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Continuum mechanics studies of plastic instabilities
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Résumé.- Le formalisme de la mécanique des milieux continus est discuté pour 1l'analiyse des insta-
bilités par striction et par bandes. L'apparition de l'instabilité que l'on prédit dépend forte-
ment des caractdristiques des matériaux, pas seulement 3 travers les propriétés comme le durcisse-
ment par écrouissage ou la sensibilité 3 la vitesse que l'on peut mesurer dans des tests conven-

~

tionnels, mais aussi 3 travers la réponse des matériaux aux chemins de chargement. Un probléme
spécifique est discuté qui illustre l'influence de la courbure des surfaces d'écoulement, méme
quand un mécanisme d'adoucissement domine 1'établissement de la localisation.

Abstract. ~— The continuum mechanics framework for analyzing necking and shear band instabilities is discussed.
The predicted onset of instability depends sensitively on the material’s constitutive characterization, not only through
properties, such as strain hardening and strain rate sensitivity, that can be measured in proportional loading tests, but
also through the material’s response to a change in loading path. A specific problem is discussed that illustrates the
influence of the curvature of flow potential surfices even when a softening mechanism plays a major role in precipitating

localization.

1. Introduction

A broad range of behaviors can be regarded as instances of “plas-
tic instability” or of “plastic flow localization.” Examples in-
clude jerky flow, Liiders bands, necking of tensile specimens and
shear bands. The class of plastic instability phenomena con-
sidered here are those where a macroscopically homogeneous or
smoothly varying pattern of plastic deformation develops at low
strains and then at larger strains gives way, more or less abruptly,
to a highly localized deformation pattern. Such plastic instabil-
ities can be categorized as either geometric or material. Geo-
metric instabilities are those where features of the geometry of
the body, such as a free surface, permit the instability mode to
emerge and are the “material’s” analog of the buckling instabil-
ities encountered in structural mechanics. By way of contrast
a material instability is insensitive to boundary conditions and
can arise when the boundary constraints rule out geometric in-
stabilities.

In ductile metals, the main manifestation of a material instability
is a shear band. Often the large localized strains in a shear
band precipitate a shear fracture. In other circumstances shear
bands do not lead to fracture but localized shearing becomes an
important mechanism for subsequent plastic deformation. Hence
shear bands have a dual significance; as a precursor to fracture
and as a mechanism of large strain plastic response.

The physical mechanisms responsible for triggering shear bands
can vary widely. In some circumstances it appears that local-
ization is an inherent and perhaps, as Asaro [1] has remarked,
inevitable consequence of the plastic flow process. In such cir-
camstances, a key feature of plastic material response for local-

ization is the yield surface vertex structure implied by the dis-
crete nature of crystallographic slip. In the present context, the
significance of a vertex lies in the reduced stiffness to a change
in loading path which permits shear bands to emerge in strain
hardening materials.

A variety of softening mechanisms can act to promote localiza-
tion. For example, lattice reorientation during deformation may
lead to textures that are “soft” with respect to localized shear-
ing, Dillamore et al. [2], Chang and Asaro [3] and Morii et al.
[4]. At high rates of loading thermally induced softening due to
local heating can lead to shear band development, Zener and Hol-
lomon [5], Rogers [6] and Costin et al. [7]. The same metal may
also undergo shear localization at very low strain rates, where
thermal effects are negligible, with, for example, the softening
due to progressive micro-rupture inducing localization.

Thus, depending on circumstances, localization can emerge ei-
ther as a consequence of the material’s plastic flow properties or
as the result of an explicit softening process. Within the past
decade or so, much attention has been given to the mechanics
of plastic flow localization. Overviews of mechanics issues in
localization can be found in Rice [8], Needleman and Rice [9],
Peirce et al. [10], Needleman and Tvergaard [11], Asaro [12] and
Tvergaard [13]. Here, the continuum framework for analyzing
necking and shear band instabilities is outlined, but attention
is primarily focussed on a single problem with the aim of illus-
trating the significance of the material’s multi-axial constitutive
description even in the presence of softening. The problem dis-
cussed is the analysis of plane strain compression in a thermally
softening solid carried out by LeMonds and Needleman [14].
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2. Field Equations

In a Lagrangian formulation the position of each material par-
ticle is labelled in a conveniently chosen reference configuration
and these labels, together with time, serve as the set of indepen-
dent variables. The labels can be identified with the position
of the given particle relative to the origin of a fixed Cartesian
frame and this position will be denoted by x. In order to estab-
lish notation and to define field quantities, a brief outline of this
formulation of the field equations will be given. Dyadic notation
will be used and for the present purposes, it will not be nec-
essary either to specify a reference configuration or to develop
the equations in component form. Of course, to solve any spe-
cific boundary value problem a commitment needs to be made to
some reference configuration and to a specific coordinate frame.

In the current configuration the material point initially at x is
at X. The displacement vector u and the deformation gradient
F are defined by

0%

u=%X-x F=& (2.1)

The rate of deformation tensor is defined by
= %(F P4 FT LR (2.2)

where ( )~7T is the inverse transpose and (') is 9( )/dt.

Equilibrium can be expressed either in terms of the symmetric
Cauchy stress tensor o or the nonsymmetric nominal stress ten-
sor s. These are related to the force, df, transmitted across a
material element by

df =f-0dS=n-sdS (2.3)

where dS and i give the area and orientation, in the current
configuration, of a material element that had area dS and ori-
entation n in the reference configuration.

It is convenient to express the plastic flow rule in terms of the
Kirchhoff stress defined by

T = det(F)o (2.4)

where det(F) is the ratio of the volume of a material element in
the current configuration to its volume in the reference configu-
ration. When plastic flow is volume preserving and when stress
levels remain small compared to elastic moduli, then det(F) ~ 1
(presuming the reference configuration is some actual configu-
ration of the body) and there is little difference between the
Kirchhoff stress T and the Cauchy or true stress o.

In the absence of body forces, rate equilibrium is expressed by

V.5=0 (2.5)

where () is 8( )/0t and V denotes the gradient operator in the
reference frame.

For the class of inelastic materials considered here, the constitu-
tive relation is expressed as (see (3.8) and (3.9) to follow)

§=K:F-Q (2-6)

In the simplest case the boundary conditions take the form

{n-é:fonSt 2.7)

a=gonS,

where S; is that part of the boundary on which tractions are
prescribed and S, is that part of the boundary on which dis-
placements are prescribed.

When the heating due to plastic dissipation is accounted for,
balance of energy is written as

pcp%—f =V - (kVT)+ xr:D? (2.8)

where T is the temperature, p is the density, c, is the heat
capacity, k is the thermal conductivity and the parameter x
specifies the fraction of plastic stress working converted to heat,
which is typically in the range 0.85 to 0.95, Taylor and Quinney
[15].

3. Constitutive Relations

Attention is confined to circumstances where the elastic strains
remain small, but the plastic strains can be large. The total rate

of deformation, D, is written as the surm of an elastic part, D¢,
and a plastic part DP so that

D = D® 4+ DP 3.1)
pe=1 ;Vi- ~ 2 (3.2)

where 7 is the Jaumann rate of Kirchhoff stress, I is the identity
tensor, E is Young’s modulus and v is Poisson’s ratio. The
relation (3.2) is a consistent approximation to a hyperelastic
relation when the elastic response is isotropic and when stress
levels remain small compared to elastic moduli.

Plastic instability predictions are quite sensitive to the nature
of the flow rule for DP. The most widely used multi-axial plas-
tic constitutive description is that of an isotropically hardening
Mises solid, for which the flow rule takes the form

DP = ;3_6_1_, (3.3)

Here, € is the effective plastic strain and & is defined by

r’=7r- l(-r: DI &= S (3-4)
3 2
For a rate independent strain hardening solid

é‘:{ E%—%)&fm&:}’mu and 6 >0
0

= L (3‘5)

ford < Yppazoro <0
where Y is the current flow strength, which is the greater of
the initial yield strength and the maximum value of & attained
over the deformation history and E; is the slope of the uniaxial
Kirchhoff stress— logarithmic strain curve.

For a rate dependent solid (3.3) still holds but (3.5) is replaced
by

&= &la/g(@]™ (3.6)

The function g(€), with € = [ €dt, represents the effective stress
versus effective strain response in a tensile test carried out at a
strain-rate such that € = é and m is the strain rate hardening
exponent. For example, the function g(€) can have the simple
power law form

9(€) = a0(é/e0 + 1)N €« =09/E 3.7
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where 0p is a reference strength and N is the strain hardening
exponent.

In the present context, the fundamental distinction between rate
dependent material behavior as embodied in (3.6) and the rate
independent behavior in (3.3), is that the plastic strain rate in
(3.6) does not depend on incremental quantities. This leads to
fundamentally different types of stress rate-strain rate relations
for rate independent and rate dependent solids. In either case,
the stress rate-strain rate relation is obtained by substituting
(3.5) or (3.6) into (3.3), combining with (3.1) and (3.2) and
inverting to obtain a relation between the Jaumann derivative
of Kirchhoff stress and the rate of deformation tensor. Standard
kinematic relations then convert this into a relation of the form
(2.6) between nominal stress rate and deformation gradient rate.

For a rate independent solid, Q = 0 and

é={Ktan:F .

for plastic loading 3.8
Keiastic 1 F ( ) )

for elastic unloading

The relation (3.5) gives rise to a tensor of moduli that depends on
incremental quantities through the loading-unloading condition.
By way of contrast, for the rate dependent solid

§ = Kelastic F - Q (39)

The plasticity is embodied in Q and, furthermore, Q is indepen-
dent of incremental field quantities as, of course, are the elastic
moduli. There is no explicit loading-unloading condition for the
rate dependent solid.

For values of the rate hardening exponent representative of struc-
tural metals at room temperature, say m between 0.002 and 0.02,
the uniaxial response of the rate dependent solid is much like
that of the corresponding rate independent solid. This is shown
in Fig.1 where the small strain uniaxial response is plotted.

[=]
©
o
.
//
& -
-t = /
o
@
N © ]
=)
o
- I
o -
o
S
o

T T
0.00 4.00 8.00
£/e0

T 1
12.00 16.00

Ficure-1 Stress-strain curves in uniaxial tension for a rate de-
pendent solid with m = 0.01. — é/éy = 1; — ~ é/ép = 105;
— - the response under strain rate reversal.

The relation (3.6) gives rise to an apparent rate dependent yield
strength and to “unloading” like response on strain rate rever-
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sal, even though explicit yielding is not incorporated into the
constitutive description.

Basic physical assumptions embodied in the flow rule are that
the plastic strain rate has a direction normal to the flow po-
tential surface in stress space, which for rate independent solids
coincides with the yield surface. Furthermore, this surface is
smooth, with a unique normal at the current stress point. Also,
the plastic strain rate is volume preserving and pressure insen-
sitive.

In rate independent plasticity, one consequence of a smooth yield
surface is that the plastic strain rate direction is not influenced
by the stress rate. This is at variance with predictions of physi-
cal plasticity models for polycrystalline aggregates based on the
concept of single crystal slip. Such models inevitably lead to
the development of a yield surface corner at the current load-
ing point, Hill [16], Hutchinson [17], with the plastic strain rate
direction depending, within limits, on the stress rate. Direct ex-
perimental evidence for corners is conflicting, although in some
cases there is evidence for a region of high curvature at the cur-
rent loading point, Hecker [18]. Recent analyses by Pan and Rice
[19] and Asaro and Needleman [20] show that slight material rate
sensitivity can account for the experimental ambiguity.

The main significance of a yield surface vertex for localization
phenomena lies in the softer response to an abrupt change of
loading path that occurs when the plastic strain rate can fol-
low the stress rate. The J; corner theory of Christoffersen and
Hutchinson [21] is an analytically tractable phenomenological
theory of plasticity that incorporates key features exhibited by
physical models of polycrystalline aggregates. The yield surface
in the neighborhood of the loading point is taken to be a cone
in stress deviator space. The derivation of the J; corner the-
ory flow rule is complex and is described in Christoffersen and
Hutchinson [21] and Hutchinson and Tvergaard [22].

For rate dependent solids a flow potential vertex is ruled out on
quite general grounds, Rice [23]. In the investigations to be dis-
cussed here, a kinematic hardening flow rule is used to model a
“rounded vertex.” This use of kinematic hardening theory is in-
tended for loading paths that do not involve extreme deviations
from proportional loading and is quite distinct in focus from the
use of kinematic hardening as a model for Bauschinger effects.
The rate dependent polycrystal model of Asaro and Needleman
[20] does exhibit a rounded vertex on suitably defined subsequent
yield surfaces. Although, kinematic hardening is a rather lim-
ited model of a rounded vertex it does permit the interaction of
vertex like behavior with softening mechanisms to be explored.
Furthermore, within the context of rate independent plasticity,
Tvergaard [24] and Hutchinson and Tvergaard [25] have shown
that a solid having a smooth yield surface but with a high curva-
ture (relative to the isotropic hardening surface) at the current
loading point can give predictions of necking and shear band
instabilities in line with those based on a corner theory of plas-
ticity.

A simple combined isotropic-kinematic hardening material de-
scription is used by LeMonds and Needleman [14] with flow po-
tential surfaces taken to be concentric cylinders about a stress
state . Defining

F=r-a (3.10)
and

NPT 3.11

= 21 o (3.11)

The flow rule (3.3) is replaced by
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3

DP = SonT (3.12)

with
fem it OF V" 3.13
¢= o5 T (3.13)

and
(&) = boo [L + €/ o]~ + (1 — b)ao (3.14)

where T} is a reference temperature and f specifies the thermal
softening characteristics of the material.

The center of the flow potential surfaces evolves according to

&= %(1 ~ b)pD? (3.15)
where
p=N(E/é)™[1 - B(T - Ton%g(s/eo +DN (3.6)

The parameter b varies between zero and unity; b = 1 corre-
sponds to isotropic hardening and b = 0 corresponds to kine-
matic hardening. Values between these two extremes correspond
to a combination of isotropic expansion and translation of sur-
faces of constant flow potential.

The flow rule (3.12) is combined with (3.2) and gives a stress
rate-deformation gradient rate relation of the form (3.9). In
the formulation of LeMonds and Needleman [14] temperature
dependence of plastic flow is incorporated into the analysis via
(3.13) and (3.16), but thermo-elastic effects are not accounted
for.

4. Plastic Instabilities

Here by a plastic instability is meant the more or less abrupt
change from one deformation pattern to another. Examples in-
clude necking of tensile bars and shear band localizations. A
general theory of plastic instabilities is only available for quasi-
statically and isothermally deforming rate independent solids
and, furthermore, when the rate constitutive equations have a
potential structure. Hill’s [26,27] theory of bifurcation is then
available to determine the critical strain at which a deforma-
tion pattern ceases to be the unique solution for a given bound-
ary value problem. Even in this context, a precise connection
between loss of uniqueness and loss of stability in the dynamic
sense remains to be developed, IIill [27]. The theory is much less
well developed when such a potential structure is not present,
although steps toward the development of a bifurcation theory
for such solids have been taken, Raniecki and Bruhns [28].

4.1 Geometric Instabilities

For the standard boundary problem, (2.5)-(2.7), suppose that,
at a given stage of the deformation history two solutions are pos-
sible. Denote the difference betwecn field quantities associated
with the two solutions by A(’), so that if both incremental fields
are solutions to the rate boundary value problem, the A() fields
satisfy

V-A$=0 (4.1)

together with

Au=0on S, n-As=_0onS5; (4.2)

For rate independent solids, when the constitutive relation ad-
mits a potential structure, Hill’s [26,27] bifurcation theory shows
that the plastic loading branch of (3.8) is to be used in relating
As and AF throughout the current plastic zone. This, in con-
junction with (4.1) and (4.2) leads to an eigenvalue problem
governing the onset of bifurcation.

Hill and Hutchinson [29] have carried out a detailed study of
bifurcation phenomena in plane strain tension for a broad class
of incompressible rate independent solids and Young [30] has
carried out a similar study for plane strain compression. In a
program of monotonically increasing tension, Hill and Hutchin-
son [29] find that the earliest bifurcation corresponds to the long
wavelength diffuse necking mode. Yor solids described by smooth
yield surface plasticity this is, in essence, the only attainable
bifurcation mode. However, for a solid described by a corner
theory of plasticity, a very short wavelength surface wave mode
subsequently becomes available. At larger strains still, a shear
band bifurcation occurs.

The onset of diffuse necking depends very much on the geometry
of the body. Tigures 2 and 3, from Larsson et al. [31], show
observed instability modes in long, closed-end aluminum alloy
tubes subject to internal pressure.

Ficure-2 Deformed cross section of an aluminum alloy tube.
From [31].

Ficure-3 Surface waves on an aluminum alloy tube. From [31].



N°4 MECHANISMS AND MECHANICS OF PLASTICITY 589

The tubes retain cylindrical symmetry until somewhat beyond
the maximum pressure point. Then, a diffuse necking mode de-
velops that involves localized thinning consistent with instability
predictions. A very short wavelength surface deformation pat-
tern is observed in the highly strained region. Subsequently, the
tube fails in a shear fracture mode. The development of surface
waves requires the presence of a free surface and so is a geo-
metric instability in the sense in which that term is used here.
However, because of the very short wavelength of this mode, it
is not sensitive to the curvature of the body. Hutchinson and
Tvergaard [22] have given a very general analysis of such surface
instabilities.

4.2 Material Instabilities

Here, all-around displacement conditions are imposed so as to
rule out geometric instabilities. An element of a solid is consid-
ered subject to displacement boundary conditions that in a ho-
mogeneous (and homogeneously deformed) solid would give rise
to a uniform deformation gradient field. Conditions are sought
under which bifurcation into a localized band mode can occur.
The basic principles of this analysis are due to Hadamard [32] for
elastic solids and Hill [33], Mandel {34], Thomas [35] and Rice
[8] for elastic-plastic solids. Within this framework the onset of
localization coincides with the loss of ellipticity of the equations
governing rate equilibrium. Band type analyses have served as
a basis for investigating the role of various constitutive features
in promoting localization, see e.g. Rice [8], Needleman and Rice
[9] and Hutchinson and Tvergaard [25]. In particular, the im-
portant role of vertex effects in the development of localization
in strain hardening solids is revealed by such analyses.

Current values of field quantities and material properties inside
and outside the band are presumed identical so that one pos-
sible solution for the incremental quantities corresponds to the
homogeneous one. At the considered stage of the deformation
history, suppose that within a thin planar band of orientation
n in the reference configuration incremental field quantities are
permitted to take on values differing from the uniform values
outside the band. The band is presumed sufficiently narrow to
be regarded as homogeneously deformed.

Two requirements must be satisfied across the band interface.
First, compatibility requires (Hadamard [32], Hill [33], Mandel
[34], Thomas [35] and Rice [8]),

Fy=F, +q®n (4.3)

where ('), denotes field quantities inside the band and ( ), de-
notes corresponding quantities outside the band.

For an incompressible solid, the strain rate jump across the band
is a shear strain rate jump and, hence, the band is a shear band.

Next, incremental equilibrium requires

n- (5 — $0) = 0 (4.4)

For classical plasticity (3.8), where K has two branches, one cor-
responding to plastic loading and the other to elastic unloading,
and for a material element subject to continued plastic loading,
a localization bifurcation is possible when

[0 Kian-n] -a=0 (4.5)

where the operator - is defined so that the component form of
(4.5) is n:K7¥nyg; and Kyap corresponds to the plastic loading
branch of the tensor of moduli. The onset of localization first
becomes possible at the earliest stage in the deformation history

at which (4.5) has a nontrivial solution. For a non-trivial solu-

tion, the determinant of coefficients in (4.5) must vanish and the
governing rate equations lose ellipticity.

For the rate dependent elastic-viscoplastic solids described by
(3.9) the plasticity is contained in Q. Since Q is independent of
incremental quantities it is the same both inside and outside the
band. Hence, the counterpart to (4.5) is

[n - Kelastic * 'n] -q=0 (4'6)

As long as stress levels remain small compared to elastic stiff-
nesses, the only solution to (4.6) is the trivial one and a local-
ization bifurcation does not occur. What bears emphasis here is
the different mathematical character of the governing equations
for rate independent material behavior and for rate dependent
material behavior. For the viscoplastic constitutive relation, the
mathematical difficulties associated with the loss of ellipticity
in the case of rate independent material behavior do not arise.
Thus, it is particularly significant that the phenomenology of
shear band development can be the same for both rate depen-
dent material behavior and for rate independent material behav-
ior, as illustrated in Peirce et al. [10] and Becker and Needleman
[41).

Even when a shear localization bifurcation is precluded at
achievable strains, small initial imperfections can induce local-
ization. A general framework for imperfection based localiza-
tion analyses has been presented by Rice (8], which proceeds in
the spirit of Marciniak and Kuczynski’s [36] analysis of local-
ized necking in thin sheets. Both (4.3) and (4.4) must still be
satisfied. However, when an initial imperfection is present cur-
rent values of field quantities and material properties inside the
band, in general, differ from those outside the band. Using (2.6)
in (4.3) and (4.4) gives

[n.Kb..n]-q_—.n-(Ko—Kb)ZFo'i'n'(Qb_Qa) (4'7)

where I, is prescribed. At each stage of the deformation history,
(4.7) is a set of three equations for the components of q. Time
integration then gives the histories inside and outside the band.
Analyses based on (4.7) are applicable for both rate independent
and rate dependent solids. The imperfection analysis is impor-
tant since, for example, a localization bifurcation is ruled out
for rate depedent solids but can occur when very small initial
imperfections are present. It also permits the influence of cor-
ner characteristics on shear band development to be explored.
Hutchinson and Tvergaard [25] have carried out such a study and
have found that due to the stiffening associated with a change
in loading path, the deformations in a shear band can saturate,
which also occurs in the full finite element solutions of Tvergaard
et al. [38].

In a band analysis, one homogeneous deformation state is as-
sumed to prevail within the band and a different homogeneous
state is presnt outside the band. The more general case, where
localization develops from a non-homogeneous deformation state
is more complex and requires a numerical computation. How-
ever, the role played by various aspects of the material’s consti-
tutive description is as revealed by the band analysis. Further-
more, knowing critical shear band angles is useful in designing
effective meshes for localization problems, Tvergaard et al. [38].

Figure 4, from Burke and Nix [37], shows the results of a numer-
ical solution for neck development in plane strain tension based
on rate independent isotropic hardening plasticity theory. This
analysis captures the initiation and growth of the diffuse neck-
ing mode but there is no tendency for the deformation pattern
to shift to one involving localized shearing as is so commonly
observed for structural metals.
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Ficure-4 Neck development in a plane strain tensile specimen
with the material characterized by isotropic hardening plasticity
theory. From [37].

Ficure-5 Deformed finite element meshes at various stages of
extension in a plane strain tensile specimen. The material is
strain hardening and characterized by J» corner theory. From
[38].

Figure 5, from Tvergaard et al. [38], shows the course of neck
development based on the J> corner theory of Christoffersen and
Hutchinson [21]. The actual computations were carried out for
one quadrant and symmetry boundary conditions were imnposed.
Shear bands develop naturally during the course of the calcula-
tion. The orientation of the band, or bands, is in good agreement
with that predicted from a shear band bifurcation analysis based
on (4.5).

5. Shear Localization in a Temperature Dependent Solid

LeMonds and Needleman [14] studied the development of local-
ization from a small material inhomogeneity incorporating the
effects of thermal softening, strain hardening, strain rate sensi-
tivity and heat conduction. The specific boundary value prob-
lem analyzed was plane strain compression of a block of material
containing a doubly periodic array of inhomogeneities as shown
in Fig. 8. The symmetry permits the boundary value problem
for the array to be reduced to a boundary value problem for
one square cell. No heat flux is permitted between cells so that
the overall response is adiabatic. However, heat conduction is
accounted for within each cell. The material properties were cho-
sen to be representative of a 4340 steel studied experimentally
by Hartley [39]. In particular, the strain hardening exponent, N,
was taken as N = 0.08 and the strain rate sensitivity exponent,
m, as m = 0.01.

O m] 0 O
O =] O O
XZ
S
"— O m) £ 4— 0O
o
2h,
o O O o
2h,
o m) O m)

Ficure-6 A doubly periodic array of inhomogeneities. The
shaded area marks the domain analyzed numerically.

An initial inhomogeneity was prescribed in the form of a soft
spot. The soft spot was modelled by specifying a value of the
reference strength og in the quadrilateral element nearest the ori-
gin equal to eighty percent of its value in the remaining elements.
Three prescribed strain rates were considered é,/é = 5 x 10°,
énféo = 5 x 10% and é,/é = 5 x 10%. Since ég = 10~ 3sec™?
these correspond to applied strain rates of é, = 500sec™!,
én = 50sec™! and é, = 5sec™!. The reference temperature Tp in
(3.13) and (3.16) was taken as 20°C.

Figures 7 and 8 show the computed effect of heat conduction on
the response of an isotropically hardening solid at a prescribed
strain rate of é, = 500sec™. Under adiabatic conditions (k = 0
in (2.8)), Fig. 7, a sharp shear band forms for the isotropically
hardening solid. Heat conduction delays the onset of shearing
and broadens the shear band that does develop as seen in Fig. 8.
At lower strain rates, the shear band continues to broaden as de-
picted in Fig. 9 where é, = 5sec™! and at ¢, = 5sec™! LeMonds
and Needleman [14] found that the deformation remained essen-
tially uniform out to a height reduction of 60%.

By way of contrast for a kinematically hardening solid and with
heat conduction accounted for, sharp shear bands develop at
én = 500sec™! as shown in Fig. 10.



N°4 MECHANISMS AND MECHANICS OF PLASTICITY 591

(a)
T
1
N
HTT
TT
(b)
1 1
} -
s:
- g
T T
1T suENi
T 1T T 11T
(c)

Ficure-7 Deformed finite element meshes showing shear band
development in an isotropically hardening solid under adiabatic
conditions and with é, = 500sec™!. From [14].

In fact, even as constant temperature conditions are approached
with an imposed strain rate of ¢, = 5sec™ a well defined shear
band is evident, Fig. 11.

The behavior shown in Fig. 11 is in accord with the results
of Hutchinson and Tvergaard’s [25] study of plane strain shear
band formation in rate independent solids deforming isother-
mally. The increased curvature of the flow potential surface of
the kinematically hardening solid acts as a “rounded” vertex and
permits localization at physically achievable strain levels.

LeMonds and Needleman’s [14] results illustrate the significance
of the multi-axial constitutive characterization of the material
even in the presence of thermal softening. For the kinematic
hardening solid, thermal softening promotes localization in that
localized straining occurs sooner and more sharply when thermal
softening effects are significant. But localization still is found
when conditions of nearly uniform temperature prevail. On the
other hand, for the isotropic hardening material model, localiza-
tion requires strong thermal softening.

6. Discussion

The aim here has been to illustrate the significance for plastic
instability phenomena of the material’s three dimensional con-
stitutive description, even in circumstances where a softening
mechanism plays a major role in precipitating the instability.
The specific example involved thermal softening, but similar ef-
fects have been noted in studies where the softening mechanism
is micro-void nucleation and growth, Mear and Hutchinson [40],
Becker and Needleman [41] and Tvergaard [42].
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Ficure-8 Deformed finite element meshes showing shear band
development in an isotropically hardening solid with heat con-
duction accounted for and with é, = 500sec™!. From [14].
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F1cure-9 Results at one stage of compression for an isotropi-
cally hardening solid an isotropically hardening solid with heat
conduction accounted for and with ¢, = 50sec™!; the top figure
shows the deformed finite element mesh and the bottom figure
shows contours of constant temperature in degrees Celsius. From
[14].
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Ficure-10 Deformed finite element meshes showing shear band
development in an kinematically hardening solid with heat con-
duction accounted for and with é, = 500sec™!. From [14].

The incorporation of heat conduction explicitly introduces a
length scale into the analysis, where the characteristic length
is (k/ pcpé,,)l/ 2, specifying a length over which heat conduction
effects are significant. Additionally, material rate dependence
implicitly introduces a length scale into the boundary value prob-
lem. This length scale is one characterizing the imperfection or
inhomogeneity, as discussed by Needleman [46].

Hence, in the analyses of LeMonds and Needleman [14] there
are two characteristic lengths; one associated with the inhomo-
geneity and the other with heat conduction. The issue of char-
acteristic length scales arises in analyses of localization because
for a rate independent solid deforming isothermally and devel-
oping a shear band there is no characteristic length to set the
shear band width. In numerical calculations a length scale is
introduced via the discretization. As a consequence numerical
solutions to localization problems for rate independent solids ex-
hibit an inherent mesh dependence and global quantities, such
as the overall stiffness characteristics of the body, depend on the
mesh size used to resolve the band of localized deformations.
This has been observed in a variety of contexts and discussed
from diverse perspectives, e.g. Tvergaard et al. [38], Pietrusz-
cak and Mroz [43], Tvergaard [44], Belytschko, Bazant, Hyun
and Chang [45] and Needleman [46).

When material rate dependence is accounted for, there is no
loss of ellipticity in quasi-static problems as long as stress levels
remain small compared to elastic stiffnesses. Even though the
mathematical character of the governing rate equations funda-
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Ficure-11 Results at one stage of compression for a kinemat-
ically hardening solid with é, = 5sec™!. (a) Deformed finite
element mesh. (b) Contours of constant maximum principle log-
arithmic strain. (c) Contours of constant temperature in degrees
Celsius.

mentally differ, the phenomenology of localization can be the
same for both rate dependent and rate independent material be-
havior e.g., Peirce et al. [10] and Becker and Needleman [41].
However, since the governing equations for rate dependent solids
remain elliptic, the sort of pathological mesh dependence en-
countered for rate independent solids appears to be precluded.

There are computational issues associated with localization that
arise whether the material is characterized as rate independent or
rate dependent. For example, in any conventional finite element
calculation the mesh size sets the minimum width of a shear
band. Hence, if there is a characteristic material length that
sets the shear band width, mesh resolution must be fine enough
to resolve this width. There does not now appear to be a usable
way to assess whether or not, in a specific problem, a given mesh
does possess such resolution. Furthermore, the ability of a finite
element mesh to resolve localized shearing at angles oblique to
the element boundaries significantly affects the predicted course
of shear band development, as discussed by Tvergaard et al. [38].

Of course, in any particular circumstance, there is the question
as to what the appropriate characteristic length scale is. In
certain circumstances, the dimensions of some microstructural
feature, e.g. a grain size, may set the length scale. In fact, any
reference to homogeneous plastic flow in metals deforming by
dislocation slip appears to imply some size scale below which in-
homogenieties in deformation patterns are ignored, since on the
discrete dislocation scale plastic flow is inherently nonuniform.
Physically appropriate and mathematically tractable ways of in-
corporating length scales into continuum descriptions of local-
ization problems merit further exploration.



N°4 MECHANISMS AND MECHANICS OF PLASTICITY 593

Acknowledgement

The support of the U.S. National Science Foundation (Solid Me-
chanics Program) through grant MSM8618007 is gratefully ac-
knowledged.

References
[1] R.J. Asaro, Acta Metall. 27, (1979) 445.

[2] I.L. Dillamore, J.G. Roberts and A.C. Bush, J. Met. Sci. 13,
(1979) 73.
[3] Y.W. Chang and R.J. Asaro, Acta Metall. 29 (1981) 241.

[4] K. Morii, M. Mera and Y. Nakayama, Trans. Japan Inst.
Met. 18, (1977) 7.

[5] C. Zener and J.H. Hollomon, J. Appl. Phys. 15 (1944) 22.
[6] H.C. Rogers, “Adiabatic Shearing-A Review,” Drexel Uni-
versity Report (1974).

[7] L.S. Costin, E.E. Crisman, R.H. Hawley and J. Duffy in “Pro-
ceedings Second Conference on Material Properties at High
Rates of Strain,” edited by J. Harding, 90, The Institute
of Physics, Bristol and London, Conference Series No. 17,
(1979).

[8] J.R. Rice in “Theoretical and Applied Mechanics,” Proc.
14th Int. Congr. Theoret. Appl. Mech., edited by W.T.
Koiter, 207, North Holland, Amsterdam, (1977).

[9] A. Needleman and J.R. Rice in “Mechanics of Sheet Metal
Forming,” edited by D.P. Koistinen and N.-M. Wang, 237,
Plenum, New York, (1978).

[10] D. Peirce, R.J. Asaro and A. Needleman, Acta Metall. 31,
(1983) 1951.

[11] A. Needleman and V. Tvergaard in “Finite Elements—Special
Problems in Solid Mechanics Vol. 5,” edited by J.T. Oden
and G.F. Carey, 94, Prentice-Hall, Englewood Cliffs, (1984).

[12] R.J. Asaro, Adv. Appl. Mech. 23 (1983) 1.

[13] V. Tvergaard in “Constitutive Equations: Macro and Com-
putational Aspects,” edited by K.J. Willam, 179, ASME,
New York (1984).

[14] J. LeMonds and A. Needleman, Mech. Matl. 5 (1986) 339.

[15] G.I. Taylor and H. Quinney, Proc. Roy. Soc. London A143
(1934) 307.

[16] R. Hill, J. Mech. Phys. Solids 15 (1967) 79.

[17] J.W. Hutchinson, Proc. Roy. Soc. London A318 (1970)
247.

(18] S.S. Hecker in “Constitutive Equations in Viscoplasticity,”
ASME AMD 20 (1976) 1.

[19] J. Pan and J.R. Rice, Int. J. Solids Struct. 19 (1983) 973.
[20] R.J. Asaro and A. Needleman, Acta Metall. 33 (1985) 923.

[21] J. Christoffersen and J.W. Hutchinson, J. Mech. Phys
Solids 27 (1979) 465.

[22] J.W. Hutchinson and V. Tvergaard, Int. J. Mech. Sci. 22
(1980) 339.

(23] J.R. Rice, J. Appl. Mech. 92 (1970) 728.
[24] V. Tvergaard, Int. J. Mech. Sci. 20 (1978) 651.

[25] J.W. Hutchinson and V. Tvergaard, Int. J. Solids Struct. 17
(1981) 451.

[26] R. Hill, J. Mech. Phys. Solids 6 (1958) 236.
[27] R. Hill Adv. Appl. Mech. 18 (1978) 1.

[28] B. Raneicki and O. Bruhns, J. Mech. Phys. Solids 29 (1981)
153.

[29] R. Hill and J.W. Hutchinson, J. Mech. Phys. Solids 23
(1975) 239.

[30] N.Y.B. Young, J. Mech. Phys. Solids 24 (1976) 77.

[31] M. Larsson, A. Needleman, V. Tvergaard and B. Storskers,
J. Mech. Phys. Solids 30 (1982) 121.

[32] J.J. Hadamard, “Legons sur la Propagation des Ondes et les
Equations de L’Hydrodynamique,” Libraire Scientifique A.
Hermann, Paris (1903).

[33] R. Hill, J. Mech. Phys. Solids 10 (1962) 1.

[34] J. Mandel, in “Rheology and Soil Mechanics,” edited by J.
Krautchenko and P.M. Sirieys, 58, Springer-Verlag, Berlin
(1966).

[35] T.Y. Thomas, “Plastic Flow and Fracture in Solids,” Aca-
demic Press, New York (1961).

[36] Z. Marciniak and K. Kuczynski, Int. J. Mech. Sci. 9 (1967)
609.

[37] M.A. Burke and W.D. Nix, Int. J. Solids Struct. 15 (1979)
379.

[38] V. Tvergaard, A. Needleman and K.K. Lo, J. Mech. Phys.
Solids 29 (1981) 115.

[39] K.A. Hartley, “Temperature Measurements During the For-
mation of Shear Bands at High Rates of Deformation,” Ph.
D. Thesis, Brown University (1986).

[40] M.E. Mear and J.W. Hutchinson, Mech. Matl. 4 (1985) 395.

[41] R. Becker and A. Needleman, J. Appl. Mech. 108 (1986)
491.

[42] V. Tvergaard, J. Mech. Phys. Solids 35 (1987) 43.

[43] S.T. Pietruszcak and Z. Mroz, Int. J. Num. Meth. Engr. 10
(1981) 327.

[44] V. Tvergaard, J. Mech. Phys. Solids 30 (1982) 399.

[45] T. Belytschko, Z.P. Bazant, Y.-W. Hyun and T.-P. Chang,
Comp. Struct. 23 (1986) 163.

[46] A. Needleman, “Material Rate Dependence and Mesh Sen-
sitivity in Localization Problems,” Brown University Report
ONR-N00014-86-K-0235/1 (1987).



