populations
overlap with that for N

=
50 and therefore the fitness has a decreasing behaviour. Hence, if

the population increases the fitness decays slower, but it always decreases, and therefore this

system will never reach an equilibrium state. Due this exponential scaling, for large populations
the decay of the fitness is extremely slow and, to study the time evolution of this mortel, we

have to allow a free evolutionary population. For population size N
=

500 we dia simulations

up to 50,ooo generations (not shown in figure) confirming this trend. Thus, to test if the

system can reach an equilibrium state, we have to allow a changing population, by fixing the

birth rate and allowing the free evolution of the system, which is, from our guess, the correct

procedure from the point of view of the time evolution of a complex system.
In the results we are going to show, we introduced two parameters: now we fixed the birth

rate Birth, 1-e-, each individual produces Birth olfsprings on average, or the total population

can grow by the following expression: N(t +1)
=

Birth x N(t). To avoid the population
growth to infinity we multiplied the birth rate by an environmental constraint factor, the

Verhulst factor, given by (1 N(t) /Nmax). For each generation the sequences are the same as

that described above: mutation, reproduction, selection. However, in the reproduction part we

fix the number of triais by the expression above and perform the reproduction constrained by
the Verhulst factor. In selection we compare the fitness of a newbom with a random number.

If the fitness is less than the random number the newbom baby does not survive, but now it is

not substituted by another triai (as in the original fixed population version). Figure 4 show our

results for selfing populations (S
=

1) or uniparental reproduction. Here we used mutr
=

o.l

and recr =
o.ooool for a initial population of N(o)

=
la, ooo individuals and Verhulst factor
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Fig. 4. Time evolution of the population (on top-left), population
mean

fitness (on top-right) and

fitness times birth rate (the population growth rate r) for selfing S
=

1 populations under multiplicative
selection obtained for different birth rates (presented in the legend). For birth rate Birth

=
1-1, 1.2

and 1.3 the population stabilizes around different values, as
well as the population growth rate and

instead of it the fitness stabilizes around the
same

value. For Birth
=

1.05 we
observe the mutational

meltdown of these species. For ail simulation we start with N(0)
=

10, 000. In text are
mentioned the

value of the distinct parameters.

Nmax
=

soc, ooo. Different birth rates were tested. For Birth
=

1.05 the population decreases

exponentially and vamshes, in contrast to that observed in the other cases (Birth
=

1.1, 1.2

and 1.3), when the population reaches equilibrium (just the results of 1,ooo generations are

shown, although we performed the calculations for 3,ooo generations). It is interesting to note

that the value of fitness is almost the same for the later three values of birth rate, independently
of the size of the stable population, which is m agreement with that observed above: for large
population the decay of the fitness is too slow. For Birth

=
I.I the population stabilizes

around 22,ooo individuals, while for Birth
=

1.2 around 61,ooo and for Birth
=

1.3 around

95,oo0. For these stable values the fitness fluctuates around 0.95. One interesting feature to

observe in this figure is the behaviour of the fitness times the birth rate. This product give

us the population growth rate. When the population stabilizes one has this product greater
than one. Note that the stabilization of the population size comes from the fact that we have

introduced an environmental constraint factor. However, for Birth
=

1.05 the population
growth rate tends to 1 and fluctuates around this value, that means the population does not

grow. In recent Monte Carlo simulations of temporal evolution of asexual populations we have

shown that for the population growth rate tending to one we can observe the shrinking of

the populations, leading to its extinction [19]. However, the species extinction here has been

obtained basically due the small birth rate.
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Fig. 5. Time evolution of the population (on top4eft), population
mean

fitness (on top-right) and

population growth rate r
for outcrossing S

=
0 populations under multiplicative selection obtained

for dilferent birth rates (presented in the legend). For birth rate Birth
=

1.2 and 1.3 the population
stabilizes around different values, as

well
as the population growth rate and instead of it the fitness

stabilizes around the same value. For Birth
=

1.05 and I.I we
observe the mutational meltdown of

these species. For ail simulation
we start with N(0)

=
10,000. For Birth

=
I.I we performed two

different simulations using different seeds for the random number generator, in order to avoid mistakes

due statistical fluctuations. One
can

observe the fluctuation of the fitness around the characteristic

value of this set of parameters for Birth
=

I.I before extinction (black diamonds). In text are

mentioned the value of the distinct parameters.

In order to compare results obtained with dilferent mating types, we performed simulations

using the same set of parameters as in the example described above, but now for outcrossing

or biparental-reproductive populations (S
=

0) and we show in Figure 5 these results. One

important feature of this mortel appears when we compare the results shown in Figures 4

and 5: for a biparental species to survive it needs a birth rate somewhat greater than tha,t

m trie umparental (S
=

1) reproduction. For Birth
=

1.05 and Birth
=

I.I the population
decrease which leads its extinction. In the case Birth

=
1.1 we performed simulations with two

dilferent seeds of the random number generator and qualitatively observed the same behaviour:

initial exponential decaying of the population, fluctuations and extinction. The case signalized
with black diamonds shows the fluctuations around a fitness value of 0.9 (basically the same for

ail the dilferent values of birth rate) while the product fitness times birth rate fluctuates around

1 for a long time before the extinction of the species. We mentioned above that in this mortel

the biparental reproduction is worse than a uniparental reproduction, m
the aim of surviving.

The same feature coula be observed in Charlesworth paper, although it is not pointed out. This

fact has to be understood from the definition of the mortel. In fact, in the uniparental (S
=

1)
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Fig. 6. Time evolution of trie population (on top-left), population mean fitness (on top-right) and

trie population growth rate (bottom/left) for selfing S
=

1 or
outcrossing S

=
0 populations under

multiplicative selection obtained for initial population N(0)
=

10 and N(0)
=

2 (white diamonds) and

different recombination rate recr
(described in text). We used here mutr

=
o-à, Birth

=
1.8 and the

Verhulst parameter Nn,ax
=

1,000,000, the selection coefficient and the dominance coefficient have

the same value cited above. The bottom/right plot shows the time evolution of the fitness for fixed

population (from bottom to top in the figure the symbols represent population sizes N
=

50, 100, 500,
5,000, 10,000 anal 20,000, averaged

over 20 samples).

reproduction the two gametes come from the same diploid and for half of the choices on the

reproduction events dilferent gametes were chosen. Due the definition of mutation, it is very

unhkely that two mutations were produced in the same locus m trie dilferent gametes (without
recombination and considering each chromosome with 2~° loci, a homozygous mutation has

probability equal to 2~~°) However, for the biparental reproduction, when one chooses the

gametes from dilferent individuals it is more likely to obtain mutations at the same loci (in the

same example, this probability is now +~
2~~°)

To better compare the dilferent behaviour of the system, we show in Figure 6 the results

obtained for mutr
=

o.5, Birth
=

1.8, recr =
o.ooool and Verhulst factor Nmax

=
1, 000, ooo.

The top /left plot shows the time evolution of population, the top /right plot shows the time

evolution of the population mean fitness and in the bottom/left plot the time evolution of the

population growth rate is shown. We performed simulations for this set of parameters using
the fixed population prescription and this result is shown in the bottom/right corner of this

figure. For the free evolutionary population case, due to computational limitations we used

small initial populations, since for this birth rate the population increases almost twice for each

time step. For S
=

1 and initial population N(0)
=

la (white circles) the population grows
exponentially reaching the equilibrium around 280,000 individuals. The elfect of the strong
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mutation rate can be observed in the plot of the fitness versus generations. Due the high birth

rate, in spite of the smaller value of fitness, the population growth rate stabilizes around 1.47.

The behaviour of the system for S
=

0, biparental reproduction, is shown with black diamonds

(N(0)
=

10) and white diamonds (N(0)
=

2, the famous Adam and Even assumption). In

contrast with the previous result (S
=

1), now for S
=

0 we observed the extinction

of the species in the same bad conditions where a uniparental population has survived. For

both samples, the population grows, attaining a maximum around 310,000 individuals in few

generations, but thereafter falls clown. In this case, the population growth rate decays reaching
the value 1, which represents the beginmng of this species extinction. The similar behaviour

obtained with dilferent initial populations comes from the environmental restriction factor used

here, which does not allow the free growth of those populations.
To explore the role of the recombination rate we performed simulation for biparental re-

production case
(S

=
0, represented by white triangles), but now with recr =

0.001 instead

recr =
0.00001. The population size increases m the beginmng, attains a maximum around

313,000 individuals, decreases slowly and finally reaches the equilibrium state, close to 90,000
mdividuals (although it is not shown in the plot, this value was obtained after 2,000 genera-

tions). Initially, the fitness decays together that value for recr =
o.ooool. However, this new

value of
recr

allows the fitness to stabilize, avoiding the extinction. The time evolution plot of

the fitness for fixed population shows the same aspect as observed in Figure 2: fast decay for

small population and slow decay for large ones (from bottom to top in the figure the symbols

represent population sizes N
=

50, loo, soc, 5,ooo, la,ooo and 20,ooo), though faster than in

Figure 2 due the stronger mutation rate. The fact that the fitness seems to stabilize does not

guarantee the equilibrium of the system, as we have pointed out above. The whole population
still aies out if the fitness is too low. In this case we have also observed the same exponential
scaling behaviour with a +w

o.ooo2.

The mutational meltdown is better shown m Figure 7, where we performed dilferent simu-

lations changing the environmental restriction factor. These results were obtained for mutr
=

0.2, recr =
0., Birth

=
1.3, S

=
o and N(0)

=
10. We used here again multiplicative fitness

with the same selection and dominance cofficients cited above. The sim,Jlations in outcrossing
populations without recombination are justified because we are interested here m describing
the dynamics of mutation accumulation. For Nmax

=
1, 000 (white circles averaged over 100

samples) we observe the fast extinction of the species. The fast decay of the fitness comes

from the accumulation of harmful mutations. For Nmax
=

10,000 (averaged over 50 samples)
and 100,000 (averaged over 20 samples) the picture is qualitatively the same. However, for

Nmax
=

100, 000 the population attained a maximum of12,000 individuals before its decay,
which must to be considered a large population. For Nmax

=
1,000,000 (one sample) the

multiplication of the individuals and its diversification avoid the mutational meltdown. In this

case the population stabilizes around 67,000 individuals.

3. Trie Penna Model

In the previous calculation the individual was defined by its diploid and the fitness can be

calculated, allowing the operation of selection mechanism. In that case, we do not take into

account the individual age. In contrast with that definition, in the Penna model each individual

can live at most 32 time intervals, which for simphcity we denote here as 32 years. The genetic
code relevant for one year is called a codon and is just one bit in a bit-string mortel. For

each year, a serious disease may or may not be mhented, corresponding to bit
= or bit

=
0

in the single 32-bit computer word representing the genome of the mdividual. During life, all

sicknesses are active which correspond to the given or an earlier age of this mdividual and when
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Fig. 7. Time evolution of the population (on top-left), population
mean

fitness (on top-right)
and the population growth rate (bottom/left) for outcrossing S

=
0 populations under multiplicative

selection obtained for initial population N(0)
=

10 with different Nmax (shown
m

the legend). The

collapse of the species can be avoided by
a

enough growth, that means, diversification.

the total of these diseases attain a defined threshold timit the individual dies. Beyond an age
of min-age years an individual can reproduce with a probability birthr. After reproduction,
trie genetic code of trie descendent receives new deleterious mutations in at least one of his

codon with a mutation rate m. In most of the simulations reverse mutations were avoided. In

the original mortel and extensions, sexual reproduction is ignored, but the mutation of one bit

compared with the parental bit string can be regarded as approximating the variations arising
from sex. No other hereditary or somatic mutations occur.

As in the same way described above, to prevent the population N from growing to infinity, the

survival probability is reduced by a Verhulst factor 1- N/Nmax. In the sexual reproduction

version of this mortel, we create two arrays of individuals, namely maies and females with

the same features described above. First one has the selection process, in which individuals

can aie if the number of deletenous mutations is greater than timit, if it is 32 years old or

due environmental restrictions. After selection, the mating process takes place. Now one

female older than min-age chooses at random a maie older than min-age also and produce a

olfspring with probability birthr. The genetic code of the olfspring is obtained by combining
the codons of the parents by an AND instruction, i e., in this case we consider ail mutation as

recessives. New mutations are acquired with a frequency m, ail of them harmful. Finally the

olfspnng gender is chosen at random: 50% maie, 50% female. This process is repeated for ail

females older than min-age and when it is finished, the selection is resumed. If the population
stabilizes we can calculate the age-distribution of the population, the survival rate, that means,

the probability that an individual living at an age of t years will survive to the next year with
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Fig. 8. Penna model: temporal evolution of trie population (on top-left), age-distribution of pop-

ulation (top-right), survival rate (bottom-right) and distribution of deletenous mutations m
final

populations for
m =

1, limit
=

3, birthr
=

0.2, mm-age =
8 and initial populations 2 X

10~. The final

populations stabilizes (not showed for asexual reproduction). Black diamonds and white circles repre-

sent sexual individuals (maies and females, respectively). White squares represent asexual population.
Note that the survival rate for sexual populations remains constant (for discussion see text).

age t + and trie number of deleterious mutations present in total population distributed by
dilferent years.

Figure 8 shows the result obtained with the parameters: birthr
=

0.2, m =
1, limit

=
3

and min-age =
8. The initial populations are 2 X

10~ individuals each of them with half of

genetic code with diseases randomly chosen (for sexual populations one has lo~ maies and

lo~ females). Initially we observe the decay of total population followed by a rapta grow-

mg (figure at top/left). The sexual population stabilizes, but the asexual population attains

a maximum and decays once agam (due to the accumulation of bad mutations). Progres-
sively the rate of decay diminishes until the total population attain a stable value (not sho,vn

m
the figure). Trie assumption of ail recessive diseases for the sexual population seems to

be here very unrealistic, since trie survival rate (bottom/left)
as well as the distribution of

mutation versus age (bottom/right) in the final population remains constant, in spite of the

expenmental observation il, 2], which was qualitatively reproduced by simulation of asexual

populations. However, the assumption of recessive diseases has to be combined with strong
mutation rate (agam

we have found controversial experimental data for mutation rates, but it

seems a good estimate that the human being genetic code sulfer around 1 new mutation per

genome / generation il1, 21, 22] ).
Figure 9 shows the results obtained with m =

8, initial population 2 X
lo~, min-age =

8 and

dilferent birthr. Now one can see the elfect of the strong mutation rate. For sexual populations



N°11 MUTATIONAL à4ELTDOWN IN LARGE SEXUAL POPULATIONS 1513

population final popuvage

~
8000

10

6000

~~
4000

l Ù~ 2000

10~
~Î'

°
o io

a

~i
10~

~
mut pet age on final popul

30000

a
10

10 100 Ù00 25000

survival rate ~

l-o 20000

o

O 15000

o 5
o

~

° l 0 20 30

o~

~~

Fig. 9. Penna model: temporal evolution of the population (on top~left), age-distribution of pop-

ulation (top-right), survival rate (bottom-right) and distribution of deleterious mutations m final

populations with m =
8, limit

=
3, min-age

=
8 and initial populations 2 X

10~ for different birth

rate. Black and white triangles (maies and females, respectively) represent sexual population with

birthr
=

0A. Due to the accumulation of harmful mutations the population becomes extinct. By
changing the birth rate to 0.7 (black diamonds and white circles)

we can avoid the extinction of the

species and the populations stabilizes. Now the survival rate decays with age and we can observe an

accumulation of harmful mutations in old ages. The asexual population does not survive with the

same parameters (white squares).

with a small birth rate o.4 (black triangles for males and white triangles for females) the

population shrinks to zero. However, by mcreasing the birth rate to o.7 we can avoid the

extinction of the species (white circles for moles and black diamonds for females). The elfect

of this strong mutation rate can be observed in the distribution of final population per age
(top /right): most of the individuals are less than 10 years old. Now the combination between

the recessive assumption with the strong mutation rate produces a reasonable survival rate plot.
By changing from sexual reproduction to asexual reproduction we observe that the species goes

extinct (white squares). This results agrees with the general assumptions of the advantage of

sexual reproduction.

4. Conclusions

~Ve have tested the assumption of the mutational meltdown m large populations with differ-

ent sexual reproduction by using dilferent models. Initially we test the model proposed by
Charlesworth to study the evolution of populations. First we showed that the fitness has a

time /size scaling behaviour and that the fixed population assumption is unrealistic to study the
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population equilibrium state. Furthermore we showed that the mutational meltdown occurs

due to the accumulation of harmful mutations, not restricted to small asexual or very small

sexual populations. However, confirming earlier assumptions, the mutational meltdown might
be avoided with a little increase in the recombination rate (due computational limitations we

have not tested the behaviour of the population mean fitness for long times in the case of

free evolutionary population). One important parameter observed here is the fitness times the

birth rate. For products greater than one the population can increase (we used the food /space
constraints to stabilize this growth). Population size stabilizes when the population growth

rate tends to one, in a dangerous equilibrium, due to the fact that after some time all the

mdividuals accumulate more and more deleterious mutation and finally the population falls

clown when this factor is less than one. Another question to be pointed out is that this mortel

shows better performance
m uniparental reproduction instead biparental ones, in contrast to

most accepted theories on the arising of sexual reproduction.
Secondly we changea the Penna mortel in order to simulate sexual reproduction, by intro-

ducing two arrays of individuals and producing olfspring by the crossing of maies and females

with further charge of deletenous mutations. For weak mutation rate we observe that the

all-recessive assumption is unrealistic (the mdividual never gets old, that coula be the par~

adise... except for young scientists needing a
job). However we known from biology that

sexual reproduction occurs within complex species with strong mutation rates. Increasing the

mutation rate we have observed the extinction of sexual populations, that can be avoided by
changing the birth rate. In the same bad conditions an asexual population does not survive.

It is not our aim m this work to compare the dilferent types of reproduction, though that our

results showed the best surviving possibilities for sexual reproduction (in the sexual version of

the Penna mortel or by mcreasing the recombination rate in the Charlesworth mortel). The

role of recombination is shown
m

the Charlesworth mortel and it has to be used as a important

argument on the study of the worth of the dilferent mating types. Even considenng the costs

of sex [12] or still the assumption of the highest mutation male rate [23], sex is the widespread

way Nature chose for the reproduction of her sons and daughters. Further investigations in

this subject are in progress, trying to compare dilferent types of reproductions and dilferent

assumptions on the role of recessiveness and dominance.
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