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Rksuxnk - La technique du "Fast-Field Program" est devenue un outil important pour la prkdiction 
de I'affaiblissement de transmission dans un guide d'onde ockanique. Ce type de modklisation 
a 6th principalement utilise pour des sources harmoniques: cependant les sources impulsionnelles 
et en general toute source ir large bande peuvent 6tre traitkes similairement en effectuant une 
synthbse spectrale. Nous dkveloppons ici, une technique nouvelle qui fournit une solution directe 
en propageant la solution dans le temps. TJous illustrerons la mkthode en considtant un signal 
impulsionnel incident sur l'interface entre deux derni-espaces hornogknes. Une succession d'images 
instantankes de l'impulsion illustre graphiquement les ondes rkflkchies et transmises. 

Abstract - Fast-field programs (FFP's) have emerged as an important tool for predicting transmis- 
sion loss in an ocean waveguide. Such models have been primarily used for time-harmonic sources; 
however, pulses or other broadband sources may be treated by Fourier synthesis. We develop a new 
technique which provides a direct solution by marching the solution forward in time. As an example 
of the method wi? consider a pulse incident on an interface between two homogeneous half-spaces. 
Snapshots of the pulse in time illustrate graphically the effects on the reflected and transmitted 
waves. 

1 - INTRODUCTION 

Models for predicting the sound level due to a time-harmonic source in ocean acoustic waveguides have 
reached a high-level of development. Most problems can then be treated adequately using P E  (parabolic 
equation), NM (normalmode), FFP (fast-field program) or ray/beanl techniques depending on the particular 
approximations which can be made for the problenl under consideration. 

An area of current research is to extend these time-harmonic models to treat broadband or transient source 
functions. A time-domain formulation of the PE was developed by McDonald and Kuperman /l/ and 
applied to both linear and nonlinear problems in ocean acoustics. This approach has been extended by 
Collins /2/ to handle wide-angle problenls with attenuation. The appeal of this approach is that it bypasses 
the extra steps of Fourier decomposing the source and synthesizing the field. 

In this paper, we develop a new formulation of the fast-field program which is marched directly in the time- 
domain. The technique is analogous to that used by Alekseyev and Mikhaylenko /3/ for Lamb's problem 
and extended to inore general seismic problems by Olson, Orcutt and Frazier /4/. The brisic equations and 
numerical algorithm are developed in Section 2 and in Section 3 an example of the method is presented for 
a simple head-wave problern. 

2 - GOVERNING EQUATIONS 

The problem we consider is indicated schelnatically in Fig. 1. We seek the acoustic pressure p(r,  z,t)  as 
a function of depth z, range r ,  and time t due to an isotropic point source s ( t ) .  The material properties 
characterizing the environment qre p ( z )  (density) and c(z) (sound speed). The time-domain FFP is obtained 
by applying a Fourier-Bessel transform (in range) to the wave equation. That is, we write 
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Fig. 1 - Schematic of the ltiodel environment. 

p(r ,O, t )  = 0 r - 

1 1 s ( t )  

which leads to, 

p,(O.=.t) = 0 

a i a  k2 1 
-(--P) - -6- at p 8.z p pc2(z) 

Ptt = -s(t)b(z - z,), 

V .  ( - V p )  - -pit = --6(t - =,,r) 
P pc2(:) r 

outgoing as r + 

together with the boundary and initial conditions: 

Equations (2)-(3) are the governing equations for the time-marched FFP. In order to solve these equations 
numerically, we employ finite elements with "hat" shape functions in depth and finite differences in time. 
The vector of nodal pressures p ( t )  is found to satisfy an equation of the form: 

where M and K are respectively, the global mass and stiffness matrix obtained by summing the contribut.ions 
of lumped elemental mass and stiffness matrices given by, 

For the time cliscretization, we employ the following finite-difference approximation: 

where denotes the vector of nodal pressures at time step j. 

The final step is to evaluate the pressure using the inverse Fourier-Bessel transform. As in the standard 
FFP  we shall take advantage of an FFT to evaluate the integral. In order to obtain a suitable form, we 
replace the Bessel function by its asymptotic approximation and truncate the integral at some finite value. 
Thus we obtain, 

The value of If,,, is chosen to sample the highest spatial frequency.in the problem and the wavenumber 
interval is chosen as Ak = 27r/Rm,, where R,,, is the maximnun range to which the pulse will propagate 
before the calculation is terminated. 



. Direct wave 

Fig. 2 - Schematic of the head-wave problem. 

3 - EXAMPLE: A HEAD WAVE PROBLEM 

As an example, we consider the propagation of an N-shaped pulse in a two half-space problem as indicated 
in Fig. 2. The particular waveform used is given by, 

sin 27r fct - 0.5 s i n 4 ~  f,t for 0 < 1 < l /  fc 
s ( t )  = else 

where f, = 100 Hz is a frequency which characterizes the pulse length. The time evolution of the field is 
plotted in Fig. 3 at  times from 20, 80 and 120 ms. Note that the pressure has been normalized so that the 
maximum is unity and also multiplied by a factor of fi to co~npensate for cylindrical spreading. 

In the initial frame we see a spherical wave since the pulse has not yet contacted the interface. In Fig. 3b 
the pulse is beginning to interact with the lower half-space and generating a transmitted and reflected wave. 
Since the sound speed is higher in the lower half-space, the pulse is longer in the bottom than in the top. 
The transmission coefficient is less than unity so that the transmitted wave shows a decreased amplitude 
relative to the direct wave. The reflected wave shows the critical angle effect causing the level to decay so 
that at steep angles there is virtually no reflected energy. 

Finally, in Fig. 3c we can see the wave in t,he lower half-space has pulled ahead of the direct wave due to 
the greater wave speed in the bottom. The wavefront of the head wave is also clearly visible forming a 
line segment starting from the transmitted wave in the lower half-space touching tangentially the reflected 
wavefront. The head wave is of much lower amplitude than the direct and reflected waves so the scale has 
been changed to highlight it. The time series for the head wave is roughly a convolution of the source time 
series s ( t )  with the Heaviside function, H ( t ) .  Thus for our pulse, the head wave is approximately a Gaussian 
pulse. 

4 - SUMMARY 

We have described a Fast Field Program which is marched directly in the time domain and suitable for 
typical problems in underwater acoustics. The algorithm allows for multiple layers within which the sound 
speed is an arbitrary smooth function of depth. At the interfaces between layers we allow for possible 
discontinuities in material properties. Additional terms have also been included to account for attenuation 
and for advection which is useful for providing a coordinate system which frames the pulse. These extensions 
are discussed in Ref. [G]. 
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Fig. 3 - Snapshots of the pulse for the head wave problexn. 
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