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Résumé. - L’auto-organisation des structures de dislocations, des lignes ou bandes de glissement,
les instabilités plastiques macroscopiques, constituent, à différentes échelles d’observation, des
manifestations typiques d’un comportement coopératif non linéaire. Cet aspect général est discuté
sous l’angle des relations entre les propriétés dynamiques des dislocations, leur comportement
collectif, le comportement plastique local du matériau étudié et les conditions d’apparition d’une
déformation nonuniforme. Il en résulte une classification des instabilités en deux principales
catégories qui sont illustrées par deux exemples particuliers: les bandes de Lüders (instabilités
de type h) et l’effet Portevin-Le Chatelier (instabilités de type S).

Abstract. - Self-organization of dislocation structures, slip line and band patterning, and

macroscopic plastic instabilities are typical manifestations, at different scales of observation,
of nonlinear cooperative phenomena. This general aspect is discussed with emphasis on the
relations between the dynamic properties of dislocations, their collective behavior, the local

plastic properties of a material and the conditions for the onset of nonuniform plastic flow.
Instabilities can be classified into two main categories which are illustrated by two particular
examples: Lüders bands (instabilities of the h type) and the Portevin-Le Chatelier effect
(instabilities of the S type).
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1. Introduction and physical background.

Strain nonuniformities and plastic instabilities

(SNPI) are of obvious practical interest since their
occurrence can damage both the forming properties
and lifetimes in service of metallurgical products.
They also are of great theoretical interest because

they touch a difficult and still largely unsolved

problem of the connection between defect properties
and the bulk deformation behavior. In particular,
one would like to know more about the reasons for

which a cooperative behavior of large densities of

dislocations can set in within a sizeable portion of
the gauge length of a deforming specimen.
In what follows, we limit ourselves to SNPI in

ductile crystalline materials, in conditions of

uniaxial straining, and to mechanisms which can be

understood in terms of dislocation properties.
Severe types of localization, such as necking or

shear banding are discussed by Needleman in this

volume.
For simplicity we reduce the problem to one

dimension, x, parallel to specimen axis. Strain

localization occurs, by definition, when the strain
rate locally accelerates. This amounts to a

spontaneous breaking of the translational symmetry
along x.

A formal approach consists in considering first that
plastic flow is uniform: àE./dx:: 0, where E denotes
the strain. The onset of nonuniformity, then,
indicates that a solution E =03B5(t) of some

hypothetical constitutive equation loses its

stability, leading to solutions of the form

E= E(x,t). This suggests that the concepts of
bifurcations (1), from uniform to nonuniform

behavior, and of stability analysis of physically
founded constitutive equations are potentially well

adapted tools for handling the problem.
Slip lines and bands are the most common type of
strain localization (cf. (2,3,4) and § 2); their
existence proves, indeéd, that plastic flow is

inherently nonuniform, although most models which
describe it implicitly assume the opposite to be
true. tlore generally, a prerequisite for obtaining
some knowledge about the spatial distribution of
strain rates within a deforming specimen is that,
somehow, position variables be introduced into
constitutive equations. This was attempted only
recently, as classical plasticity has up to now

been more concerned with temporal than with spatial
aspects.

Plastic instabilities often manifest themselves by
anomalies in the deformation curves. They can
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induce strain bursts in deformation with constant

stress rate, inverted creep curves lg03B5 vs.E , a

decrease in the load carrying capacity of the

specimen in deformation with constant strain rate

(5). More generally, we characterize plastic
instahilities by the fact that the total average
strain rate, l, defined as

.L

where L is the gauge length, exceeds its prescribed
value in uniform deformation. Plastic instabilities
are necessarily associated with strain

localization, as shown in § 2, but the reverse is

not necessarily true. The formation of slip lines
does not usually affect the value of à to the

point that deformation curves take irregular
shapes.
From this qualitative discussion we draw two
conclusions: (i) plastic instabilities cannot be

understood in macroscopic terms only. In

particular, it should be kept in mind that all

quantitities extracted from deformation curves,
such as strain hardening .rates, strain rates,
sometimes strain rate sensitivities, are global
averages (cf. eq. (1)) over nonuniformly strained
elements rather than intrinsic material properties.
(ii) The examination of microstructural mechanisms
at mesoscale (i.e. at intermediate, light
microscopy scale), combined with the definition of

straining conditions and taking into account local

compatibility requirements, yields in principle all
the informations needed for a complete understanding
of plastic instabilities.

Mesoscale properties are, in their turn, dictated by
collective dislocation effects. The organization of
dislocation populations in time and space represents
at microscale a problem equivalent to that of strain
localization at mesoscale. Here again, there exists

a uniform solution to the equations describing the

distribution of dislocation densities within a

deforming specimen. Instability of this solution

leads to patterning, i.e. to the occurrence of

spatially organized structures (see Kratochvil, this

volume).
Expressions derived, within some approximation, from

Orowan’s law,

provide the necessary connection between micro and

mesoscale (p., density of mobile dislocations, of

average velocity v, b: modulus of the active Burgers
vector). In nonuniform conditions, this expression
must be understood as being valid at local level (x
fixed) only. A geometrical factor of the order of

unity has been dropped in eq. (2).
To sum up, understanding SNPI in physical terms

necessitates the consideration of three different

scales of organization (micro, meso, and macro),
connected by averaging or integration steps, such as

eqs. (1) and (2). Spatial and/or temporal patterning
is present at each scale and can formally be treated
as stemming from the instability of uniform plastic
flow, provided that appropriate time and length
scales are introduced. A last question arises: what
is the physical reason causing such kind of

particular collective behavior ?
The reason is nonlinarity, i.e. the property that

the differential equations which determine the

evolution of local strain rates or of dislocation

populations have no general solution which is a

linear combination of particular solutions. In that

sense, SNPI belong to a very large class of

phenomena, of prominent importance in physics,
chemistry, biology.., for which one examines how a
system brought far from thermodynamic equilibrium
responds to uniform excitations by self-
organization. Pllasticity is intrinsically an

irreversible phenomenon and to elaborate on it, it
could seem natural to make use of irréversible
thermodynamics (6). Such approach does not seem able
to produce consistent results which realistically
incorporate defect properties (7), however. The
investigations outlined in § 2 are of purely dynamic
character. Although they have not reached full
achievement, they have already produced promising
results. A classification of instabilities, which
recovers earlier elaborations, is further derived,
and in § 3 we go into a more detailed examination of
two particular cases: Lüders type instabilities and
the Portevin-Le Chatelier effect.

There exists a considerable bulk of literature on

SNPI. In what follows we only sketch a few essential
concepts, without going into heavy formalism, and we
focus on the understanding of general trends, rather
than on the compilation of particular aspects.

We conclude this section by emphasizing the analogy
between SNPI and other non linear collective

phenomena. Fig. 1, reproduced from the work of
Huiler (8), shows an example of nonuniform chemical
reactions (chemical waves) where activity is

confined to the vicinity of mobile spiral fronts.

There is an obvious analogy between individual
molecules and dislocations (microscale), chemical
waves and strain nonuniformities (mesoscale),
average concentrations and deformation curves

(macroscale). The modelling of chemical waves

involves solving a set of nonlinear differential

equations describing the rate of each reaction, the

diffusion of each species, conservation conditions,
and boundary effects. We now examine the analogous
ingredients needed to study SNPI.

Fig. 1. - Chemical waves, after Plüller. Reproduced
from ref. (8), by courtesy of Martinus Nijhoff.

2. The dynamic approaches to SNPI.

According to the methods outlined in § 1, the

investigation of SNPI amounts to solving a set of

coupled nonlinear differential equations whose

ingredients pertain to two or three different
scales and involve time and space as evolutionary
variables. It is required that bifurcation
conditions be determined, which is not too

difficult, and that solutions beyond the
bifurcation point be obtained, which is usually
less simple.
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Understandably, there exists no general solution to
this problem and even when dealing with specific
,cases, simplifying assumptions, sometimes very
rough ones, have to be made. Since the main

objective is to reproduce the main features of some
well-characterized types of unstable behavior, the

crucial point consist in properly introducing the

nonlinear terms and couplings by which the dynamics
will be governed. Once this is correctly done, the
results obtained are not very sensitive to details
of the individual mechanisms and this justifies
some roughness of a model, which can be kept
simple.
In this section, we review a few basic ingredients
which can be used at macro, meso and micro scales,
stressing the various levels of approximation and

recalling some recent advances.

2.1. - MECHANICAL CONSTRAINTS. One must first
assume that conditions of uniaxial straining remain
valid throughout the specimen. This is admissible
when localizations are not too severe, as is the

case for those considered here, and especially near
the stability limits. Then, stresses and strains

can be taken in the forms o’(x,t) and E(x,t),
respectively.
A first constraint fixes deformation conditions.

These are trivial in uniform, but not in

nonuniform deformation. The average (total) plastic
strain rate is given by eq. (1), and a similar form

holds for the total elastic strain rate, 03B5el:

v

where E is the Young modulus. Thus, deformation at
constant total applied strain rate, 6 , is expressed
in the form: 

where tei s is the elastic deformation of the

testing system. Other modes of deformation (creep,
constant stress rate, of cyclic deformation) are

dealt with in a similar manner. 

A second constraint arises from stress equilibrium
or from inertial effects. After a fast local

instability event, stresses get equilibrated along
the specimen at the velocity c of acoustic waves,
i.e. it takes a time te = L/c ~ 10-5 s to obtain
stress equilibrium (see (9) for a discussion). This
value is to be compared with the typical time scale
associated with the instability, àtz. Dynamic
effects will prevail if, for instance, a local
strain of 039403B5=10-2 is nchieved with a local average
strain rate of i = 039403B5/0394ti ~ 103 s-1. Such fast events
are met with mechanical twinning , sometimes with
the Portevin-Le Chatelier effect, or with local
dislocation avalanches (10, 11). In such cases one
must take care to avoid setting the tensile system
in vibration at its eigenfrequencies (see (4) for
more detail) and to ensure that inertial effects do
not affect too much the recorded stress vs. time
behavior.
The application of the fundamental equation of

dynamics to an element of volume subject to a stress
gradient yields (12, 13):

REVUE DE PHYSIQUE APPLIQUÉE. - T. 23, N° 4, AVRIL 1988

where m is the mass density and u the displacement.
This expression con further be reexpressed in terma

of stress nnd strain rate by taking into account

the deformation conditions.

When stress equilibrium is assumed, as is usually
the case, it suffices to express the condition that
the load P = 0’A (A: cross-sectional area of the

specimen)is uniform. Under constant load, we locally
have: dln03C3/d03B5 = ± dlnA/dE, where the upper sign
refers to compression and the lower one to tension.

Assuming that there is no volume change during
plastic deformation, dlnA = -dE, where 03B5 has here a

meaning of the absolute value of strain. Combining
these two expressions, we obtain:

and equivalent expressions for other modes of
déformation. In summary, mechanical constraints pose
two conditions, one of type (4) and one of type (5).

2.2. - DISLOCATION POPULATIONS. Referring to the

example of chemical waves given ahove, we see that
ingredieiits at microscaJ.e will be more complicated
for dislocations than for molécules : dislocation
glide is assisted by temperatùre and also by stress,
climb and cross-slip must sometimes be taken into

account, and above all, the dislocation densities
are not constant because of multiplication.
The aim of the studies reported below is to examine
the evolution with time of dislocation densities,
and to determine characteristic length scales for
their structural organization.
In a first step we consider time dependence only

and split the total dislocation density into a

mobile density, fi, , and an almost immobile one, eF .
Denoting by Pk (k=m or f) and Pk the rates of

creation and of annihilation of the corresponding
species, respectively, we can write down the
kinetic balance equations of the form:

In practice, a set of two (or several) coupled non
linear differential equations is obtained (14-17).
The terms at right-hand side can be modelled in
several different ways (18). For example, a term

proportional to - 03C12m accounts for the mutual
annihilation of two 

two2 
mobile segments. A term

proportional to -03C1m03C12F used in (18) describes the

trapping of a mobile dislocation by a sessile

dipole and contributes both to éF+ (with a negative
sign) and to )Çg (with a positive sign). It
introduces both a strong nonlinearity and a

coupling between the two densities.
The stress or strain rate dependence of the various
elementary mechanisms, in particular multiplication
(the term in r:’) and recovery (the term in 03C1F)
can be incorporated through simple phenomenological
forms in the coefficients which determine their
relative weight. The flow stress, or an effective
stress obtained by subtracting from it an athermal
contribution proportional to 03C11/2F, usually enters
as a control parameter in the multiplication term.
Alternatively, strain, rather than time, can be
chosen as the evolutionary variable (14). Fig. 2

reproduces a typical strain dependence of the
mobile and forest densities obtained within such a

frame. We notice that at small strains the

increase in the mobile density is steeper. This has
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Fig.2. - A typical strain dependence of the mobile
(03C1rn) and forest (PF) dislocation densities (14).

important consequences regarding the local values
of strain hardening rate at the very beginning of

plastic flow (cf. § 2.3). For large strains, the
two densities saturate to values p,, , and pis given
by the conditions that dpk/dt vanishes in eqs. (6),
and it can be noticed that the mobile density
saturates first. This behavior can be understood by
considering that mobile dislocations must be
created before being trapped, so that the evolution
of the forest density is always shifted in time

(strain) with respect to that of the mobile

density.
Ananthakrishna and coworkers (15-17) made use of a

similar scheme to investigate the Portevin-Le
Chatelier (PLC) effect. In their work, the total

density is split into several populations which
interact via a set of chemical-like reactions, of

which we reproduce three particular ones:

The first reaction describes the multiplication of
mobile dislocations, at a rate determined by a

breeding constant and an average velocity, which for
simplicity is taken constant during a creep
experiment. The two other reactions describe the
mutual trapping of two mobile dislocations and the
annihilation of a mobile dislocation with a

dislocation of the forest. Stress-strain curves are
then computed by expressing the differential forms
for the concentrations/densities of each species,
selecting reasonable values for the rate constants
and inserting the strain rate via eq. (2). In the
case of the PLC effect, where a particular interplay
between two mobile populations (fast and slow) must
be introduced (cf. § 3.3), the stepped deformation
curve reproduced in fig. 3 is obtained (compare with
fig. 10).

Fig. 3. - A stepped deformation curve obtained by
simulating the evolution of dislocation populations
during the PLC effect. After Ananthakrishna and

Sahoo (15).

This investigation illustrates a constant feature in
such type of modelling of plastic instabilities. The
cooperative nonlinear behavior dominates the

dynamics to the point that a fully detailed

knowledge of individual dislocation mechanisms is
not really needed. This is probably the reason why
materials differ much more in their individual
dislocation properties than in their overall
mechanical properties.

In the elaborations discussed above, only temporal
aspects of instabilities were accounted for. The

question of the origin and prediction of dislocation
patterning is a long-standing, somewhat

controversial, problem in plasticity (cf. (19), and

(20) for a brief review). In short, it seems very
difficult to consistently take into account the
mutual interactions between all the dislocations

present in the microstructure. Both energy
minimization criteria and dynamic self-organization
effects can be thought of as determining the
characteristic dimensions of cells, cell-walls, and
other organized structures.
Two directions of investigation have recently been

explored: one makes use of a reaction-diffusion
scheme to model dislocation patterning. The balance

equations for dislocation populations, then, contain
diffusion-like terms, from which length scales for
the organization of dislocation structures can be

determined (cf. (13), (21) and Kratochvil, this

volume). Within this frame Brechet (13) has
examined the system of equations obtained by
coupling eqs. (4) and (5-1) with a simplified
reaction-diffusion equation. Several types of SNPI
were examined (precipitate shearing, instabilities
in fatigue, Lüders front propagation and the PLC

effect). The solutions obtained reproduce at least
qualitatively the main spatial and temporal aspects
involved in these four types of instabilities.

Fatigue patterning in f.c.c. crystals was

investigated by Walgraef and Aifantis (21) who

obtained, as a result, a bifurcation diagram where
successive bifurcations lead to the formation of a
matrix structure and further of Persistent Slip
Bands. In that case also the lenqth scales
characteristic of the organization of dislocation
structures can be estimated.
In another approach, dislocation patterning is

numerically simulated using a procedure which
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derives from cellular automata techniques (19).
Some results of such "computer experiments,"
pertaining to the propagation of Lüders fronts are
reported in § 3.2 (see also Lépinoux, this volume).

2.3. - PHENOMENOLOGY. Elaborations at mesoscale may
serve to integrate the collective aspects of
dislocation properties into simple material

properties, valid at local scale, such as the
strain hardening rate (SHR), h, and the strain rate
sensitivity (SRS), S. SNPI can also be modelled at
this phenomenological scale, by attributing to
these two coefficients some prescribed dependence
on e.g. stress, strain rate or strain.
We illustrate such elaborations by two simplified
examples. In more rigorous treatments, care must
be taken in justifying the constitutive equations
used.
Several different types of differential
constitutive equations are commonly used, for
instance

or

Here, h=(àO7/ôi),, and S=(~03C3/03C3ln03B5)03B5, with Y=Slo- and
03B3=h/03C3. These material parameters can vary during
straining, and in case of strain nonuniformity,
their values can also be nonuniform.

To illustrate the concept of linear stability
analysis, we consider a hypothetical uniform
deformation curve obtained by combining eq. (7-1)
with conditions of straining at constant strain
rate (eq. (4), taken in uniform conditions) and

assuming stress equilibrium. We examine the

response of this solution to a local fluctuation in

slip activity (i.e. a small strain fluctuation
within the specimen), which locally introduces
small increments in stress, strain, and strain

rate, 6c- , 6&#x26;, and ôl, respectively. Such mesoscale
fluctuations globally affect a few slip planes
during a small time interval, so that the applied
load can be considered constant, and therefore they
must be connected through eqs (5-2) and (7-1), but
not through eq. (4), since the deformation system
cannot control them. Eliminating 03B403C3 by combining
eqs. (5-2) and (7-1), we obtain:

and

À represents the acceleration of strain (9), but

linear stability analysis shows that it is also the

bifurcation parameter (14). When À is negative, i.e.

when deformation decelerates, any local fluctuation

in strain is bound to exponentially die out with

time since the section considered will be further

subject to strain rates smaller than the other

parts of the specimen. Then, the uniform solution is
stable. When X is positive, i.e. when deformation

accelerates,the strain rate exponentially increases
within the considered section (provided that A
remains constant). The ùniform solution is,
therefore, unstable, being destabilized by any
fluctuation present within the specimen. Once a

fluctuation has started growing, leading to some

sizeable strain nonuniformity, the deformation

system can, possibly, control it. Then, either

growth will continue unbounded, leading to rupture,
or the nonuniformity will eventually saturate. The

condition À =0 , then, is equivalent to an

instability criterion.
In this simplified derivation the spatial extent of

fluctuations is not considered, since the
constitutive equation used does not contain the

position variable x. As a consequence, nothing can
be said about the length scales of the
nonuniformities.

It follows from this discussion that if both the SRS
and the SHR are positive, we have a stable situation
(03BB0).
If the SRS is positive and if (h ± 03C3) gets negative,
we have an instability of type h, as pictured in

fig. 4 (a).
If the SRS gets negative, the SHR being positive, a

more violent type of instability is obtained,
because À changes sign by going through infinite

values, cf. eq. (9) and fig. 4 (b). Since À is
infinite, a jump in the strain rate will occur at
constant strain. The most representative example of
such type S instability is the PLC effect.

Fig. 4. - Instabilities of type h (a) and of type S
(b). À is the bifurcation coefficient representing
the acceleration of strain. Uniform plastic
deformation is unstable when À is positive.

In a second example, we examine a particular form of
the constitutive relation (7-1), which can be

obtained by developing Orowan’s law (eq. (2)) as

follows:

Here we have assumed that the dislocation densities
are unique functions of strain. The exponential
form for the velocity derives from a first-order

expansion in the exponential of the Arrhenius law,
and the effective stress is obtained by
subtracting from the flow stress an "athermal"
contribution proportional to pp (ce is a constant
and G is the shear modulus). S is easily
identified with the SRS : S=(~03C3/~ln03B5)03B5.
Using the definition of the strain hardening rate,
h=(~03C3/~03B5)03B5 , we have:

; The evolution of the local strain hardening rate

under increasing strain can be inferred from fig.
2, where the evolution of the dislocation densities
is depicted. Its strain dependence is represented

1 on fig. 5. One can notice that this variation

strongly differs, especially at small strains, from
the average behavior recorded on deformation
curves. At small strains, the negative
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contribution to h arising from the multiplication
of mobile dislocations always prevails (14). The

softening effect of the initial rate of production
of mobile dislocations cannot be compensated by
forest hardening, at least during the very first

stages of plastic flow. The SHR is negative and

Fig. 5. - Schematic strain dependence of the local
strain hardening rate. The two unstable regions
(03BB&#x3E;0) correspond to the formation’of slip lines and
bands at small strains and to the onset of necking
in tension at large strains.

deformation must, then, be nonuniform. We

interpret this behavior as the cause of the
existence of slip lines and slip bands. Indeed, at
the beginning of plastic flow the strain rate

accelerates, going from almost zero to some

prescribed value. As discussed above, uniform
deformation is unstable in such conditions. Such

instability is necessarily bounded because, with

increasing strain, forest hardening builds up,
while the mobile dislocation density saturates
first (cf. fig. 2). As soon as h becomes positive,
uniform deformation becomes stable, i.e.
deformation tends to uniformize. Slip is activated
in new areas of the specimen, to compensate for the
loss of activity in saturated regions. This

spreadinq of slip activity can take place either in
an orderly (Lüders band-like) manner or by random

initiation of slip lines and bands along the

specimen.
At large strains, the forest density also

saturates, and the (then positive) strain hardening
coefficient decreases with increasing strain. In

tension, the condition (h-OE)=0 is met for a certain
value of the strain, and according to eq. (9)
another instability of type h sets in (cf. fig. 5).
Indeed, what is recovered here is nothing else than
the familiar Considère criterion for the onset of

necking. We notice from eq. (9) that the initial
rate of development of the neck will be strongly
influenced by the value of the (positive) SRS.

Finally, fig. 6 reproduces a typical time dependence
of the local strain and strain rate in creep
conditions. The strain rate goes through a maximum
when slip is activated and further slows down, while
the strain saturates (14). This behavior is in

agreement with experimental measurements of the

growth of slip steps performed by Neuhâuser and
coworkers on single crystals of copper-base alloys
(2,3,4).

Fig. 6. - Variation of the local creep rate 03B5 with
time (schematic). Dashed: the corresponding strain
vs time curve. After (14).

3. Lüders bands and the Portevin-Le Chatelier
effect.

3.1. - INTRODUCTION. Assuming that plastic flow is
isothermal, we have defined two types of

instabilities, those of type h and those of type S.
The PLC effect is the only well-documented example
of type S instability. There are indications that
mechanical twinning is also of type S (22), but the
microstructural mechanisms which may, in that case,
lead to a negative microscopic SRS associated with
twin nucleation are not understood.

By contrast, there are many different instabilities
of type h and four subgroups can be distinguished.
Multiplication softening is associated with a rapid
increase in mobile dislocation density and gives
rise to yield drops, accompanied by the formation of
slip lines and bands which may be propagating
(Lüders bands). Structural softening is observed
when the microstructure becomes more penetrable to
dislocations during straining, or when the SHR
attains sufficiently low values. A particular case

occurs when the microstructure is destroyed by the
mobile dislocations; this leads to the formation of
dislocation-free channels (see e.g. (4) for more

detail). Instabilities of the matrix structure in

fatigue result in two types of SNPI, the formation
of Persistent Slip Bands (23) and Neumann’s
instabilities (24). Finally geometrical
instabilities can be caused by slip plane rotation
in single crystals or by textural softening in

polycrystals, terminating in necking.

In what follows we examine in more detail Lüders
bands and fronts and the PLC effect. Only a

qualitative description is given here and more

detail will be found in (25-27) and in (9).
These two propagative instabilities were first
discovered and examined in the course of early
investigations of plasticity, in 1836 (28) and 1860
(29) (Lüders bands in mild steels) and in 1909 (30)
and further in 1924 (31) (the PLC effect). The so-
called blue-brittleness of steels related to the
PLC effect has been noticed by Adamson even

earlier, in 1878 (see quotation in (32)). Since

then, these two phenomena have been observed in

many b.c.c. and f.c.c. solution hardened alloys,
but, despite a considerable amount of experimental
investigation, no consistent quantitative treatment
is available. This is because in both cases the
connection between micro- and macroscopic aspects
still remains imperfect.
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3.2. - LUDERS BANDS. Fig. 7 reproduces the typical
yield behavior of a fine-grained polycrystalline
mild steel at, or slightly above, room

temperature. The initial yield drop, between an

upper yield stress, ce, , and a lower yield stress,
Qe, is followed by a plateau during which slip
activity propagates through the specimen in form of
one or several Lüders bands with a constant front

velocity.

Fig. 7. - Typical stress-strain curve of a mild
steel at room temperature. Lüders band propagation
takes place at a constant stress, are , and leaves
the specimen in a uniform state of strain at 03B5 =

£

When 03B5 = 03B5L, foL being the Lüders strain, typically
a few percent, the front(s) have moved all along
the specimen which is left in a uniform state of
strain. Homogeneous deformation ensues.
The nucleation of Lüders bands is assisted by local
stress concentrations, for instance at the grips,
and several bands can be active simultaneously,
originating from various places along the specimen.
Yield behavior is not always as simple as pictured
in fig. 7, but one usually refers to Lüders-like
behavior whenever slip activity progresses through
the specimen in an orderly manner. This is in

particular the case for flat single crystals of
f.c.c. alloys (4).
In phenomenological terms, the nucleation stress of
the first band is larger than the stress required
for further propagation. This implies that the SRS
is not too large, so that the stress level

effectively drops during the initial burst in
strain rate. In microscopic terms, the equivalent
formulation is that dislocations are initially aged
by segregating solute atoms, so that the stress
needed to liberate them is largely in excess of the
glide resistance. The fast rate of liberation of
mobile dislocations and their subsequent 
multiplication induce a large negative contribution
to the SHR, according to eq. (11).
The evolution of strain rate, at a fixed position
in the specimen, is as follows: there is an abrupt
increase as slip activity starts, i.e. when the

front crosses the considered section. With the local
accumulation of strain, strain hardening, then,
becomes positive and the strain rate decreases

while the accumulated strain saturates to the value

6.L (cf. § 2.3 and figs. 5 and 6). Since the front

propagates with a steady-state velocity, V,, (vF ~ 1
mm.s-1) this time evolution can be developed into an
evolution in space (the strain rate is a function of
the single evolutionary variable, x-vFt). Thus, the
space profile of the strain rate given in fig. 8

reflects the time profile of fig. 6. The strain rate

increases rather abruptly to a peak value £f’ and

gradually decreases. The Lüders band width, w. can

be then defined as the thickness of the active

region behind the front (cf. fig. 8).

Fig. 8. - The strain rate profile of a Lüders band.

VF and w are the front velocity, the strain rateat the front and the Lüders band width,
respectively. Actual band widths are smaller than

suggested by this drawing (w/L ~ 10-2).

In summary, we have clearly identified an

instability of type h, with bounded amplitude. The

spreading of slip is caused by the necessity for

activating new sources in the specimen when old ones
become strain-hardened. This qualitative description
can be elaborated more formally at phenomenological
level. Quite generally, it appears that the

quantities to be estimated, 03C3~, vF, w, e,, and 03B5F,
cannot be unequivocally determined in terms of such
material properties as the SRS, the alloy friction

stress, some average strain hardening rate, or,
better, the strain rate profile of the Lüders band,
and the prescribed strain rate. Indeed, care must
be taken when averaging material properties within a
Lüders band, i.e. within a region where the strain
rate and the local strain hardening rate are subject
to large variations. The major difficulty, however,
arises from the fact that one relation is missing
between the investigated quantities (9).

To define more precisely the unknown term, we take
the band width, w, as the typical length scale of
the problem. Because of the steady state character
of front propagation, w = bt·vf, where St is the

corresponding time scale, i.e. the time interval

during which there is a significant plastic activity
in a given section. 03B4t can be evaluated by
considering the dynamics of dislocation populations,
as done in § 2. An indeterminacy remains, however,
if the front velocity is not specified. Two
mechanisms are postulated to explain the orderly

. activation of slip, but the material or dislocation

properties which control the occurrence or non-

occurrence of front propagation are still unclear.
Locked dislocations ahead of the front can be freed

under the action of internal stress peaks
accompanying dynamic dislocation pile-ups.
Alternatively the injection of cross-slipped
dislocations into virgin regions can serve to
initiate slip. In both cases it is expected that
the front velocity should be directly related to

the dislocation velocity at the front.

The same kind of indeterminacy is obtained with the
PLC effect (33), and for the same reasons. To
illustrate how the consideration of the evolution
of dislocation populations in time and space maya
potentially solve this problem, we quote a result
from the computer simulations of Lépinoux (20).
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Mobile screw dislocations are initially introduced
within a slice of virgin crystal of thickness 0.5

03BCm. They are allowed to move, multiply, annihilate
and cross-slip according to rules which depend on

an externally applied stress and on the sum of
mutual elastic interactions up to large distances

(equivalent to several pm). In addition, they are
subjected to a local strain hardening rate

proportional to the accumulated strain. In fig. 9
is plotted the evolution with time of the strain
rate profile in the ’simulated deforming specimen.
The slip lamella expands with a constant front

velocity, which is found to be proportional to the
average dislocation velocity at the front(s). One
can also notice in fig. 9 the decrease in slip
activity behind the fronts. Thus, both w and vF are

determined. Further, it is found that no

propagation at all is observed if the

multiplication rate of dislocations falls beyond a
critical value. The front velocity is found to be
of the form:

where vd is the average dislocation velocity at the
front; X is a parameter governing tne

multiplication rate and Xc the critical value Much
that no front propagation takes place when X &#x3E; Xc,i.e. when the multiplication rate is too small.
A similar result is obtained when simulating the
dynamic behavior of initially aged edge
dislocations.

In conclusion we see that a combination of
elaborations at microscale and at mesoscale allows
all length scales associated with the nonuniformity
to be determined.

3.3. THE PORTEVIN-LE CHATELIER EFFECT. Jerky flow
associated with the PLC effect is found in many
substitutional or interstitial f.c.c. or b.c.c.

dilute alloys. It is observed within a well-defined

domain of temperature, approximately between 0.2

and 0.4 T (T,: melting temperature). At a given
temperature, it occurs between two critical values

of the applied strain rate or stress rate.
Fig. 10 schematically reproduces the deformation

curves obtained when an alloy is tested in the

domain of jerky flow. Load drops and strain bursts
are obtained in deformation with constant strain

rate and constant stress rate, respectively. The

two deformation curves of fig. 10 are, however,
globally similar, as shown by Cuddy and Leslie

for the case of a Fe-1.5Â Si alloy (34).
Each strain burst is associated with the steady
state propagation of a deformation band, which is

usually initiated at one grip and moves to the

other end of the specimen with a constant front

velocity vF. vF is of the order of 10 cm-s-1, i.e.

it is ~ 10 times larger than the velocity of

Lüders fronts. In constant strain rate tests,
stress relaxation effects interfere with band
propagation resulting in a complex PLC-band
morphology. Fig. 11 shows an example of strain
nonuniformities obtained in an Al-5%Mg alloy testedat 300 K with a constant strain rate of 10-4 s
(35).

Fig. 9 - A simulation of Lüderslike slip propagation
(see text for detail). The strain rate profiles along
the specimen are indicated for several successive va-
lues of time (encircled numbers) increasing from bot-
tom to top. The initial configuration at t=0 consists
of a slip lamella, of thickness 0.5 03BCm, containing
mobile screw dislocations. The remaining parts of tne
specimen initially contain no dislocations.
Glide planes are vertical and the local strain rates
are computed within each elementary slice as a func-
tion of time.

Slip propagates axinally, by cross-slip, with a cons-
tant velocity and the strain rate profiles are simi-
lar to the one depicted in fig. 8.
After Lépinoux (unpublished work).

The microscopic mechanism causing the instability is
dynamic strain aging (DSA),i.e. the segregation of
solute atoms on the mobile dislocations. Since the
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early elaborations of Cottrell (36) and Friedel

(25), many models have been proposed to account for
the dynamic interaction of mobile dislocations with
diffusing solute atoms. In most recent ones, the

following view is preponderant (see e.g. (37, 38)
and (9)). The solutes diffuse to dislocations
arrested at localized obstacles to be overcome with
the aid of thermal activation. The barrier height
increases with time as solute concentration near

the dislocation core continuously increases. It may

happen, then, that deformation becomes "anti-

thermally activated". The effective stress,03C3*,
needed to overcome the barrier increases with the

waiting time at the obstacle, tw. Since tw is

inversely proportional to the average dislocation

velocity, v, we have d03C3*/dlnv0.

Fig. 10. - Typical shapes of deformation curves

associated with the PLC effect at constant strain

rate, 03C3(t), or at constant stress rate, 03B5(t).

Fig. 11. - PLC bands in an Al-5%Mg polycrystalline
specimen tested at 300 K with a constant strain rate
of 10-4 s-1. Specimen width is 5 mm. After (35).

Going from microscale to mesoscale, we express the
effective stress as 03C3*=03C3-h03B5 , where the SHR, h, is
assumed to be constant around a fixed value of

strain, and replace the average dislocation

velocity by l/Pmb, according to eq. (2). Even when
taking into account the strain rate dependence of
the mobile density, one expects to obtain a domain
of experimental conditions where (dé/dIné) =

(~03C3/~ln03B5)03B5, i.e. the local SRS is negative (33,
39). 
Thus, as shown in § 2.3, we have an instahility of
type S characterized by strain rate jumps. The
behavior of the local strain rate in a specimen

Fig. 12. - Relaxation oscillations associated with

the PLC effect. The closed trajectory indicated by
the arrows is periodically followed by the strain
rate in a specimen cross-section. The double arrows

denote the fast jumps occurring when the boundaries
of the "forbidden gap", 9, or 03B52 are reached. After
(33).

cross-section is illustrated in fig. 12 by the

diagram of 03C3* vs 03B5.
In the ascending branches of 03C3*(03B5), the SRS is

positive and uniform deformation is stable. At low
strain rates (i.e. for large waiting times),
dislocations drag their solute atmospheres and this
requires relatively high stresses. At high strain
rates (or small waiting times), dislocations move

across a nearly immobile distribution of solute

atoms, at comparatively low stresses. When the

applied strain rate, L,, is within the domain of
negative SRS, which is bounded by two critical
strain rates, 03B51 and i2, uniform deformation is

unstable. During a deformation test, the strain
rate first increases uniformly, until the value 03B51
at which S=0 is reached. Then, the strain rate

jumps at constant stress and strain (cf. fig. 12),
to the branch of high 03B5 , which corresponds to the
unlocking of dislocations from their solute

atmospheres. Under the influence of strain

’hardening, the local strain rate then decreases,
until the second critical value, 12 , is reached. A

second jump in strain rate then occurs, which

brings dislocations back to the branch of small

strain rates where they are dynamically pinned by
solute atoms dragged along.
In such conditions, the domain of strain rates

bounded by the two critical values is forbidden to
dislocations. When the applied strain rate lies
within this "forbidden gap", local strain rates

periodically describe a cycle with successive steps
of fast-slow-fast-slow motion, with a time average

equal to the prescribed value, 03B5a. This type of

behavior is known as relaxation oscillations (40).
At low temperatures this mechanism is not operative
because solute diffusion is too slow. At high
temperatures, the hardening effect of solute atoms
vanishes. Therefore, the PLC effect can only occur
within a well-defined temperature range.

The strain rate vs time profile in a given section
of the specimen can be deduced from fig. 12. It is

given in fig. 13, where one notices the gap in
strain rates which results from relaxation
oscillations.
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Fig. 13. - A PLC band and the corresponding strain
rate profile, i(x), which in conditions of steady
state band propagation is identical to the time

profile at a given location x, 03B5(x-vft).
As done in § 3.2 for Lüders bands, one can develop
the time profile into a spatial profile 03B5(x),
since in conditions of constant stress rate testing
PLC bands propagate with a constant velocity vF.
Again, there is only one evolutionary variable, x-

vFt. This profile is represented in fig. 13, where
one sees that the regions of high strain rates

(typically 101 s-1) correspond to the PLC band where
dislocations are highly mobile. The band is bounded

by two fronts where upward and downward strain rate
jumps take place. In the remaining parts of the

spécimen, the background strain rates are much

smaller, of the order of a typical creep rate.
Most probably, the dislocation mechanisms by which
the upward strain rate jump propagates are similar
to those discussed in § 3.2, with regard to Lüders
front propagation. The determination of the length
and velocity scales associated with the PLC effect
(band widths, front velocities) can then be

performed in principle by considering in more detail
the evolution in time and space of dislocation

populations.

The mechanism of relaxation oscillations is very
general. It is met whenever a relation between a

flux and a force (or between a force and a flux)
takes a sigmoïdal shape with a portion of negative
slope. Several examples are listed and discussed in
ref. (40), i.e., among others, "stick-slip" effects
(41, 42), the Gunn effect in compound
semiconductors, the pinning of Bloch walls by

liffusing carbon atoms in ferromagnetic Fe-Si

spécimens (43).

Although the connection between DSA and jerky flow

associated with the PLC effect is now qualitatively
understood, several problems remain unsolved. The

details of the diffusion mechanisms which induce

DSA, and, in particular their strain dependence are
still under discussion (38). In many substitutional

alloys, there is an "incubation" strain, 03B5c, during
which either deformation is uniform or Lüders band

propagation takes place. Indeed, the.occurrence of a
Lüders band indicates that diffusion is too slow
to allow for dynamic strain aging. This is the

reason why, in practice, many alloys exhibit

Lüders-type instabilities at some temperature, and,
further, the PLC effect at higher temperatures.
To explain the occurrence of this critical strain,
it has been proposed that vacancy formation during
plastic flow can enhance the diffusion of solutes
in substitutional alloys. According to more recent
investigations, the critical strain rather stems
from the increase of the mobile dislocation density
at the beginning of plastic flow. A simulation of

unstable deformation curves by Neelakantan and

Venkataraman (unpublished work) substantiates this
view. The evolution with time of dislocation

populations has been examined by those authors,
using a simplified version of the considerations

developed in § 2.2, and with a sigmoidal shape for
the stress vs velocity law. The deformation curves
thus obtained exhibit an incubation strain when
suitable values for the multiplication rate and for
the saturated density of mobile dislocations are

introduced.

4. Conclusion

From this study of strain nonuniformities and

plastic instabilities we draw the following
conclusions. Plastic flow is inherently nonuniform
and a coherent description of mechanical behavior
involves simultaneous consideration of several
scales (microscale, mesoscale, macroscale), at

which instabilities can occur. Nonlinear

cooperative processes are responsible for the
occurrence of SNPI. They influence mechanical

properties to the point that individual dislocation
processes need not be described in full detail when
a qualitative understanding is required.
The determination of length scales is a long
standing problem in plasticity. The elaborations

reported in this review are potentially well
sûited for dealing with this problem. Though not

accomplished as yet, they have already yielded
promising results.
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