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Rdsumd. Une structure phyllotactique comme celles que constituent les dcailles d'une pomme
de pin prend naissance sur un dtroit anneau apical qui entoure un centre local de croissance. On

£tudie un modble simple de la morphogenbse d'une telle formation en £tablissant des relations

algdbriques entre permutations des n premiers nombres naturels, chaque nombre correspondant h

l'ordre d'apparition d'une 6caille ou d'une feuille. Ce modble conduit h la d6finition naturelle

d'une divergence. Les valeurs que peut prendre cette divergence s'ordonnent en une structure

hidrarchique qui met en 6vidence le r61e des nombres nobles. Il y a parentd 6vidente avec l'arbre de

Farey que l'on obtient en classant les r6seaux de cercles tangents alignds le long de spirales
6quiangulaires.

Abstract. A phyllotactical pattem such as the arrangement of the scales of a fir-cone originates
along a thin ring surrounding a local center of growth. We study a simple model of the

morphogenesis of such a botanical structure by considering algebraic relations between permu-
tations of the n first natural numbers, each number corresponding to the birth order of a given scale

or leaf. This model allows to define a divergence angIe in a natural way. The possible values of the

divergence can be classified according to a hierarchical structure which places the noble numbers

in a prominent position. This construction is similar to the Farey-tree obtained in the study of

lattices of tangent circles aligned along equiangular spirals.

1. Morphogenesis and phyllotads.

1-1GEOMETERS AND PHYSIOLOGISTS.-Phyllotaxis is the study of spiral or helicoidal

pattems one frequently encounters among plants. Its objects are for instance the spiral
distribution of florets in a daisy or a sunflower, or the helicoidal arrangement of the scales of a

pine cone or a pineapple. The emergence of the Fibonacci sequence in these pattems has been a

matter of speculation for a very long time (I). Among those people who were interested in this

(*) Panially supported by the Swiss National Foundation (FNIRS).
(I) A short account of the history of phyuotaxis may be found in reference [4]. For a general
introduction to phyllotaxis, see e-g- references [I] and [5-10].
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problem, one notices numerous mathematicians, physicists, crystallographers, naturalists,

biologists and even poets such as Goethe who, truly, considered himself as a scientist.

Facing this intrusion of arithmetic into biology, some people see it essentially as a mere

consequence of space geometry. They will be called geometers in the following. Other

scientists look for evidence of the plant metabolism in the geometrical structure of phyllotactic

pattems they hope to find there how hormones are secreted during the growth of plants. They
will be called physiologists. They do not deny the role of geometry during morphogenesis. But

they emphasize the influence of inhibitors or activators during this process, and want to stress

the individual contribution of every chemical substance taking part in the development of the

plant.
Recently, a third category of scientists looked at phyllotaxis from a still different point of

view. One might call them physicists because they consider pure physical systems which

exhibit a self-organization very similar to botanical ones [1-3]. Our starting point being far-off,

we shall no longer discuss their work in this paper.

From our point of view, the common opposition between those who attribute to genetics a

determining role in morphogenesis, and those who think that the essential mechanisms for

pattem selection are of an independent nature, needs not to be discussed in the case of

phyllotaxis.
It was observed indeed by Snow and Snow [I I] in 1935 that by splitting in two parts the apex

of Epilobium hirsutium (a plant naturally having decussate phyllotaxis), one often obtains two

apices developing spiral phyllotaxis. A theoretical approach to this experiment clearly requires

a model of the growth which is independent of the genetic information.

1.2 APICAL RING AND MORPHOGENESIS.- Geometers have emphasized the geometrical
properties of the phyllotactic pattem : these highly symmetric structures are thought to emerge
during growth without call for any particular mechanism (2). This point of view was adopted in

two papers by Koch and one of us [lo] where many references can be found; as a

consequence, the problem of morphogenesis of phyllotactic structures was only a side issue in

references [lo]. However, in references [12-14] which take up an idea of Marzec and

Kappraff [15], the morphogenesis is considered from the point of view of the physiologists :

the moulding and growth of the new primordia (as the young shoots are called) on the apical
ring is modelled.

As a matter of fact, cellular differentiation producing a new-bom shoot does not take place at

the tip of the stem or the stalk (apex), but within a ring-shaped region surrounding the apex [7].
This apical ring remains linked to the apex during growth. For an observer on the apex, the new

shoots appear to go radially away (Fig. I).
Let us suppose that the time interval between two successive shoots and the rate of growth

have settled down to a stable value. We may then state the problem of phyllotaxis as follows :

to explain why the successive shoots appear on the apical ring in a completely ordered way (the
angle between two successive shoots becoming approximately constant, after a short transient

period) and why, generically, this angular distance is the golden angle ~137.5°...).
This angular distance divided by 2

ar
is called the divergence. In

«
explaining

» we aim at

giving a deterministic model of the growth on the apical ring, that is, to define a dynamical

system which has some reasonable chemical or physical interpretation and does
«

generically
»

reproduce the phyllotactic pattem observed.

We assume here that phyllotaxis is the result of a mechanism that can be modelled in the

same basic manner in every plant. As was discussed in the introduction, we assume in

particular that it is independent of genetics.

(2) Or, if such a mechanism does exist, it is hidden and of no special interest to geometers.
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Fig. I. The new shoots are bom inside a ring-shaped region surrounding the apex of a growing stem.

For an observer moving with the apex, the newbom shoots appear to go radially away from the ring where

they first appeared.

1.2. I A dynamical system on the circle as a chemical model ofmorphogenesis. In order to

illustrate the process of apical growth, the authors of references [12-15] advocate the existence

of a growth factor interpreted as an inhibitory substance acting as in the case of hydra
development [16]. Such a substance will be called

«
inhibitor

»
in the following. The inhibitor

is one type of
«

morphogen », a word coined by Turing [17] to specify a chemical substance

playing some morphogenetic role during the growth process.
In the case of the hydra, the inhibitor concentration is high in the neighbourhood of a

sprouting head as long as, and wherever this concentration exceeds some threshold value, no

new head is able to develop. As time is elapsing, this morphogen fades away by diffusion or

through a chemical reaction [16]. This description has also been used by Thomley to model the

growth of a phyllotactic pattem [18].
Consider the inhibitor profile on the apical ring, the result of leaves already placed ; a new

leaf will appear at its minimum. Because of this new sprout, the concentration of inhibitor

locally increases. Then the whole profile fades away (through diffusion or chemical reaction)
until the next leaf appears.

Marzec and Kapraff [15] and Koch, Guerreiro, Bemasconi and Sadik [14] have studied a

dynamical system which illustrates this idea Douady and Couderc [3] have proposed a

physical experiment that exhibits an analogous dynamical behaviour. We shall refer to this

general dynamic scheme in the construction of our model.

1.2.2 The permutation model and the algorithm A. We want to describe the growth process
by defining a simple deterministic algorithm on the apical ring, following Thomley's

scheme [18].

The analytical study of the dynamics of the systems proposed in references [12-15] is

extremely difficult this is why we shall simplify the model further.

Consider a permutation P~ of the n integers (o, I,
,

n I such that P~(0)
=

0, and

write :

Pn
" (~ ~~' ~j~ (i)

I n-I

We can think of P~ as defining the state of our «
discrete time dynamical system » at time

n : imagine a distribution of n points on a circle and associate an integer C~ to each point so

that, when the circle is given an orientation, one successively meets the integers 0,

Ci, C~,
,

C~_
i

around the circle (see Fig. 2).
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Co

Ci
C~_1 ~

~2

Fig. 2. The distribution of integers Co
=

0, Cj, C~,
,

C~_
i

around the circle.

Now this geometrical picture of P
~

is a simple representation of the state of the apical ring at

time n : the point labelled by I indicates where the I-th sprout is bom moreover, birth of

the n-th sprout has just occurred at time n. Permutation P~ thus provides us with one state for
the system. Let us now give an evolution law, reproducing the growth process sketched in

1.2. I.

Consider the system at time n=2; its state is given by the trivial permutation
P~ (Fig. 3). At the next step, the symmetry is broken we have to decide arbitrarily on which

side of point 0 we place point 2 (Fig. 4).

o o

2

Fig. 3. Fig. 4.

Fig. 3. If one disregards the value of the angles, there is only one possible ordering of two points along
the cwcle.

Fig. 4. The symmetry is broken as soon as a thkd point (here point number 2) is located on the circle.

All the following points will be placed according to an algorithm that takes the principle
stated in 1.2. I into account as simply as possible : at each step, we are looking for the absolute

minimum of the inhibitor concentration, that is, we try to place point n as far as possible from

the latest ones.

Point 3 is therefore placed between 0 and I (Fig. 5). Suppose now that 3 has been placed

« very close
» to 0 (because 0 is the oldest point). We should then place 4 between the oldest

point after 0 (namely I) and its older neighbour (namely 2). We argue again that 4 is placed

« very close
» to I, so that 5 has to be put between 2 and its older neighbour, namely 0 (Fig. 6).

0 has thus been given a new neighbour (5), replacing 2, so that the rule can be repeated for

the following points.
Let us sum up our algorithm : denote by A)~~ the older neighbour of I in P~. Suppose that

n has been placed next to 0 in P~ at time n. Then at time n + I, set n + I between I and

A)~ + ~~ ; at time n + k, put n + k between k and A)~ +~~
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Fig. 5. Fig. 6.

Fig. 5. Algorithm A demands point 3 to be located between points 0 and I.

Fig. 6. Distribution of six points according to algorithm A.

Now there exists j such that A)~+J~= 0, A)~+~~#0 Vk<j ; set then n+j between

j and A)~ +J~
=

0, and begin again : Put n + j + I between I and A)~+J + ~~, and so on.

Applying this algorithm to permutation P~
=

(~ ), we obtain at time15

p (0 2 3 4 5 6 7 8 9 lo 11 12 13 14
~~ 0 8 3 11 614 9 412 7 2 lo 5 13

Let us call A the algorithm we have just constructed. We don't claim that the evolution law

defined by A perfectly mimics the dynamical behaviour of a real system following Thomley's
scheme. Our algorithm never forgets the older sprouts nor does it take into account the exact

location of their birth on the apical ring. Nevertheless, it gives a good insight into what may
happen at the beginning of the growth. Stationary regimes of growth should also be described

by perrnutations ; we shall retum later to this point.
Anyway algorithm A exhibits the two main features we would expect from a dynamical

system on the circle modelling phyllotaxis :

the shoots organize themselves so as to produce a constant angular distance between any

shoot and the immediately older one

this angular distance divided by 2 ar is the golden divergence.

The aim of this paper is to express these assertions mathematically and to prove them. A

general description of the construction and properties of permutations displaying the first

feature will also be given. Algorithm A can also produce bijugate or trijugate phyllotactic

pattems. We will discuss this last property without giving any mathematical proof, for the sake

of brevity.

2. Angular permutations,

2,I DEFINITIONS.

2. I. I The set of divergences. The main parameter that characterizes an idealized phyllotac-
tic pattem is its divergence, that is, a number in [0, (recall that the divergence is an angular

distance divided by 2 ar).
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We will consider divergences belonging to (0, throughout the whole paper, without loss

of generality : they are related to divergences in
,

l by a mere inversion of the orientation

of the circle.

A dynamical system modelling phyllotaxis should generically select a unique value within

the set of possible divergences ; this number is the Fibonacci or golden divergence, that is :

9~
=

0.381966
=

T~~

It is defined with the help of the golden mean :

/
+

~ 2

which has the well known property of being the
« worst »

irrational ; in other words, it is the

irrational the
« most slowly

»
approximated by sequences of rational fractions [19, 20].

Any real number
a

between o and I can be represented in a unique way as a continued

fraction

" ~ j "
[al, ~2, ~3, (2)

~~ ~

a~
'

a3 +

where each a; is a positive integer. The representation (2) is unique, except if
a

is a rational. In

the latter case, the continued fraction is finite and the ambiguity is removed if one requires that

the last term of the development (2) exceeds I. As a consequence, every a
belonging to

jo, has a development of the form

la =
[at a

irrational I_
at, a~, a~ integers ~

l (3)
a =

[a~ ; ; a~] a
rational

9~ has a particularly simple development :

9~
=

[2, 1, 1, 1,
=

[2, ii (4)

where a periodic sequence is represented by its period overlined. On the other hand, the Lucas

divergence (3) 9~, which is the main anomalous divergence observed in nature, is given by :

9~
= =

[3, 1]. (5)
3 + r~

Those irrational numbers, whose development consists of an infinite sequence of ones after

some stage, are palled
noble numbers (~). One notices that 9~ and 9~ are the

«
simplest

»
noble

~~~~~~~ ~~

~'
2

j'

(3) Biologists prefer to use divergence angles expressed in degrees and belonging to the interval

]0°,180°]. According to this rule, they speak of the golden angle, or Fibonacci angle, equal to

360° ( I
r

' )
=

l 37°, 507 In the same spirit, they replace the Lucas divergence by the Lucas angle

equal to 360°. (3 + r~ ~)~ '
=

99°, 501

(4) Any noble number v can be written as v =

~~ ~ where a, b, c and d are integers such that
cr +

[ad -bc[ =1.
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2.1.2 Definition. Each P~ (relation (I)) can be written as

P~
=

° ~ (6)
Co Cl Cn-i

P~ is a permutation of N~_i
=

(o, I,
,

n I ) subjected to

co=o. (7)

For convenience, define C~ through

C~=Co=0. (8)

As discussed above, P~ represents a sequence of integers Co, Ci,.., C~_i on a circle,

according to a predefined orientation (Fig. 7). If we disregard the exact location of each integer

on the circle, we have a one-to-one correspondence between the set of permutations and these

geometrical pictures.
We shall call P~ an angular permutation if there exists e lo, I such that

0
=

(Co @) <
(Ci @) < <

(C~_i @) <1 (9)

(where (x) denotes the fractional part of the number x). We shall say that is a divergence
compatible with P~ and write div (P~) the set of divergences compatible with P~. It is easy to

check that
=

o.35 is compatible with the permutation shown in figure 7.

We can construct a geometrical picture of an angular permutation P~ by placing the points
C, on the circle at an angular distance 2

ar
(C

;
) from Co, where e div (P ~). In this case,

we have a realization T~(@) of P~ (Fig. 8).

co=o o ci

_~

Ci=3
~~ ~

C~=I C~
~

C4
C~

C4=2
~ _~

3-

Fig. 7. Fig. 8.

Fig. 7. Circular representation of permutation

p (0 2 3 4 5)
~ C~ Ci C~ C~ C4 Cs

The number o
=

0.35 is a divergence compatible with P~ because 0
=

(0.35 Co)
~

(0.35 Cl )
~

(0.35 C 2)
~

(0.35 C 3)
~

(0.35 C4)
~

(0.35 Cs). (See relation (9)). As a consequence, P~ is

angular.

Fig. 8. Realization T~ (0.35) of the angular permutation P
~

of figure 7. The angular distance between 0

and C, equals 2
ar.

(C, o). The relative order of the points C, is the same as in figure 7.
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Notice that it is equivalent to represent a permutation on a circle or on the segment
[o, I [. In particular, the extension of the definition of T~ to the latter case is immediate. The

circle merely allows a closer connection to phyllotaxis.

2.2 THE cuT-AND-PROJECTION METHOD. The study of angular perrnutations is equivalent to

the following problem: given a number @e lo, I[, how are the numbers (9),
(2 9),

,

(no ) ordered on the segment [o, I] ?

The geometrical analysis of quasicrystals has been simplified by the well-known cut-and-

projection method [21-25]. Similarly, the problem of ordering (@), (2 @),
...,

(n @) on the

circle or on the segment [o, I is greatly simplified by a lift in two dimensions and by the

introduction (in the following section) of a two-dimensional periodic lattice (W~~(@ )-lattice)

and by the choice of a subset of this lattice, the strip fk, to be defined in section 2.2.4.

2.2.I The W~~(@)-lattice. We define the W~~(@)-lattice by

W~~~ (9 )
=

n ~
+ m n, m integers ( lo)

0

where e lo, I is called the divergence of the lattice. In order to simplify, we assume

to be irrational ; as a consequence two distinct points of the lattice never have the same x-

coordinate (5). A point of the lattice will be written

W~~=n(~) -m(~) (ll)

(notice the minus sign chosen for convenience). For any pair of integers (k, I) we have

~'~nm ~ ~'~n'm'
~

~kn
+ In', km + lm'

(12)

The interest of this construction is that, if W~~ is such that o w W(~
~

l and W(~
~

0, then,

W~~
=

l~~l
(13)

Such a point can be unambiguously written W~~
=

W~.

2.2.2 Convex envelopes of the W~~(9)-lattice. Relation (13) directly connects the

W~~(9)-lattice with the realization T~(9) of an angular permutation P~. For future conve-

nience, we recall the construction of convex envelopes which simplifies the study of the

structure of T~(9 [26].

In any periodic plane lattice one can construct two broken lines P_ and P~ which are the

convex envelopes of the lattice restricted to the two parts of the upper half-plane defined by
(x

~
o, y ~

o ) and (x
~

o, y ~
o ) (Fig. 9). Envelopes P_ and P~ describe the neighbourhood

of point o (the origin) and, therefore, because of the periodicity of the lattice, of any lattice

point. In order to state a well known but very important proposition on convex envelopes of the

W~~(9)-lattice, we recall in the next section the main properties of the convergent of an

irrational number b
=

[at, a~,
,

a~,. e lo, 1[.

(5) We shall call the two components (~) of a vector x-coordinate and y-coordinate rather than
b

abscissa and ordinate.
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Fig. 9. The two convex envelopes P~ and P_ on the upper plane of a point lattice W~~(o ).

2.2.3 Convergents of a continued fraction. From the continued fraction representation of an

irrational 9
=

[at, a~,
,

a~, ], one defines an infinite sequence of rational fractions

~~
= =

[a,
~~

= =

[at, a~]
~i al ~2

~ ~
l

a~

~~
=

[at, a~, a~]
~3

(14)

~~
=

[a,, a~,
,

a~]
qn

defined by truncating the development of 9 after the n-th term. The fractions
~~

are known as
qn

the principal convergents of the irrational number 9. They satisfy the relations

with

PO "
° Pi

~

l

qo ~
l qi ~ aj (16)

Further properties can be found in references [19, 20]. In particular

~~
~

<
9

~

~'~
~ ~

~~
~

~~
(s

~ r ) (17)
~2

n
~2

n + I ~r ~s

(n, r, s ~
o).
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The intermediate convergents of 9 are defined in the following way. If a~ ~~ ~
l for some

km o, one constructs the rational fractions

Pk Pk~Pk+I Pk~~Pk+I Pk+~k+2Pk+1 Pk+2
~~~~

~k ~ ~k + ~k +1
~ ~k + ~ ~k +1

~ ~ ~n + ~k
+ 2 ~k

+ I ~k
+ 2

Because of (17),
~~

and
~~

~ ~
are both either smaller or larger than 9 according to the parity

~k ~k
+ 2

of k. The fractions
~~

~

=

~~ ~ ~~~
~ '

,

for o
~ r < a~

~ ~, are called intermediate convergents of
~k,

r
~k + ~~k

+ I

9. Together with the principal convergents, they are, in a way which has to be specified, the

best rational approximations of the irrational 9 [19, 20]. This last property has a geometrical

counterpart, which can be expressed through

Proposition I :

In a W~~(9)-lattice, the envelope P_(P~) goes through points Wq~,~p~,~. Here

0 w r w a~ ~~
and n is odd (even).

Proposition I is demonstrated in Appendix A. Notice that, because of (18), the segment of

the envelope joining Wq~p~ with Wq~~~ p~~~ is a straight line, with points Wq~,~p~,~
(o

~ r ~
a~~~) dividing this segment into equal parts. As a consequence, the vertices of the

envelope correspond to principal convergents Wq~ p~.

2.2.4 Lattice strips and neighbouring points. We now need a lattice subset of W~~(9)
whose projection onto the x-axis yields the set of points (C, 9)

on the segment
[o, I of the horizontal axis. This is best done through the following definition (Fig. lo).

y

,
m

m
"

,
m

m
"

.
" m

m .
m m

m m ,
b

m m
L

m m

m m
m .

m .
m m

m .
m

.
m

Fig. 10. The extended lattice strip b~ defines a subset of the point lattice W~~ o ). The projection of the

points of b~ onto the x-axis allows to order the fractional pans (no)
on the segment lo,1[

(0~nwL).
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We call extended lattice strip i~ the set

i~=W~~(o)nRx [0,L]
=

(W~~;neN~,meZ) (19)

where L e N.

In the same way, we call lattice strip b~ the set

b~
=

W~~(o ) n [0, 1[ x [o, L]
=

(Wo, Wi,
,

W~) (20)

Because of (13), the projection of b~ onto the x-axis directly yields the realization

T~
~ i

( 9 ) of the corresponding angular permutation P
~ ~ i.

Clearly, the knowledge of the neighbourhood of each W, e b~ allows one to build

T~~i(9). Because of the periodicity of the lattice W~~(9), the structure of P_ and

P~ determines this neighbourhood. The corresponding analysis, although simple in principle,
is somewhat cumbersome. However, it leads to an important proposition stated in the next

section (Prop. 2) which allows an angular permutation to be characterized.

2.3CHARACTERIzATION oF ANGULAR PERMUTATIONS.- Given any perrnutation

P~
=

(° ~ ), is it angular ? The following proposition brings together a result
Co Cl Cn

i

of Swierczkowski who followed a conjecture by Steinhaus [27], and its reciprocal.

Proposition 2 :

A permutation P~ is angular if and only if the differences

C;~,-C; (I =0,1,. ,n-I)

take only two values

a
and fl (a, fl positive integers)

and possibly a third value

Y~"-fl

which can only occur if is different Jkom 0 or n I.

All the material necessary for the demonstration of proposition 2 can be found in

Appendix B. Figures I la and I16 show two angular permutations P
~

and P
~.

In the latter case,

there occur only two differences, namely a =

3 and fl
=

5 while y =

2 also appears in

the former case. Figure I lc, on the other hand, shows a perrnutation Ps which is not angular.

Moreover, proposition 2 has an obvious consequence. If P~ is an angular perrnutation, the

new perrnutation P( obtained by replacing C; by C~_; for all I between I and

q -1 is still angular. This means that the choice of the orientation on the circle has no

influence on the angularity of the corresponding permutation.

2.3.I How to classijj angular permutations ? Our purpose is to apply the concept of

angular permutation to phyllotaxis. As we shall see below, it will be necessary to emphasize
the geometrical aspect of this concept. Moreover, we shall need to classify the various angular
permutations as an access road toward the morphogenesis of a phyllotactic structure. To this

aim, we state a new proposition which will be useful for such a classification.
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o o o

5 aft ~
5 ~

5 Vi ~

~ -~

~ ja->-.2 ~
q.-5

~->~~/
~

a=~ ~/

4 7 4
4 6

a) b) c~

Fig. I I. The permutation P~(r ~) shows three differences C,
~ i

C which satisfy the requirements

of Proposition 2 (Fig. lla). In the case of Pg(r~~) shown in figure lib, the third difference

y =

2 is missing. Permutation P~ shown in figure I lc is not angular (there are four differences).

Proposition 3 :

For any triple (a, fl, n) of positive integers which satisfies the two conditions (6) :

(",fl)=I

max ia, pj+lwnwa +p (21)

there exists a unique angular permutation P~ such that Ci
= a, C~_

i =
fl.

Proposition 3 is demonstrated in Appendix B. Moreover, as a consequence of propositions 2

and 3, there exists a one-to-one correspondence between the set of triples described in

proposition 3 and the set of angular permutations. The connection is given by the relation

« =

c
j

p
=

c~
i

(22)

Actually, in any angular permutation P~, the triple (Ci, C~_i, n) satisfies the con-

ditions (21). Notice that the permutations characterized by a triple (a, fl, a + fl) are those

for which the differences C~
~,

C, (I
=

o, I,
,

n I) take only the two values

a
and fl (a, fl positive integers)

This property is a direct consequence of lemma B.2 (Appendix B).

3. Hierarchy of angular permutations.

Proposition 3 allows one to set up a classification among angular permutations. The hierarchy
which emerges will in tum be very useful in order to make a connection with the

morphogenesis of a phyllotactic structure. To make this connection manifest, we shall

underline the geometrical interpretation of a permutation P~ as a series of integers
Co, Cj,

,

C~
i

placed on a circle.

(~) (", fl) denotes the highest common divisor of two positive integers
a

and fl. Conditions (21)

therefore expresses the fact that
a

and fl are coprime.
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3. I DESCENT AND ANGULAR DESCENT. Let us consider some perrnutation P
~.

We shall note

Pj~~ ~~ the perrnutation obtained from P~ by removing point number n :

p (o I k- I k k+ I n- I

~ ° Cl- Ck-i Ck"n-I Ck+I Cn-1 ~

~~ ~"~o
Ct. C~_j C~+i Ck+2.

C~_jl'~~~~

We choose the same orientation for P~ and P )~ ~~
on the circle. We can now introduce two

definitions.

We shall call descent D(P~) of a permutation P~ the set of the permutations P~~i for

which (?)
Pfl)1~ Pn (24)

In particular, the subset of D(P~) consisting of all angular perrnutations e D(P~) will be

called the angular descent of P~.
Notice that the word

«
descent

»
is used here in the sense of

«
lineage ». The reason of this

choice will appear below to be justified by the connection between the concept of angular
descent and the emergence of a phyllotactic pattem.

3.I.I Angular descent of an angular permutation. Let P~
=

(a, p, n) be an angular
perrnutation.

A natural question arises now : does it have an angular descent ? In other words, where can

we put a further point (with number n) in P~ so that the resulting perrnutation P~
~ i

is still

angular ?

Before answering this question, we notice a simple property of angular permutations. If

some permutation P~ is angular, then P~
i,

defined through

P~e D(P~_1) (25)

is angular : this is an obvious consequence of the definition (9).
We have therefore

Proposition 4 :

If an angular permutation P~ belongs to the descent of a permutation P~_i, then

P~
i

itsef is angular.
Conversely, to show that P~

~ i can be angular when P~ is, we have to consider two cases.

I. The new point n is a neighbour of the origin o.

For definiteness, let us set n between fl and o (Fig. 12).

The permutation P~~i thus defined is clearly angular if n = a + fl. For, in this case,

P~ was characterized by only two differences C,
~ i

C,, namely a
and fl (see Sect. 2.3. I ).

As a consequence, P~
~ i

itself displays the three differences n, a
and fl

= a n which

satisfy conditions of proposition 2. On the other hand, if n ~ a + fl, it is easy to check that

P~~
i

shows more than three differences.

The same conclusion holds for n between o and a because of the symmetry of the roles that

a
and p play in the characterization of a permutation.

(?) In other words, the descent of a permutation P~ is the set of all permutations obtained from

P~ by adjunction of a supplementary point, namely point n.
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a

~0
+a ~

n
-n

n-J
fl

Fig. 12. The new point n has been put between 0 and fl, a former neighbour of the origin. The new

corresponding permutation P~~j is characterized by three differences n- fl
= a -n; -fl if

n = a + fl. If n ~ a + fl, the number of differences exceeds three.

To summarize, the resulting permutation P~
~ j

is angular if and only if

n = a + p. (26)

2. The new point n is not a neighbour of the origin o.

One can use proposition 3 which claims that there is a unique way to construct an angular

permutation P~~, defined by the triple (a, fl, n + I) provided that n + I w a + fl (when

n + ~ a + fl, this is impossible). Because of proposition 4, P~
~, e D(P~), as required. On

the other hand, P~ itself is angular, which implies n w a + fl. In order to reconcile the latter

inequalities, one must clearly require

n < a + p (27)

We can summarize this discussion in table I.

Table I.

I. n = a + fl

(a, n, n + I)

(«, fl, n)( Bifurcation
(n, fl, n + I)

n ~ a+ fl

(", fl, 11) ~
(tY, p, 11 +1)

3.1.2 Descent tree of angular permutations. Apart from the detail of the transition

(a, fl, n)
~

(a, fl, n + I ), table I defines the algorithm ofangular descent which allows us

to state the lineage between some angular permutation P~ (a, fl, n ) and any member of its

descent. Since any angular permutation P~ is the descent of an angular permutation
P )~

'~ (Prop. 4), it is clear that we can obtain all the angular permutations by application of the

algorithm of angular descent to (1, 2, 3) and (2, 1, 3). The whole set of angular permutations
therefore constitutes two trees one can be obtained from the other by inverting the orientation

of the circle or, equivalently, by substituting to a compatible divergence 9 the new one

9.
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According to the convention made in section 2.I.I, we restrict ourselves to divergences

belonging to o, and, therefore, to the tree constituted by (1, 2, 3) together with its whole
2

angular descent (8).

3.1.3 Algorithm of angular descent. We have described above the general structure of the

algorithm of angular descent, but it is interesting to see explicitly how the transition

(a, p, n)~ (a, p, n +1) (28)

takes place (recall that (28) is subjected to condition 27)).

Consider figure13. Let point n I be located between points A~_i and B~_j (A~_i,

n I and B~_
i

are successive points in P~). Let A~ and B~ be two points such that point

n will be located between them in P~~j, the angular descent of P~; according to the

orientation, one successively meets A~, n and B~. There are two possibilities.

I. a ~fl, so that a -fl~o. As a consequence, the only positive difference is

a. Therefore, 8j
= a, 8(

= a and A~
=

A~_
j + I : n must be located directly after

A~
= n a for P~

~ j
to be angular.

2.
a ~

fl. One can show similarly that n has to be located directly before B~
= n fl for

P~~
j

to be angular.

B
i

B~ = B~_ j
+I

~n I n

~2

~
b~ b~

~n-
I

An
"

An-
I

+I

Fig.13.- Algorithm of angular descent: Points number n- I and n correspond to symmetrical

situations (see text).

3.2 THE SET OF COMPATIBLE DIVERGENCES. We have already introduced the Set

div (P~)
=

div (a, fl, n) of the divergences 9 that are compatible with the permutation
P~

=
(a, fl, n). Our aim is to determine this Set.

To answer this question we have first to state

Proposition 5 :

If n m 3 points are located on a circle, and the position of point number k is given by the

angle (k9), where 9 is irrational and the integer k satisfies ow km n- I, then

kj and k~, the two neighbours of the origin (I.e. point number 0), satisjj

kl
~ qm,

r

k2
~ qm +1

(29)

for some m and r(I w r w a~ ~~).

(8) Here, this incIudes the
«

whole lineage
»

of P~ and not only its direct offsprings.
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Integers q~
~

and q~~j are denominators of two convergents
~~'~

and
~~~~

of
qm,r qm+i

@. Moreover, any integer equal to some other denominator q~,~ of a convergent of
such that

qs,
t

~ ~~~ lam,
r

qm
+

II
~

qm,
r

(30)

is larger than
n.

Proposition 5 is a direct consequence of Lemma B. I (Appendix B). Moreover, it shows that

div (a, fl, n) is the set of those for which

qm,
r

~ " qm
+

~

fl if
" ~

fl (31)

or

q~,
~

=

fl q~
~ i = a

if
a ~

fl (32)

Notice that 9 needs not to be irrational for proposition 5 to be true. If the numbers

(k9) are all distinct for o
w km n I, proposition 5 also applies, even if is rational.

3.2.I Computing the set of compatible divergences. -We have to compute the set

div (a, p, n) with the condition

div (a, p, n)
~ (0, (33)

(see 2.I,I). Now proposition 5 shows that determining div (a, p, n) is equivalent to the

construction of the continued fraction from two integers a
and p which are known to satisfy

(31) or (32) for Some (a priori unknown) m and r.

Such a construction is well known (See Ref. [10]). We Sketch it here briefly.

Let us start with the relation

q~
~

=
rq~

~ j + q~ ~ r ~ a~
~ ~

(34)

which is a generalization of (15) for intermediate convergents (see (18)). (34) implies

0
~ qm

" qm,
r

~qm +1 ~ qm +1
(35)

or

~m
+ 2 ~ ~ ~

l~~ (36)
m ~

where [s
= s (s) From (34) r is the Euclidean divisor

~~'
~ with remainder q~. Similarly,

qm
+ i

~m
+ ~ l~~ ~ (37)

~m

is the divisor
~~~~

with remainder q~_i, and so on. Now, for any couple of principal
qm

convergents,

(q~
~ i, q~ )

=

I if m m o (38)
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so that the remainder of the division
~~

~ vanishes if and only if q~
=

1. (33) implies that
qm

qo =
I q, = at ~

l (39)

so that m =

o when the Euclidean algorithm of division stops.
We can now summarize our results as follows.

An angular permutation (a, fl, n) determines in a unique way the first part of the

development of as a continued fraction, namely at, a~,.
,

a~~i. Moreover, it sets

r w a~
~ ~

and leaves the rest of the elements a~
~ ~, a~

~ ~,
undetermined. In other words, if

~
~

[~l, ~2>
,

~m +2, ~

[~l, ~2,
,

~m +1, ~
m

+21 (4°)

with

~m+2~ [~m+2,~m+3; l~am+2+~ (41)
m+3

one has the simple condition

r w r~ ~~.
(42)

We shall symbolize the set of continued fractions which satisfy this property by

div (a, fl, n)
=

[aj,
,

a~
~ j, r + ]. (43)

As noted above, the result obtained here can be extended to rational divergences, provided
that we restrict (42) through

r ~ rm
+ 2 ~ °l (44)

which insures that, if 9
=

~ is rational, then q ~ n so that all points of the realization of the
q

permutation (a, fl, n) are distinct.

We can sum up the results of this lengthy discussion through

Proposition 6 :

Let (a, fl, n ) be a permutation such that div (a, fl, n )
~

o, j. Then
a

and fl determine
2

a series of integers at, a~,
,

a~
~ i, r for which the following relation hold

div (a, p, n)
=

19~, 9~i (45)

and, if m is even,

92
~

[aj, a2,
,

am
+

II
~

[aj, a2>
,

am
+ I,

r]
=

RI (46)

while, if m is odd,

RI
~

[al, a2,
>

am
+

II
<

[al, a2,
,

am
+ I>

r]
=

92 (47)

so that we write

div (a, p, n)
=

[at,
,

a~
~ i, r + ]. (48)
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For example, compute div (3, 8, 9). We have successively

a3 » r = =

2 remainder
-

2

a~
=

~
=

l remainder
=2

aj =

~
=

2 remainder
=

o
l

The explicit form of (3, 8, 9) is shown in figure14. One can check there that

div(3, 8,9)~ (0, because points, (0, 1, 2) are ordered according to the chosen
2

orientation. Moreover, according to proposition 6

div (3, 8, 9)
=

~, ~ (. (49)

It is obvious that

div (8, 3, 9)
=

(, (, (50)

~
o

3

5 ~6
2

7

Fig. 14. Angular permutation characterized by the triple (3, 8, 9).

More generally, by modifying the algorithm of division in the case where at
=

I, we obtain

Proposition 7 :

if dlv (£k, fl, n)
=

]91, °2[
~

[al, ~2,
,

~m +1, ~ + l
~ [°,

then

div (fl, a, n)
=

]1- 9~, 91[
=

[1, at I, a~,
,

a~
~ j, r + ].

The only point which requires a comment concems the fact that now at
"

I.

Then qo
= qi =

I and the relation q~ _1~ q~ is not true for m
=

I. Hence

a~~, #
~~~~

(m =1). (51)
qm
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We then stop the algorithm when the remainder vanishes :

a(
=

~~ l(remainder
=

o)
qi

and put

a~ = q~ I
=

a( I m (52)

3.2.2 Regular and singular descent. Proposition 6 shows that div (a, fl, n ) depends only

on a and fl. As a consequence, in the tree of angular permutations, the interval of compatible
divergences is modified only on the points of bifurcation, I-e- for the values of n satisfying

n = a + p (53)

Let us start with a permutation (a, fl, n = a + fl ) and assume (43) to hold, together with

a <
fl.

We distinguish between two descents :

I. Regular descent (9) (a, fl, n)
~

(n, fl, n + I ).
Before the transition,

a = q~
~ i < q~

~
=

fl (I « r « a~
~

~) (see (32)). After the transition,
the only possibility is n

= q~
~ ,, ~

~
q~'~

~ =

fl (I w s w a~
~

). Actually, p, being Smaller,

must correspond to a principal convergent. Now the transition selects a subset of

div (a, fl, n) as a new set of compatible divergences [28] :

div (n, fl, n + 1)
~

div (a, fl, n ). (54)

This subset is easily computed, since

~m
+ 2 "

~m,
r

~~~~

which implies
r =

am
+ 2

(56)

and

n = a + fl
= qm+ i + qm+2 " qm

+ i,1
(~~)

The new set of compatible divergences is given by

div (n, fl, n + I)
=

[at,
,

a~~i, a~~2, + ]. (58)

2. Singular descent (a, fl, n)
~

(a, n, n + I ).

Now we have
a = q~

~
< n = a + fl

=
qm+ i

+ qm,~
=

qm,~~ i.
Notice that

r ~ a~
~ ~

(59)

Otherwise (32) would not be satisfied. The new interval of compatible divergences reads

div (a, n, n + I )
=

[at,
,

a~
~ i,

(r + 1) + ]. (60)

Note that the regular descent sets r
=

I, and thus leads to irrationals
«

Slowly approximable
»

by rationals. An infinite succession of regular transitions leads to a noble number.

Interestingly, the concepts of regular and singular descents correspond to the concepts of

regular and singular transitions which have been introduced in the second paper mentioned in

(9) The case considered here corresponds to a ~
fl. If

a ~
fl, then (a, fl, n)

-
(a, n, n + 1).
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[10]. In this reference, self-similar pattems of tangent circles aligned along a logarithmic spiral
have been studied. By varying steadily the parameters of the pattem, one can transform a

lattice where each circle is tangent with four neighbours into a close-packed lattice where each

circle is in contact with six neighbours. Now, one of the parameters happens to be a

divergence ; from the close-packed lattice, there are two possibilities to modify the lattice

continuously. Their effects on the development of the divergence as a continued fraction are

exactly the same as shown by equations (58) and (60). This justifies the names chosen for the

two types of descents. Moreover, it was first shown by Levitov that in a system described by a

potential energy the regular transitions are favoured [29].

3.2.3 Farey tree structure. Let us consider an angular permutation at a bifurcation point.
The associate set of compatible divergences is written

div («, P, « + P )
=

ibi, b~i
=

ia<,
,

am +<, r + 1. (61)

The end points b~ (I
=

1, 2 ) of the interval are given by (46) or (47) according to the parity of

m. In any case b~ is a rational fraction,
~~

If we write
qi

b'
=

[a,,
,

a~+,, r + 1] (62)

then, after the bifurcation, each branch will be associated with one of the intervals

16,, b'[ and 16', b~[. Now b'is easily obtained from b, and 0~

b'=~~'~~'=~~'~~~~~~ =~'~~~
(63)

~m,r+< ~m,r+~m+1 ~< +~2

This is exactly the rule used in the construction of the Farey tree [28, 30]. Figure 15 shows

the Farey tree for all angular permutations P~ such that 3 «n«7, together with the

corresponding intervals of compatible divergences.
Accordingly we can index uniquely perrautations (tx, p, a + fl ) with the rational numbers

b'=~ with ~p, q)
=

I and q = a + fl. We can in particular obtain the permutation
q

(a, fl, a + fl ) by building the realization T~
~ which takes the form
q

lC, 0'l
=

(64)

whence

C~ =1. (65)

This result, which is rather intuitive, can be obtained from Lemma B,I and Lemma B.2

(Appendix B). It will be used in section 5 and in Appendix D.

3.3 THE ALGORITHM A AND THE GOLDEN DIVERGENCE. We have now achieved a complete

knowledge about the construction of angular permutations, for any value of their divergence.
Within this frame it is possible to analyse the algorithm A we have introduced in 1.2.2 to

simulate Thomley's dynamic scheme.

We want to show that A corresponds to the algorithm of angular descent with only regular
bifurcations, and thus leads to the golden divergence 0~.
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Fig.15.- The Farey tree of the angular descent of permutation (1, 2, 3). Only the maximal

permutations (defined through (a, p, a + p)) have been explicitely represented. Apart from the label

(a, p, n), the interval of compatible divergences ]bj, b~[ is shown. A regular (singular) transition is

labelled with a double (single) line. A broken line indicates an angular descent.

Consider a permutation (a, fl, n = a + fl ) with
a ~

fl. Its regular descent includes the

permutation :

Pn>= («'=«+P,P,n'=«'+p)

(see Fig, 16).

Figure 17 shows the neighbourhood of a point k e (1, 2,
...,

fl I )
on P

~, ; its construction

follows directly from proposition 2 and from the fact that only two differences (namely
a' and fl) can occur in P~,, since n'

=

a'+ fl.

Each point a'+ k(k =1, 2,.
,

fl I) has thus been placed between k and its older

neighbour, that is k + a.

Now this is exactly the rule defined by A, if we consider locating a' between 0 and

a as the initial step in the application of A.

Moreover A will locate a'+ fl between fl and its older neighbour which is 0 : this

demonstrates that A corresponds to the algorithm of regular descent.
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k+>

o k

a a+k

Fig. 16. Fig. 17.

Fig, 16. -Permutation P~, belonging to the regular descent of perrnutation (a, p, n = a + p) see

section 3.3.

Fig. 17. Neighbourhood of a point on P~. (see Sect. 3.3).

4. Stationary permutations.

We have considered so far an evolution law for permutations that does not allow for the

description of a steady regime : the state of the apical ring is indeed represented at any time

n by a permutation P~ that takes into account the n-sprouts that have appeared during the

growth.
But one can also describe a stationary regime in the permutation language.

We introduce the following definitions. Using a similar notation as in section 3, I, we define

a permutation P )°~ obtained from P~ by removing point 0
=

Co. For convenience, we further

subtract one to each of the remaining integers C~(I Sk « n I and finally permute them

circularly so that the image of 0 through P)°~ remains 0.

p
0 2., k-I k k+I, n-lj

~ Co
=

0 C, C~ C~_, C~
=

I C~+, C~
_,

~

Pj°~
=

~ ~ ~ ~
(66)

° Ck+< I Ck+2 -1 Ck-< I

As is the case for P)~ ~'~, P(°~ is still a permutation of the first n I non negative integers

leaving 0 unchanged. We are now able to give a further definition :

P~ is a stationary permutation if there exists a permutation P~+, e D(P~) such that
~'f~

~

~'n.
Clearly a stationary permutation describes a system with a finite memory (the oldest sprouts

are forgotten), whose state is invariant under the evolution.

The following proposition states that such permutations necessarily correspond to «
phyl-

lotactic
» systems, that is, to systems which exhibit a divergence (there is an intuitive reason

for this : the concentration field on the apical ring is described by the same permutation if, and

only if, it undergoes a mere rotation at each step of the growth process; the angle
characterizing this rotation is nothing but the divergence).

Proposition 8 :

A permutation P~ is stationary if, and only if, it is angular.
The complete proof can be found in Appendix C, and an example is given in figure 18.

Moreover, proposition 8 gives an interesting characterization of angular permutations which

involves no arithmetics in contrast to proposition 2.
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~4
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Fig.18. An angular permutation is stationary, a) The angular permutation (3, 8, 9), b) The new

point 9 has been added to (3, 8, 9) according to the algorithm of angular descent, giving birth to the new

angular permutation (3, 8, 10). c) Point 0 has been removed and all other points C, have been replaced by

C~ I (I w w 8). The resulting permutation P~ identifies with (3, 8, 9).

5. Group structure.

5.I MAXIMAL PERMUTATIONS. In this section, we analyse some group properties of the

angular permutations introduced above.

According to proposition 3, given (a, fl), the maximal value q can assume for

P
~ =

(a, fl, q ) to remain angular is given by
a + fl. We call maximal such a permutation [28,

30].

On the tree of angular permutations, a maximal permutation always corresponds to a

bifurcation. Let us define

fl~
=

(H~
=

(a, p, a + fl
=

q)) (67)

fl~ is the set of all maximal permutations H~
=

(a, fl,
tx + fl

=
q) of q elements. Given

q, H~ only depends on a
which must satisfy

(", q)
=

(68)

(a is not assumed to be
~

fl here).
Moreover, a maximal permutation is characterized by the occurrence of only two differences

C~
+,

C, (I
=

0,1,.., n I), as has been mentioned in section 2.3.I. Before giving an

explicit description of the structure of fl~, we shall introduce two useful notations. Note that

q is considered as a fixed integer in what follows.

First, we recall section 3.2.3 : to any H~ e fl~, one can associate the rational 0'
=

P
,

with
q

~p, q)
=

I. Since q is fixed, we can write p
=

p(a). Notice that both p and a belong to

4~(q), the set of positive integers smaller than q and coprime with it.

We shall denote by R~(I) the rest of the division of integer I through q. The following
properties of R~(I ) are straightforward :

Rq (R~ (I ) + R~ ~j ))
=

R~ (I + j )
~~~~

Rq(iR~j ))
=

R~(<j ).

They are valid for any couple (I, j) of integers.
We are now able to state
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Proposition 9 :

The set fl~, together with the usual composition law of permutations, is a group.
The following identities hold for any H~, H~, e fl~

Ha (I
=

Rq(I« ) (i « I « q ) (70)

H~.H~,
=

H~
~~~,~

(71)

Hi '
= H~~~ (72)

A demonstration of proposition 9 can be found in Appendix D. Note that fl~ is nothing else

than the group of the units of Z~, the ring of integers modulo q [31].

Angular permutations which are not maximal. One cannot extend the group structure to

angular permutations which are not maximal. Consider for instance permutation (5, 4, 7).
According to the algorithm of angular descent, it has to be written as

(5 4 7) (° ' 2 3 4 5 6j ~
' ' 0 5 6 2 3 4 " 5.

(73)

Now

does not satisfy the requirements of proposition 2 and, therefore, cannot be angular.

6. Bijugate phyllotaxis.

6. I BUUGATE PATTERN AND SYMMETRIC PERMUTATIONS. There are two common excep-

tions to the rule of Fibonacci numbers for parastichies. One finds phyllotactic pattems whose

parastichy numbers are either two consecutive numbers of the Lucas series (see Sect. 2, I, I) or

of the sequence built up with the double Fibonacci numbers :

10 16 26..

Such pattems are called bijugate. Trijugate (or more generally m-jugate) pattems may also

be encountered.

Tile simplest geometrical model of such a m-jugate pattem is obtained by juxtaposition of

m identical strips b~ of a W~~(0 lattice, where 0 is the golden mean [10].

It is quite improbable that m-jugate pattems are produced by simultaneous appearance of m

sprouts on the apical ring, at each step of the growth process. Such a long-ranged correlation in

the system would in fact yield a mechanism quite different from the one sketched in 1.2. I in

this case, the occurrence of m-jugate pattems would not be exceptional I'°).
This remark imposes a slight modification in our ideal geometrical model : we may for

example associate a different age to each of the m strips b~, so that at each time

n corresponds the birth of a unique sprout n.

The permutation describing such a pattem is obtained by application of the cut-and-

projection method we have discussed in 2.2 to our geometrical picture.

(1°) We don't consider here plants that systematically exhibit m-jugate phyllotaxis.
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The state of the apical ring at time n would thus be modelled by the following permutation
(we consider n even and a bijugate Fibonacci pattem in order to simplify) :

~~ Ill
« Ii )~[

ci,~- cl ci
[)~ )j[1~

l~~,
~~~~

where C) is even for all I,

c)
=

cl
+ i for all i

and where

0 ~ l
Pi

=

,

~

,

(76)
~

~
C> Cn<2-

2 2

is an angular permutation.
We will say that P~ is 2-symmetric.
In our case (bijugate Fibonacci pattem), we have : 0~ e div (P~), in other words

~' ~'
' and ~'~~'

2 2

are two successive Fibonacci numbers.

6.2 SYMMETRIC PERMUTATIONS AND PERTURBED DYNAMICS. Surprisingly, the algorithm A

generates such abnormal permutations when an error occurs in an initial step. Consider for

example the irregular permutation P5 (Fig, 19).
If A had been correctly applied, 4 would have been placed between I and 2. Now suppose

that we go on and apply A to P
5.

As 4 has been placed next to 0, 5 is put between I and its older

neighbour, that is 2, and so on. We obtain at time19 a permutation whose circular

representation is in figure 20.

~~
0 lo

4

~
~

14

2 9

2 3

18 13

3 8 ~

~~
17

5 11

Fig, 19. Fig. 20.

Fig. 19. An error occurred in step 4.

Fig. 20. A permutation with a symmetry of order 2 is obtained as the result of one initial error.
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It is easy to check that P,~ satisfies all the properties stated above of a 2-symmetric
permutation.

More generally, if A is applied (with a convenient choice of the initial step) to an m-

symmetric permutation, then the permutation remains m-symmetric and its divergence tends

towards a noble number.

This result shows that A is more than a simple transcription of the algorithm of regular
descent, whose construction relies on purely mathematical considerations.

In this sense A may be considered as an equivalent of Thomley's dynamic scheme for

permutations.

7. Conclusions.

Following reference [18], we tried in this paper to introduce a temporal factor into phyllotaxis.
In reference [14], a kinetic equation describes the evolution of the concentration of an inhibitor

on the apical ring where the new shoots of a phyllotactic structure appear. «
Inhibitor

»
is the

name given to some morphogen, an hypothetical chemical substance assumed to preclude the

immediate emergence of a new sprout. Each new-bom shoot is supposed to be followed by a

local increase of inhibitor concentration which soon fades away through diffusion and

degradation. As a consequence, the overall concentration profile of inhibitor shows various

peaks more or less sharp according to the order of birth of each shoot, assumed to appear in

succession.

Our aim was to analyze the algebraic structure of a distribution of a finite number of points

on a circle together with their temporal evolution. The points on the circle are assumed to

correspond to the distribution of peaks on the apical ring. We have been able to put forward a

system of regular and singular transitions between permutations. This system builds a

hierarchical structure similar to the classification of the transitions observed between lattices of

tangent circles alined along equiangular spirals or helices [32, 10]. As a consequence, the

special role of the noble numbers as divergences can be emphasized.
The structure of this algebraic model is general enough so that it is not necessarily related to

a chemical model. In fact, many biologists look for a relation between the phyllotactic
structure and the existence of a morphogen. Now our paper shows that, as one could expect,

the general occurrence of certain noble divergences is unlikely to give any information over the

chemical processes ruling the appearance of new shoots. More precisely, if this kind of

information could be drawn from a phyllotactic structure, it ought to be looked for in

anomalous pattems, for instance in structures characterized by a Lucas divergence, or in the

case of m-jugate phyllotaxis.
The fact that the same hierarchical structure (I,e, a Farey-tree) emerges both from a pure

static analysis and from a model of the process of morphogenesis is not so astonishing, after

all. It is the consequence of the fact that the pattem, during its growth, builds its scaffolding,
which is nothing else than its proper structure.

Another conclusion can be drawn from this study. A large majority of botanical pattems one

meets belong to the golden phyllotaxis (their divergence is close to the golden mean), while a

small proportion of spiral pattems show the Lucas divergence. Moreover, there are still less

frequent values of the observed divergence, together with more complicated pattems, for

instance those which put forth both an axis of rotation and a spiralled lattice. Observing the

Farey-tree which emerges from this morphogenetic study now suggests that the possible
random fluctuation responsible for any anomalous structure (I,e. different from the golden

one), if there is any, must occur very early during the morphogenetic process. In the absence of

such a fluctuation, the only possible transitions seem to correspond to less important
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bifurcations leaving the value of the divergence almost unchanged. In fact, analyzing these

assumed fluctuations could then lead into the core of a possible chemical process.
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Appendix A.

In order to prove proposition I, we first demonstrate the two following lemmas.

Lemma A,I.

Let V
=

(na + mb n, m e Z be a lattice in R~. If the basis vectors a and b have slopes of
opposite signs, then they belong to the convex envelopes P+ and P_ of the lattice.

Proof.

We prove it graphically. First observe that the unit cell defined by a and b contains no lattice

point, whatever their respective slopes (see Fig. Al). From this follows that the open set

fl bounded by the lines kb and kb + a, k e R, contains no lattice point (Fig. A2). If a and b

have slopes of opposite signs, we define fl'
=

fl n R+ x R+ (Fig. A3).
Now if the convex envelope P+ does not contain a, it must cut the vector a (to envelop the

point a), be a segment in fl' (if it was a broken line, the angle would imply the existence of a

lattice point in fl'). Moreover it cannot cross the x- or y-axes in fl'. this is impossible,
consequently P+ contains a. The case of vector b is similar.

Lemma A.2 (For a definition of a W~~(0)-lattice, see Sect. 2.2,I).

Consider a W~~ 0 )-lattice. If W~~ and W~,
~, are basis vectors with slopes ofopposite signs,

and if n ~0, n'~0, then W~+~,,~+~, belongs to P_ or P+ ; moreover there is no point

W~~ on P_ or P+ with max [n, n']
~

i
~ n + n'.

y

n

I
I

I
o x

Fig. Al. Fig. A2.
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y y

~
-

$
b

p o o'

x xo o

Fig. A3.

Proof.

Simply consider the diagram in figure A4. The hatched zone contains no lattice point, since

the unit cell defined by W~~ and W~,~, is empty. Hence W~~ and W~,~, are basis vectors, as

well as W~,
~,

and W~
+ ~,,

~ + ~,.
Lemma A. I then shows that W~

+ ~,, ~ + ~,
necessarily belongs

to P_ or P+.
Lemma A, I also implies that W~~ e P_ and W~,

~, e P+ (we consider the case of Fig. A4). It

is then clear that a point W;~ for which max [n, n']
~

i
~ n + n' belongs to a convex envelope

only if it is in the hatched zone : this is of course impossible. We then have

y

Wn+n',m+m'

j~~~,~,
Wnm

x

o

Fig. A4.

Proposition I (Sect. 2.2.3).

In a W~~(0)-lattice, P_ (resp. P+) goes through points

~~'qn, rPn,
r

~~ ~ ~ ~ ~n
+

2)

n being odd (resp. even).

Proof.

First notice that

qn,
r

0 p~,
~

~
0 if n is even

qn,
r

0 p
~, ~

~
0 if n is odd

Hence

W~~ ,~~
,

e R+ x R+ if n is even

W~
~

e R_ x R+ if n is odd (Al)

Now we demonstrate the proposition by induction.
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Suppose that for I « q~, ~(l « r w a~ ~~), the points W~j that constitute P_ and P+ fulfil the

requirements of the proposition and suppose further that W~~,~~, and W~~~ ~~~~
generate the

lattice.

We know then by Lemma A.2 that W~~,~~~~,~~ (or W~~~~,~~~, if r =
a~+~) is on

P_ or P+, and that there is no point W;
j on P_ or P+ with q~,

~
~

i
~ q~,

~ + j
(q~,

~
~

i
~ q~

+ i, i

if r = a~ +~).
It has also been shown in the proof of Lemma A.2 that W~~,~~~~,~, and W~~~,~~~~ (or

W~~~~~~~~ and W~~~,
~~~~,

if r = a~
+

~) generate the lattice thus the induction hypothesis is

verified for I « q~,
~ + ,

(or I w q~ ~,, ,
if r = a~

~
~).

To close the demonstration, we simply have to prove that W~~~~ and W~~~, generate the

lattice (we know by Lemma I that these points are on P_ and P~ if this condition is satisfied).

But Vn, m e Z, we can write

Wnm
=

(n ma W<o + mwaj

=

(n ma, ) Wq~
p~

+ mwq<
Pi

~~~~

Appendix B.

In the text we have outlined the idea of the cut-and-projection method (chapter 2.2), which

allows proposition 2 to be proven. Here we give the details of the method.

Definition: the neighbouring points A(~ and B(~ of the point W~~ in the strip

li~ are the only points in f~ whose projection on the x-axis is next to the projection of

W~~ ; the projection of A(~ will be taken on the left of the projection of B(~. We simply write

A( and B( for the neighbours of a point W~.
Figure Bl illustrates this definition.

y

L

m

_

bL

~L

nm ~~ .

x

0 .
Fig.

Bl.
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Lemma B,I.

Let b~ be
a lattice strip in a W~~(0)-lattice, with Le (q~,~; q~,~+l;.

q~,
~

+ q~
+ ,

I )
,

n m 0 and I « r « a~
~ ~.

We have

Ai
# W~~

~, p~ ~,

and B~
" ~'~qn.,Pn., ~~ ~ '~ ~~~~

At
=

W~
p

and B (
=

W~
~ ,

i f n is odd (B1)

Moreover Al and B(
are basis vectors of the W~~(0 )-lattice.

Proof.

If Al and B(
are neighbouring points of the origin, then they have slopes of opposite signs

and they generate the lattice, since they define an empty cell (Fig. 82).

y

-L
Bo

ij

x

o

Fig. 82. By definition of A~ and B(, the hatched zone contains no lattice point.

We can therefore apply Lemma A,I. Since L
~ q,, we can write

At
=

w~~,~~, and Bi
" "~~>.kP>.k

~~~~

with I « « a~
+ ~

and I « k « a~
+ ~.

We now consider the case of even n. Since W~~
,

~~
,

and W~, ~~, ~
are the neighbouring points

of 0 in b~, qj,~ is the greatest denominator of convergent with even j which is less than

L.

Now

q~,~~L

qn,
r +

" qn,
r

+ qn
+

~
L (83)

so that qj, ~ = q~,
~,

since n is even. Similarly, q~, is the greatest denominator of convergent

with odd h which is less than L.

Now

qn+<~qn+< +qn=qn,<~L

~n+>,< "~n+I +~n+2~~n+< +~n,r~1~~ (~4)

so that q~_ ; = q~ +,,
since n + I is odd.



N° I I PHYLLOTAXIS : AN ALGEBRAIC MODEL OF MORPHOGENESIS 2161

Lemma B.2.

Let b~ be any strip in a W~~(0 )-lattice, and let W~~ be a point in l~. Then we have

. If L e (q~,
~

; q~,
~

+ l ; ; q~,
~

+ q~ +,
I ), then A(~ W~~ is necessarily equal to one

of the vectors (Al ; B( ;
At B()

and is never equal to the third one if and only if

L~qk,r+qk+I i

. If L
~ q,, A(~ W~~ is necessarily equal to one of the vectors (W~, W,o).

Proof.

FiRST cAsE : L m q,. Let us define the following sets

n "Wnm(°)nRX l~~qk,r~qk+< + i'~+qk,r+qk+l~ ii

n~ =W~~(o)nRx [n,n+q~,~+q~+, -Ii (85)

n_ =W~~(o)nRx [n-q~~-q~~,+I,n].

We also define

A±
=

Wnm ±
Al

B±
=

Wnm ±
Bi

C±
~

Wnm ±
(Ai Bi) (86)

It is easy to see that f~
~

fl (because W~~ e b~ and L « q~;~ + q~~, I). One similarly

checks that A±, B±, C± e fl ; the situation is illustrated in figure 83. Finally, notice that we

can define A$J and B$J in the same way as we defined A(~ and B(~.
we simply substitute

12± to bL in the definition.

Fig. 83. The hatched zone and the white points do not belong to J2.
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Now observe that J2+ can be obtained by translating
b~~ +~~ ~_,

by the vector

W~~ as Lemma B,I also implies

~qk,, + qk
+

' ~L
o o

~qi,, + qk+ I ~L (~~)
o o

we obtain

A$r
=

Al + Wnm
=

A+

B$r
=

Bl
+ Wnm

=
B+ (88)

fl_ is obtained by inverting b~~ + ~~ _,
with respect to the origin and by translating it by the

vector W~~. Thus

A$j
=

B_

B$j
=

A_ (89)

We are interested in A(~. Two cases may be considered

(Ail' A$ni n ti # Z

In this case, since lj~ ~
fl

=

£l_ U fl+, we have

A(~ e (A$£, A$j
=

(A+, B_ (B lo)

The proposition is then proved.

. (A$4, A$I n tt
=

Z

Figure 84 illustrates the meaning of this relation. Suppose k is odd using Lemma B.I and

the definition of lj~, it is easy to see that the situation of figure 84 is realized if and only if

n + q~
~

~L and n qk+ ~
0. In other words (k is odd)

0«L-q~,~~n~q~+,. (Bll)

Similarly, for even k,

°~L~qk+<~~~qk,r. (B12)

A+

C+

;
[
h

h

~q
n m

B

Fig. 84. The hatched zone is out of EL-
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These inequalities have a solution n e N* if and only if L
~ q~,~ + q~+, I. They also

imply

0wL-q~+,~n+q~,~-q~+i~q~,~wL foroddk

0«L-q~~~n-q~~+q~+,~q~+,SL forevenk (B13)

I-e- C+ e lj~.

It is then clear in figure 84 that A(~
=

C+ (since At and B( generate the lattice, the cell

defined by W~~ A+ C+ B_ contains no lattice point). The first part of the proposition is

now proved.

SECOND cAsE : L Sqi. It is easy to construct the lattice strip lj~ with the basis vectors

Wio and Woj (Fig. 85), because 0q,
~

l and W,o
=

(0, 1). The proposition is obvious in

figure 85, as a consequence of the periodicity of the W~~(0)-lattice.

y

"~qil

W~i

~~
~

~
~_~) ~l

~
~

~0

Fig. 85.

Lemma
B.3.

Let a~,

in the nterval
0, ~ . Let us define

~ ~2 ~
-

aj ~ 0 a =
4)

~2 ~2 ~ ~2

and V (na

Then
there exists

an
number e Jo, I [ uch

Proof.

Since

na~ - mb~ =
1 . (B15)
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Moreover a, b2 + a2 b,
=

I, by construction. Then Vk e Z, one can construct the vector

kb~a+ka~b=k= (~). (B16)

Now let n', m' e Z satisfy (B.15) and k'e Z satisfy

bwn'aj +m'b, +k'e lo, I[.

The number b we have defined is of course irrational, since

, ,

n' bi
~ ~'~'~ ~'

b~
~~~~~

and b, is irrational. One easily checks

n'a+m'b+k'= (n'+k'b~)a+ (m'+k'a~)b= (~). (B18)

In other words, we have proved that
'

e V and
~

e V, I-e- W~~(b)
~

V.
0

The converse is also true, since direct calculation shows that

a =a~(~) (a~k'+m') (~)

b
=

b~ ~
+ (b~ k' + n') (B19)

We now prove

Proposition 2 (Sect. 2.3).

A permutation P~ is angular if and only if the differences

C~~i-C, I=0,1,. ,n-I

take only two values

a
and p ( a

,

p e N *

and possibly the third value

Y=«-P

which can only occur if I is different from 0 or n I.

Proof.

Suppose P
~

is angular and let b e lo, I be a compatible divergence, we choose as irrational

to simplify. We can construct a realization T~(b) of P~ by projecting on [0, 1[ the strip
b~_, of the W~~(b)-lattice, and by associating the integer I with the projection of

W~ the proposition then directly follows from Lemmas B,I and B.2.

Conversely, let P
~

be a permutation satisfying the conditions of the proposition. We want to

show that it is angular by constructing a corresponding W~~(b)-lattice. To this aim consider

the vectors

~= (~') b
=

~'
(820)

a
-fl
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w ~~~ ,
~~ ~~ ~~~~'d

are

oPnnlllllltll~~~~ ~°~~~~' ~~' ~~~ '~'~~«a' lo, i/« i and a, -

' «b<
~

o.

(«, P )
=

(B21)

since there exists I e N~_, such that C~
=

I, so that

I
=

C~
=

ka +
ip

+ my (822)

where k, I,
m e Z. We can then apply Lemma B.3 : if V

=

(na + mb ; n, m e Z ), then there

exists an irrational b e Jo, I such that V
=

W~~(b).
In order to establish a relation between the lattice points and the integers Co,

C,,
,

C~
_,,

let us construct the vector sequence

~ if Ci
+

Ci
"

(823)b if Ci+<~Ci ~~~~'

~~~ if Ci+<-Ci "~'

where I
=

0, 1,
,

n I. By defining

Co
=

0

C~
+ , =

C, + v~ +,
(824)

for I
=

0, 1,..., n I, one constructs a vector sequence in V and also in W~~(b). This

sequence has the following property :

C~ = ("
). (825)

C~

It constitutes a broken line in the lattice (see for example Fig. 86). The point is now to see

that this broken line is confined in [0, II x R+. In this part of the plane, there is in fact no

ambiguity if a point W~~ is simply written W~, because of (13) (Sect. 2.2.I). Hence

C~
=

~~~ ~~ l.
(826)

Ci

It is then clear that

o
m

jc~ ~j
~

jc, ~j
~

jc~ ~j
~. ~

jc~~,j (827)

which proves that P~ is angular.
Call S the broken line defined by the lattice points Co, C,,

...,

C~. As a consequence of the

properties of the points C~, it is clear that S ends when it cuts the x-axis. Now we want to show

that S is confined in [0, 1] x R+. Let us prove it by reduction ad absurdum and suppose that S

ends over [0, 1] on the x-axis.

Let T be the broken line obtained by shifting the restriction of S to [0, 1] x R+ by a vector

(1, 0). From the periodicity of the W~~(b)-lattice it follows that T connects lattice points.
Figure 87 shows that if S ends in [1, 2 x R+, it must cut T. Since S and T are constituted by

vectors a, b, a + b ordered endway and connecting lattice points, S and T cross on a lattice

point, say Cj
=

(.., Cj). Now since Cj ET, there exists C~ e [0, II x R+ such that

Cj
=

C~ + (~
=

(j
(828)
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", ~, a+b
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',
,

,

Vi
=

Ci

x
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Fig. 86.

y

~
tl
II

~
l I T

S /) I
/ L/ I

f ' "
/

II " ",J
/ L j

J If

S

0 2

Fig. 87.

which is impossible because Ci # C~ if I # j. S cannot therefore end in [1, 2 x R+. But the

same argument can be used in [2, 3 x R+, and so on ; finally we conclude that S never cuts

the x-axis, which is a contradiction.

Let us prove

Proposition 3 (Sect. 2.3, I).

For any triple (a, p, n) e
N~ which satisfies the conditions

(", P )
=

(829)

max la, pi + I « n « « + p (830)

there exists a unique angular permutation P~ such that

C>=« C~_,=p.

Proof.

Let us first prove the existence of P~. We define

~

Ill
~

~

ll'l
~~~~~
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txb,
where b, is an irrational number taken in the interval lo, I la and a, = ~

0. We know
fl

by Lemma B.3 that there exists an irrational be Jo, I[ such that (a;b) generate

W~~(b). If we consider the strip b~_, of this lattice, it is clear that b
=

A[~' and

a =

B[~' (see Fig. 88). To obtain P~, simply project this strip on the segment [0, 1[,

according to the method described at the beginning of the proof of Proposition 2.

Now to see that P~ is unique, notice that in a strip b~
_,

of any W~~(b )-lattice, the numbers

n, I, a~, b~ fully determine which one of the vectors

A[ '
=

~'

,

B[ '
=

~'
,

A[ ' B[ ' (832)
~2 ~2

is equal to the difference A(~ '
W~~ VW~~ e b~ ,

(to prove this, refer to the demonstration of

Lemma B.2 : either A+ or B_
,

or neither A+ nor B_ but C+ is in b~
,,

and this depends only

on the parameters n, I, a~, b~).

From thit it follows that the angular permutation defined by the projection of a strip
b~_,

on the x-axis is fully determined by the numbers n, a~, b~. Of course, a~ and

b~ correspond to C,
= a, C~_,

=

p.

y

tL+fi

~b
i~_

,

I

~

0

Fig. 88. The hatched zone contains no lattice point since (a b) generates W~(b).

Appendix C.

We assume that the reader is familiar with the definitions of the operations P)~j, and

P)°j,
; each of them produces a new permutation P~ from a given permutation P~

+,
(cf. 3.I

and 4). Let us introduce for convenience the notation

~')~~ f~
m

P j°~ where P
~

=

P )nj
,

~'~°~ i '~
m

P j~ '~ where P
~

=

P (°)
,

~~

One easily checks that

p jnj j0)
~

p joy jn ~~~~

Lemma C,I.

If P~
+,

is a stationary permutation, then P)~j,
=

P~ is also stationary.
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Proof.

Since P~
+ i

is stationary, there exists P~+~ e D(P~~,) such that P)°)~
=

P~
+,.

Now simply consider the properties of P~+,

Pn+< ~ D(Pn)

,
p(o) _p(n+<)(o)_p(o)(n)_p(n) _p

Lemma C.2.

Let P~
=

(a, p, n) be an angular permutation. If P~
+, e D(P~) is stationary, then

P
~ + ,

is angular.

Proof.

We want to put the integer n on P
~

so that P
~ + i

is stationary. There are three distinct cases :

I) We put n between two points A~ and B~, and we assume A~, B~#0, and

A~, B~ # n I (Fig. Cl). Since the permutation P~
+,

thus constructed has to be stationary,

one must be able to transform it by adding the point n + I, removing 0, and subtracting I to

every integer remaining on the circle : one must obtain P~+, again. In other words, the

segment of figure C2 must be found on P~+,. Actually, because of the conditions on

A~ and B~, the suppression of the point 0 and the introduction of the point n + I do not modify
the neighbourhood of the point n on P~+,.

The segment of figure C2 being also on P~ (since A~
~ n I and B~

~ n I) it

satisfies the rule of the three differences (Prop. 2); as a consequence, the segment

A~ n B~ satisfies it too, and P~
+,

is angular.

Bn Bn- I

n n-I

A~ A

Fig. Cl. Fig, C2,

2) We put n next to n I and possibly next to 0 (Fig. C3). Since P
~ + ,

has to be stationary,

one must find on P~~, the segment of figure C4. This is of course only possible if

A~
=

0 and B~
=

I. Thus we have put n between 0 and n I, and P~ corresponds to the triple
(n I, I, n) : we have applied the algorithm of angular descent, therefore P~

+,
is angular.

3) We put n next to 0 but not next to n I (Fig. C5). This time the segment of figure C6

must be found on P~+, and then on P~, This segment has to satisfy the rule of the three

differences, therefore n
= a + fl. From this we conclude again that P~

+,
is angular, since by

placing n between 0 and Ao
= a

in the permutation P~
=

(a, fl, n = a + fl ) we applied the

algorithm of angular descent.

We can now prove :
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n-I n-2

n n-I

A~ n

lA~
I if A~~0

~~
B~ I ot her w s e

Fig. C3. Fig. C4,

Ao
~ n- i Ao -i

= a -i

n

Fig, C5. Fig. C6.

Proposition 8 (Sect. 4).

A permutation P~ is stationary if and only if it is angular.

Proof.

It is clear that any angular permutation is stationary (consider a realization T~(b) of

P~, construct P
~ + , e D (P~ ) from T~

+ ,
( b ) and observe that the permutation P )°j

,
is obtained

by tuming every point of T~ +,(b ) with an angle 2 wb).
Conversely, as any stationary permutation P~ may be considered as the descent of a

stationary permutation P~_, (Lemma C,I), the whole set of stationary permutations is the

«
stationary descent

»
of P~ (with both orientations). But since P~ is angular, we conclude

from Lemma C.2 that any stationary permutation is angular.

AppendixD.

We prove here three lemmas that are obviously equivalent to proposition 9 (Sect. 5.1).

Lemma D.I.

VH~ e fl~, Hi' is angular. More precisely, Hi'
= H~~~j.

Proof.

Let us write

Ha (I )
=

C
;

(D I )

C; + I
=

C
j~~~

if C~
=

0, 1,
,

q 2 (D2)

C~
= q -1. (D3)
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To show that Hi' is angular and belongs to fl~, we have to verify that the following

differences take only two values (Prop. 2)

nj<(c~
+

i)-nj<(c,)
=

j(<)-< (D4)

nj<(o)-nj<(q-i)=-m. (D5)

Since H~ is angular, we know that there exists k, I
e N~ such that 0

~
k +

I
~ q and

I
=

C
j~,~

C;
=

ktx ill (D6)

where fl
=

q tx.

We see that any solution k, I of (D6) such that 0
~

k +
I

~ q leads to an unique value of

k +
I. In fact, if k', I' also satisfy (D6), then

(k k') «
(I I') P

=

o (D7)

which implies, since (tx, fl
=

I, that there exists c e Z such that

k'=k+cp I'=I+c« (D8)

hence k' +
I'

=

k +
I

+ cq cannot belong to [0, q] if c # 0.

Now it is clear that

if j(I) I
~

o then j (I ) I
=

k +
I

~~~~
if j (I I

~
0 then j (I ) I

=
k +

I
q

Let us consider now the value of m, Since H~ is angular, there exists k*, I * e N~ such that

0
~

k* +
I*

~ q and they satisfy the equation

k*« -I*p =o-c~= i-q= i-(« +p) (Dio)

i,e.

(k* + i) «
(I* i)P

=

i (Dii)

which implies

k*+I +I*-I =k*+I*=k+I, (D12)

Moreover

-m=k*+I*-q=k+I-q, (D13)

Thus we have shown that Hi'
e fl~. If we write Hi'

=

H~,, it follows from the definitions

that H~,(I
=

a'. But we noticed in 3.2.3 that Hi'(I
= p (a so that the proof is complete.

Lemma D.2.

VH~ e fl~
,

H~ (I )
= R~ (I a ) (D14)

Proof.

Let us write as usually H~(I)
=

C~. We have seen in 3.2.3 that (C~ p/q)
=

ilq where

P =P(«).
In other words

I
= q (C p/q )

= q (1I~ (I ) p/q j1I~ (I ) p/q1

~
R~ (H~ (I ) p ) (D15)
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or

llk~(I)
#

Rq(ip)
=

np(I).

Notice that we simply used the identity

R~(i )
=

I i;/qi q (D16)

Conversely

Hi '(I
=

H~ (I
=

R~(I a ) (D17)

Lemma D.3.

fl~, provided with the usual composition law of permutations, is a group.
Proof.

Lemma D,I shows the existence of an inverse for each element of the group. It is clear that

H, corresponds to the identity and belongs to fl~.
We still have to prove that

H~
o

H~, e fl~ VH~
,

H~, e fl~. (D18)

Now Lemma D.2 shows that

Ha
o

Ha >(I )
=

Rq(«Rq (< «'))
=

Rq(iRq (« «')) (D19)

Since (a, q)
=

I and (a', q)
=

I, we have (tx tx', q)
=

I and then

(R~(txa'), q)
=

(D20)

We have therefore proven that

H~
o

H~,
=

H~
~~~,~ e fl~ (D21)
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