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Résumé. 2014 Nous considérons un solide poreux, ou un gel, saturé par un système fluide à deux com-
posants, A, B, dans le domaine de température où A et B démixent ; l’épaisseur 03BE de l’interface est
supposée plus petite que la taille des pores. Le solide préfère être en contact avec la phase riche en A.
Mais, si l’on fait décroître le potentiel chimique de B, la phase riche en B pénètre la structure. Nous
discutons la pénétration réversible, et trouvons deux modes distincts :

a) « invasion capillaire » (progressive).
b) « basculement » où tout le volume poreux est envahi soudainement (sauf peut-être pour une

couche de mouillage d’épaisseur 03BE près du solide).

Les « champs » H (reliés au potentiel chimique d’échange A/B) requis pour l’invasion capillaire
(Hc) ou pour le basculement (Hf) sont dans le rapport

Hf/Hc ~ (03BE/D)2-df

où df est la dimension fractale de la surface. (Les gels de tiges rigides ont df = 1, alors que des gels
flexibles en bon solvent ont df = 5/3.) Pour tous les gels le processus (b) doit dominer, et donne
une transition du 1er ordre. Pour les solides poreux (df = 2) une discussion plus détaillée est donnée
sur un modèle de capillaires interconnectés (fins) à diamètre aléatoire : pour ce modèle, le processus
(a) domine et il ne devrait pas y avoir de transition nette.

Abstract. 2014 We consider a porous solid, or a gel, saturated by a two fluid system A + B, in the limit
where the thickness 03BE of the AB interface is smaller than the pore size D. The solid prefers to be in
contact with one of the fluids (A). But, if we decrease the chemical potential of B, the B fluid enters
the structure. We discuss the reversible penetration process, and find two distinct modes :

a) « Capillary invasion » with clusters of B regions growing progressively.
b) « Flip process » where all pores are abruptly invaded by B (except possibly for a thin sheath

of thickness 03BE near the walls).

The « fields » H (= chemical potential changes) required to perform capillary invasion (Hc) or flip
(Hf) are in ratio :

Hf/Hc ~ (03BE/D)2-df

where df is the fractal dimension of the pore surface. Gels made with rod-like molecules have df = 1,
while flexible chains in good solvents have df = 5/3. For all gels the flip process should dominate,
and we expect a sharp transition. On the other hand, porous solids (df = 2) require a special discus-
sion. Modeling the pores as interconnected capillaries of random diameter D, we find that capillary
invasion dominates in this case, and we expect no sharp transition.
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1. The relation with random fields.

The behaviour of lutidine/water mixtures in agarose gels is currently being studied at Pitts-
burgh [1]. Similar experiments can (and should) be contemplated with a solid porous matrix.
The gel, or porous medium, has two main effects on the binary mixture A + B. ( 1) It prefers one

component (say A) of the mixture; (2) It depresses the transition temperature near the contact
surface. Effect (1) is conceptually equivalent to a random field acting on a ferromagnet : the
simplest case of random fields (where the scale of the randomness is smaller than the unperturbed
correlation length) has been analysed theoretically [2-6] and some good experimental examples
have been found [7]. The existence of a sharp transition (in 3d systems) is probable but is still a
matter of debate. These discussions are relevant for our gels or porous systems, when the tempe-
rature T is only slightly below the consolute point T~o : the unperturbed correlation length ~(T)
is then larger than the pore size D. Here we explore the opposite limit of lower temperatures
(~  D). Then we deal with thin interfaces, and can discuss their relation to the pores in terms of
capillary equilibria.

The effect (2) is also important, and may change the nature of the wetting-non wetting tran-
sition at the walls [8-10]. Our discussion incorporates both ( 1) and (2). On the other hand, we
assume that the pores are undeformable : with flexible polymer chains, the binary fluid reacts
on the gel structure. Near Teo this may lead to partial collapse of the gel [11-12]; but for T  Teo,
these complications are expected to be minor.

2. Porous media.

The random pore model which we have in mind is classical. It is displayed in figure 1. Each link
is a thin capillary of diameter D length L ( &#x3E; D), with a distribution of D values. Different capil-
laries have uncorrelated D values. Let us assume first that the capillary contact angle 0 between A,
B, and the solid wall is finite (Fig. 2a). 0 is smaller than Tr/2 since the wall prefers A. Our aim is to
decrease progressively the chemical potential of B, and to see if at some moment the fraction
of B fluid increases abruptly.

This is reminiscent of the injection of a fluid B (such as mercury) in an empty non wetted porous
system (e.g. : vycor glass). Macroscopic injection occurs abruptly as a percolation transition [13-

Fig. 1. - Capillary model for a porous solid : each capillary, or « pore » has a length L ; but the diameters D
are randomly distributed.
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Fig. 2. - A droplet appearing inside one pore : a) partial wetting; b) complete wetting.

14]. The physics of the present problem is quite different. In injection experiments we are not
dealing with thermodynamic equilibrium : a large pore can be reached by the mercury only if
certain smaller pores which lead to it have also been invaded. In the present problem, a large
pore can be filled with B (by diffusion of B molecules through A regions), even if all surrounding
channels are too thin to accept a bulk B phase.
The Laplace equilibrium condition, for a cylindrical pore of diameter D, is :

where we use the magnetic notation : Mo(T) is the spontaneous magnetization at temperature T
and is related to the width of the AB coexistence curve. H is an external field (related here to a
chemical potential for A/B exchange), y is the AB interfacial tension, and R is the local curvature
of the interface. For a given H, all pores of diameter D &#x3E; D(H) (where D(H) is defined by Eq. 1)
are filled. All pores D  D(H ) are empty.

Following these rules we generate a set of B clusters : they are connected pores, all filled with B,
and they obey percolation statistics. Each cluster has a certain number of pores (n) and is sur-
rounded by a certain number of peripheral pores (m). The corresponding statistical weight is
pn if" where p and q are functions of the field H

Here w(D) is the distribution of pore sizes (each pore being weighted by it’s own volume).
It is important to realize that this cluster structure is energetically stable. To understand this,

consider first the simplest B cluster, i.e. a single pore with diameter D &#x3E; D(H ). Filling up this pore
with B fluid, we gain an energy E = E1 - 2 E2

E1 contains the effect of the pressure Mo H, and the effect of the solid-fluid interfaces YBS - YAS =
y cos 0. The part E2 is the energy of the fluid-fluid interface. For D &#x3E; D(H ) the ratio E1/E2
is of order LID and is large = the filled pore is stable. This argument can be extended to larger
clusters, with arbitrary n and m. The energy gain is then nE1 - mE2. We now use the classical
relation between averages  n ~/p =  m ~/q and conclude that
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thus (since E~ ~&#x3E; E2) for all finite PI q, the energy gain is positive for the most relevant clusters,
and they are stable.

Thus, when H increases from 0 up, we generate B clusters. When H reaches a certain value Hp
such that p(Hp) = Pc (the critical value for percolation) an infinite B cluster appears. But the
field Hp is not associated with any thermodynamic singularity.
The average magnetization is :

M(H ) rises steeply when D(H ) is comparable to the average pore size, but keeps a finite slope in
this region. Singularities may occur only at the ends (D~,~ ? ~ max) of the distribution w(D ). The
most important practical case would correspond to the existence of a D max- If w(D &#x3E; D ax) = 0
and

then, there is a special value Hm of the field, defined by D(Hm) = D ~~, at which the B component
first enters macroscopically. Near this point

Thus we expect at most a very weak singularity in M(H) (probably unobservable in practice)
and this singularity should be entirely dependent upon the pore statistics.

These arguments have been formulated only for a highly idealized model of long cylindrical
pores. But they are expected to be of more general validity. An essential point is that there is no
coupling between adjacent B droplets : the distance between them is at least of order L and the
couplings (for the standard models of interfaces, ignoring long range Van der Waals forces) are
exponentially small (~ exp - L/~). Thus different droplets cannot switch on cooperatively.
Our discussion up to now assumed partial wetting (finite 8). In some cases we may have com-

plete wetting of the wall by A (Fig. 2b). The detailed shape of the B droplet near the walls is depen-
dent on weak Van der Waals forces [15], but the curvature R near the pore axis is still very near
D/2. Thus equation holds with 0=0 and the discussion is not qualitatively modified, whenever
the thickness of the wetting layers is much smaller than the pore size D.

3. A gel of thin rods.

Many gels are made of rigid chains, or bundles of chains. If the diameter 2 b of the bundles is
much smaller than ~, the arguments of section II break down.

1) Consider first a single bundle, and call TA and TB the free energy per unit length of bundle,
when it is immersed in a bulk A or B phase. For H = 0 a macroscopic interface cutting a simple
bundle has the zero curvature shape of figure 3a, described by

where the balance of forces along the bundle axis imposes

2) Consider now a droplet of B in a random array of bundles (Fig. 3b). Near each bundle equa-
tion 5 prevails. Far from the bundle we have a weak curvature related to the field by Laplace’s
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Fig. 3. - Interactions between droplets and rods : a) a single rod with an AB interface which is (on the
average) normal to the rod; b) a B droplet growing in an A medium : the droplet is not blocked by a random
array of adverse rods.

equation. One essential difference with figure la is that now the droplets originating from diffe-
rent «pores» are fused = thus the trend towards a cooperative transition is much stronger.

This also shows up if we think of a line dependent growth for a single droplet : starting from the
centre of a « pore » we begin with a spherical droplet of radius r  D but when we reach r - D,
the droplet deforms and tends to surround the adjacent bundle, going through the conformation
of figure 3b. The free energy in zero field H is an increasing function of r at r ~ D and goes down
precipitously for r - D (coalesced droplets). Adding the field we are led to expect an abrupt
transition, and following the argument of reference 2, we do not expect this to be significantly
broadened by macroscopic inhomogeneities in the gel structure.
We discuss the energy balance in more detail in the next section.

4. Two types of invasion.

We now consider a more general porous structure, where the active surface S has a certain fractal
dimensionality df : d f = 2 for normal porous solids, df = 1 for rods, and df = 5/3 for polymer
gels in good solvents [16, 17]. Our earlier discussions led to two types of invasion by the B fluid
under a «field H.
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4.1 CAPILLARY INVASION with droplets which fill only partly the pore space, as in figure 2. This
is associated with fields of order :

where D is now an average pore size.

4.2 FLIP PROCESS where essentially all of the pore space is suddenly invaded (except possibly
for a thin melting sheath of order ~ near the active surface). The corresponding field Hf is defined by

where y = YBS - YAS is the energy per unit area required when the surface S switches from an A
environment to a B environment (y depends on temperature, and on the strength of the surface
fields). S is the fractal area of one pore : it depends on the maximum scale (D ) in the structure,
and on the minimum scale s, according to [17]

The detailed value of e depends on the strength of the random fields, but s  ~. (For qualitative
purposes it is suggestive to take y ~ y and 8 ~ ~).

Let us now compare the two fields

We see that, in the limit of interest (large D), Hf is smaller than He whenever the fractal dimension
d f is smaller than 2 : in this case the flip process will dominate, and will generate a sharp transition.
On the other hand, for df = 2, equation 13 is ambiguous, but the discussion in section 2 suggests
no transition for the specific model chosen (L &#x3E; D).

It may be worthwhile to note that, in a 2 dimensional world, equation 13 would be replaced by

where df (~ 1) is the fractal dimensionality of the pore perimeter. Thus, for d = 2, whenever the
pores are indeed fractal we expect capillary invasion. The droplets trapped in different pores are
uncoupled = we expect no sharp transition for d = 2.

Returning to 3 dimensions, we conclude that, inside a gel, a binary mixture should display a
well defined coexistence curve. Of course, our discussion is restricted to thermodynamic equili-
brium : it is clear that the capillary processes involved in the progression of an AB interface
may lead to strong irreversibility.
The present discussion was restricted to random systems. It is instructive to consider also the

opposite limit of periodic structures (planes or rods) perturbing an AB phase transition. We
analyse this case (for D &#x3E; ~) in a separate publication [18].
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