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Abstract

The aim of this note is to prove Theorem 2 in (Andrieu at al., 2007).
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1 Introduction

We consider a system, with state X = (X1, . . . ,Xn) in
Rn described by :

Ẋ = A(t)S X , y = X1 , (1)
where y is the output, S is the left shift matrix defined
as :

S X = (X2, . . . ,Xn, 0)T ,

and A(t) is a known time varying diagonal matrix
A(t) = diag(A1(t), . . . ,An(t)) , where the Ai are as-
sumed to satisfy :

0 < A ≤ Ai(t) ≤ A ∀t . (2)

After selecting d0 = 0 and d∞ arbitrarily in
[
0, 1

n−1

)
,

the system (1) is homogeneous in the bi-limit if and
only if we choose the weights r0 = (r0,1, . . . , r0,n) and
r∞ = (r∞,1, . . . , r∞,n) as :

r0,i = 1 , r∞,i = 1− d∞ (n− i) . (3)
In (Andrieu et al., 2006), a new observer was proposed
for system (1) for the particular case where Ai(t) = 1.
Its design is done recursively together with the one of
an appropriate error Lyapunov function W which is ho-
mogeneous in the bi-limit (see below for the definition
of homogeneity in the bi-limit).

In (Andrieu et al., 2007), we combine this tool with

gain updating to obtain a new high-gain observer. To
do so we use an extra property on W (see (5) below)
which is a counterpart of (Praly, 2003, equation (16)) or
(Krishnamurthy et al., 2003, Lemma A1). The fact that
it can be obtained with also the presence of A is stated
in the following result.

Theorem 2 Given d∞ in [0, 1
n−1 ), let dW be a posi-

tive real number satisfying dW ≥ 2 + d∞ and B =
diag(b1, . . . , bn) with bj > 0. If (2) holds, there exist a
vector field K : R → Rn which is homogeneous in the
bi-limit with associated weights r0 and r∞, and a positive
definite, proper andC1 functionW : Rn → R+, homoge-
neous in the bi-limit with associated triples (r0, dW ,W0)
and (r∞, dW ,W∞), such that the following holds.

(1) The functions W0 and W∞ are positive definite and
proper and, for each j in {1, . . . , n}, the function ∂W

∂ej

is homogeneous in the bi-limit with approximating
functions ∂W0

∂ej
and ∂W∞

∂ej
.

(2) There exist two positive real numbers c1 and c2 such
that we have, for all (t, E) in R× Rn,
∂W

∂E
(E) A(t) (S E +K(e1)) (4)

≤ −c1
(
W (E) +W (E)

dW +d∞
dW

)
,
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∂W

∂E
(E) BE ≥ c2W (E) , (5)

The proof of this Theorem was omitted in (Andrieu et
al., 2007) due to space limitation and is given in Section
3. Section 2 gives some prerequisite needed to address
this proof.

2 Some prerequisite

The proof of this Theorem needs some prerequisite. In-
deed, we recall the definition of homogeneity in the bi-
limit, introduced in (Andrieu et al., 2006), and give some
related properties.

Given a vector r = (r1, . . . , rn) in (R+/{0})n, we define
the dilation of a vector x in Rn as

λr � x = (λr1 x1, . . . , λ
rn xn)T .

Definition 1 (Homogeneity in the 0-limit)
• A continuous function φ : Rn → R is said homoge-

neous in the 0-limit with associated triple (r0, d0, φ0),
where r0 in (R+/{0})n is the weight, d0 in R+ the
degree and φ0 : Rn → R the approximating function,
respectively, if φ0 is continuous and not identically
zero and, for each compact set C in Rn and each
ε > 0, there exists λ∗ such that we have :

max
x∈C

∣∣∣∣φ(λr0 � x)
λd0

− φ0(x)
∣∣∣∣ ≤ ε ∀λ ∈ (0, λ∗].

• A vector field f =
∑n
i=1 fi

∂
∂xi

is said homogeneous
in the 0-limit with associated triple (r0, d0, f0), where
f0 =

∑n
i=1 f0,i

∂
∂xi

, if, for each i in {1, . . . , n}, the
function fi is homogeneous in the 0-limit with associ-
ated triple (r0, d0 + r0,i, f0,i) 1 .

Definition 2 (Homogeneity in the ∞-limit)
• A continuous function φ : Rn → R is said ho-

mogeneous in the ∞-limit with associated triple
(r∞, d∞, φ∞) where r∞ in (R+/{0})n is the weight,
d∞ in R+ the degree and φ∞ : Rn → R the approxi-
mating function, respectively, if φ∞ is continuous and
not identically zero and, for each compact set C in Rn
and each ε > 0, there exists λ∗ such that we have :

max
x∈C

∣∣∣∣φ(λr∞ � x)
λd∞

− φ∞(x)
∣∣∣∣ ≤ ε ∀λ ∈ [λ∗,+∞) .

• A vector field f =
∑n
i=1 fi

∂
∂xi

is said homogeneous in
the ∞-limit with associated triple (r∞, d∞, f∞), with
f∞ =

∑n
i=1 f∞,i

∂
∂xi

, if, for each i in {1, . . . , n}, the
function fi is homogeneous in the ∞-limit with asso-
ciated triple (r∞, d∞ + r∞,i, f∞,i).

Definition 3 (Homogeneity in the bi-limit)
A continuous function φ : Rn → R (or a vector field f)

1 In the case of a vector field the degree d0 can be negative
as long as d0 + r0,i ≥ 0, for all 1 ≤ i ≤ n.

is said homogeneous in the bi-limit if it is homogeneous
in the 0-limit and homogeneous in the∞-limit.

The following propositions are proved, or are direct con-
sequences of results, in (Andrieu et al., 2006).

Proposition 1 Let η and µ be two continuous homoge-
neous in the bi-limit functions with weights r0 and r∞,
degrees dη,0, dη,∞ and dµ,0, dµ,∞, and continuous ap-
proximating functions η0, η∞, µ0, µ∞.

(1) The function x 7→ η(x)µ(x) is homogeneous in the
bi-limit with associated triples (r0, dη,0 +dµ,0, η0 µ0)
and (r∞, dη,∞ + dµ,∞, η∞ µ∞).

(2) If the degrees satisfy dη,0 ≥ dµ,0 and dη,∞ ≤ dµ,∞
and the functions µ, µ0 and µ∞ are positive definite
then there exists a positive real number c satisfying :

η(x) ≤ c µ(x) , ∀ x ∈ Rn .

Proposition 2 If φ : Rn → R and ζ : R → R are
homogeneous in the 0-limit functions, with weights rφ,0
and rζ,0, degrees dφ = rζ,0 and dζ in R+, and approxi-
mating functions φ0 and ζ0, then ζ ◦φ is homogeneous in
the 0-limit with weight rφ,0, degree dζ , and approximat-
ing function ζ0 ◦ φ0. The same result holds for the cases
of homogeneity in the∞-limit and in the bi-limit.

Proposition 3 Let φ : R → R be a bijective homo-
geneous in the 0-limit function with associated triple(
1, d0, φ0 x

d0
)

with φ0 6= 0 and d0 > 0. Then, the inverse
function φ−1 : R → R is homogeneous in the 0-limit

function with associated triple
(

1, 1
d0
,
(
x
φ0

) 1
d0

)
. The

same result holds for the cases of homogeneity in the
∞-limit and in the bi-limit.

Proposition 4 If the function φ is homogeneous in the
0-limit with associated triple (r0, d0, φ0), then the func-
tion Φi(x) =

∫ xi

0
φ(x1, . . . , xi−1, s, xn) ds is homo-

geneous in the 0-limit with associated triple (r0, d0 +
r0,i,Φi,0), where the approximating function is given by

Φi,0(x) =
∫ xi

0
φ0(x1, . . . , xi−1, s, xn) ds .

The same result holds for the cases of homogeneity in the
∞-limit and in the bi-limit.

Proposition 5 Suppose η and µ are two functions ho-
mogeneous in the bi-limit, with weights r0 and r∞, de-
grees d0 and d∞, and such that the approximating func-
tions, denoted η0 and η∞, and, µ0 and µ∞ are continu-
ous. If µ(x) ≥ 0 and

{ x ∈ Rn \ {0} , µ(x) = 0 } ⇒ η(x) > 0 ,
{ x ∈ Rn \ {0} , µ0(x) = 0 } ⇒ η0(x) > 0 ,
{ x ∈ Rn \ {0} , µ∞(x) = 0 } ⇒ η∞(x) > 0 ,

then there exists a strictly positive real number k∗ such
that, for all k ≥ k∗, the functions η(x) + k µ(x), η0(x) +
k µ0(x) and η∞(x) + k µ∞(x) are positive definite.
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3 Proof of Theorem 2

The proof we propose here is an adaptation of the
one in (Andrieu et al., 2006). It is done by induc-
tion. To do so we use notations with an index showing
the value from which we start counting. For instance
Ei = (ei, . . . , en)T denotes a state vector in Rn−i+1. Si
is the left shift matrix of dimension n− i+ 1, i.e.

SiEi = (ei+1, . . . , en, 0)T .

Proposition 6 Let dW be a positive real number satis-
fying dW ≥ 2 + d∞. Suppose there exist a bounded con-
tinuous diagonal matrix function Ai+1, a homogeneous
in the bi-limit vector field Ki+1 : R→ Rn−i, and a pos-
itive definite, proper and C1 function homogeneous in
the bi-limit Wi+1 : Rn−i → R+, with associated triples
(r0, dW ,Wi+1,0) and (r∞, dW ,Wi+1,∞) such that the fol-
lowing holds :

(1) the functionWi+1,0 andWi+1,∞ are positive definite
and proper and for all j in [i + 1, n], the functions
∂Wi+1
∂ej

are homogeneous in the bi-limit with approx-

imating functions ∂Wi+1,0
∂ej

and ∂Wi+1,∞
∂ej

.
(2) There exist positive real numbers c, bi+1, bn such

that for all Ei+1 in Rn−i :
n∑

j=i+1

bj
∂Wi+1

∂ej
(Ei+1) ej ≥ cWi+1(Ei+1) , (6)

∂Wi+1

∂Ei+1
(Ei+1)Ai+1(t) (Si+1Ei+1 +Ki+1(ei+1)) (7)

≤ −c
(
Wi+1(Ei+1) +Wi+1(Ei+1)

dW +d∞
dW

)
Then, for any positive real number bi, and any continu-
ous positive function αi, bounded away from 0, there ex-
ist a homogeneous in the bi-limit vector field Ki : R →
Rn−i+1, and a positive definite, proper and C1 function
Wi : Rn−i+1 → R+ homogeneous in the bi-limit with as-
sociated triples (r0, dW ,Wi,0) and (r∞, dW ,Wi,∞) such
that the following holds :

(1) The functions Wi,0 and Wi,∞ are positive definite
and proper and for all j in [i, n], the functions ∂Wi

∂ej

are homogeneous in the bi-limit with approximating
functions ∂Wi,0

∂ej
and ∂Wi,∞

∂ej
.

(2) There exists a positive real number c̄ such that for
all Ei in Rn−i+1,

n∑
j=i

bj
∂Wi

∂ej
(Ei) ej ≥ c̄Wi(Ei) . (8)

∂Wi

∂Ei
(Ei) Ai(t) (SiEi +Ki(ei)) ≤ (9)

−c̄
(
Wi(Ei) +Wi(Ei)

dW +d∞
dW

)
where Ai is the diagonal matrix diag (αi αiAi+1).

Proof : The proof is divided in three steps.

1. Construction of the Lyapunov function. Con-
sider the function qi : R→ R defined as 2

qi(s) = s+ s
r∞,i+1

r∞,i .

This function is C1, strictly increasing and onto. Also,
with

r∞,i + d∞
r∞,i

≥ 1 , i ∈ {1 . . . , n} ,

it is homogeneous in the bi-limit with associated triples

(1, 1, s) and (r∞,i, r∞,i+1, s
r∞,i+1

r∞,i ). Its derivative q′i, is
also homogeneous in the bi-limit with approximating

functions 1 and r∞,i+1
r∞,i

s
d∞

r∞,i . Using Proposition 3, we
know that the inverse function q−1

i of qi is C1 and homo-
geneous in the bi-limit with associated triples (1, 1, s)

and (r∞,i+1, r∞,i, s
r∞,i

r∞,i+1 ). Furthermore, since we have
dW − 1 ≤ dW−r∞,i

r∞,i
, by picking the function ζ as

ζ(s) = sdW−1 + s
dW−r∞,i

r∞,i ,

we obtain from Proposition 2 that the function :

s 7→ q−1
i (s)dW−1 + q−1

i (s)
dW−r∞,i

r∞,i (10)
is C1 and homogeneous in the bi-limit with associ-
ated triples (1, dW − 1, sdW−1) and (r∞,i+1, dW −

r∞,i, s
dW−r∞,i

r∞,i+1 ). Furthermore, since dW ≥ 2 + d∞, its
derivative is homogeneous in the bi-limit with approxi-
mating functions :

(dW − 1)|s|dW−2 ,
dW − r∞,i
r∞,i+1

|s|
dW−r∞,i+1−r∞,i

r∞,i+1 .

Let Wi : Rn−i → R+ be defined as 3

Wi(Ei) = Wi+1(Ei+1) + σi Vi(`i ei, ei+1) , (11)
with

Vi(s, ei+1) =

s∫
q−1

i
(ei+1)

vdW−1 − q−1
i (ei+1)dW−1dv

+

s∫
q−1

i
(ei+1)

v
dW−r∞,i

r∞,i − q−1
i (ei+1)

dW−r∞,i
r∞,i dv ,

where σi and `i are positive real numbers that will be
defined later. Wi is positive definite and proper. Also, as
1 ≥ r∞,i, it is homogeneous in the bi-limit with weights
r0 and r∞, and degrees dW,0 = dW,∞ = dW . The func-
tion given in (10) as well as its derivative being homo-
geneous in the bi-limit, we get with Proposition 4 that
the functions ∂Wi

∂ej
are homogeneous in the bi-limit with

approximating functions ∂Wi,0
∂ej

and ∂Wi,∞
∂ej

. Hence point

2 Recall that we have : r∞,i + d∞ = r∞,i+1 ≤ 1.
3 Compared to (Andrieu et al., 2006), σi is a new parameter
introduced to obtain inequality (8).
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1 of Proposition 6 is established.
2. Properties of the Lyapunov function. Let J :
Rn−i × R→ R be the function defined as :
J(Ei+1, s) =

bi+1
∂Vi
∂ei+1

(s, ei+1) ei+1 + bi
∂Vi
∂s

(s, ei+1) s .

The functions Wi+1 and J are homogeneous in the bi-
limit with associated weights 1 and r∞,i for s and 1 and
r∞,j for ej , j ≥ i + 1, and degrees dW,0 = dW,∞ = dW .
By assumption Wi+1 is positive definite and the same
holds for its homogeneous approximations in the 0-limit
and in the∞-limit and we have :

J(0, s) = bi

[
|s|dW + |s|

dW
r∞,i

]
> 0 ∀s 6= 0 .

It follows that the assumptions of Proposition 5 are satis-
fied with µ = Wi+1 and η = J . Hence, with c given in (6),
there exists a positive real number σi such that the func-
tions cWi+1,0 +σiJ0, cWi+1,∞+σiJ∞ and cWi+1 +σiJ
are continuous and positive definite in (Ei+1, s). But
then, from Proposition 1.2, there exists a positive real
number c̄ satisfying :

1
c̄ [cWi+1 + σiJ ] ≥ Wi .

Since assumption (6) gives readily, for all Ei in Rn−i+1,
i∑

j=n

bj
∂Wi

∂ej
(Ei) ej
≥ cWi+1(Ei+1) + σi J(Ei+1, `i ei) ,

we have established inequality (8) of Proposition 6.
3. Construction of the vector field Ki. Given a real
number `i, we define the vector field Ki as :

Ki(ei) =

(
−qi(`iei)

Ki+1(qi(`iei))

)
With Propositions 1 and 2 and the properties we have
established from qi, it is a homogeneous in the bi-limit
vector field.

We show now that by selecting `i large enough we can
satisfy (9). We have :
∂Wi

∂Ei
(Ei) Ai(t) (Si(Ei) +Ki(ei)) = (12)

αi(t) [T2(t, Ei+1, `iei) + `i T1(Ei+1, `iei)] .
with the notations :

T1(Ei+1, s) = σi
∂Vi
∂s

(s, ei+1)(ei+1 − qi(s))

T2(t, Ei+1, s) =
[
∂Wi+1

∂Ei+1
(Ei+1) + σi

∂Vi
∂Ei+1

(s, ei+1)
]

×Ai+1(t) (Si+1Ei+1 +Ki+1(qi(s)))
But with (7), we get
T2(t, Ei+1, s) =

−c
(
Wi+1(Ei+1) +Wi+1(Ei+1)

dW +d∞
dW

)
+
∂Wi+1

∂Ei+1
(Ei+1)Ai+1(t)[Ki+1(qi(s))−Ki+1(ei+1)]

+σi
∂Vi
∂ei+1

(s, ei+1)Ai+1,i+1(t)[ei+2 +Ki+1,i+2(qi(s))] .

Then, the function Ai+1 being bounded, say by cA, we
have :

T2(t, Ei+1, s) ≤ T3(Ei+1, s) (13)
with the notation,
T3(Ei+1, s) =

−c
(
Wi+1(Ei+1) +Wi+1(Ei+1)

dW +d∞
dW

)
+cA

n∑
j=i+1

∣∣∣∣∂Wi+1

∂ej
(Ei+1) (Ki+1,j(qi(s))−Ki+1,j(ei+1))

∣∣∣∣
+cA

∣∣∣∣σi ∂Vi∂ei+1
(s, ei+1)[ei+2 +Ki+1,i+2(qi(s))]

∣∣∣∣ .
The functions T1 and T3 are homogeneous in the bi-limit
with weights r0 and r∞ for Ei+1 and 1 and r∞,i for s, de-
grees dW and d∞+dW , continuous approximating func-
tions T1,0 and T1,∞, and T3,0 and T3,∞, with, in partic-
ular :

T1,0(Ei+1, s) = σi (ei+1 − s)
(
sdW−1 − edW−1

i+1

)
,

T1,∞(Ei+1, s) = σi (ei+1 − s
r∞,i+1

r∞,i )

×

(
s

dW−r∞,i
r∞,i − e

dW−r∞,i
r∞,i+1

i+1

)
.

As the function q−1
i is strictly increasing and onto, the

function ∂Vi

∂s (s, ei+1) has a unique zero at qi(s) = ei+1

and has the same sign as qi(s)− ei+1. It follows

T1(Ei+1, s) ≤ 0 , ∀ Ei ∈ Rn−i+1 ,

T1(Ei+1, s) = 0 ⇔ qi(s) = ei+1

and similarly for the approximating functions T1,0 and
T1,∞. Since ∂Vi

∂ei+1
(s, ei+1) is zero for qi(s) = ei+1 and

Wi+1 is positive definite, we get
{Ei+1 6= 0 , T1(Ei+1, s) = 0} ⇒ T3(Ei+1, s) < 0 .

With Proposition 2, the same holds for the approximat-
ing functions. The assumptions of Proposition 5 being
satisfied, there exists a positive real number `∗i such that,
for all `i ≥ `∗i the function T3 + `i T1 and its approxima-
tions are continuous and negative definite in (Ei+1, s).

But then Proposition 1.2, with η = Wi +W
dW +d∞

dW
i and

µ = − (T3 + `i T1), guarantees the existence of a posi-
tive real number number c̄ satisfying :
− 1
c̄ [T3(Ei+1, `iei) + `i T1(Ei+1, `iei)] ≥

Wi(Ei) +Wi(Ei)
dW +d∞

dW .

With (12) and (13), and since αi is bounded away from 0,
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we have proved inequality (9) and completed the proof.
2

To construct the error Lyapunov function W and the
vector field K, which prove Theorem 2, it is sufficient to
iterate the construction proposed in Proposition 6 start-
ing from

r∞,n = 1 , An(t) = An(y)
An−1(y) ,

Kn(en) = −en − e
r∞,n+d∞

r∞,n
n , Wn(en) = |en|dW ,

where `n is any strictly positive positive real number.
With (2), we get :
A

A
≤ An(y)

An−1(y)
≤ A

A
, bn

∂Wn

∂en
(En) en = bn dW |en|dW ,

and
∂Wn

∂en
(en) An(y)

An−1(y)Kn(en)

= − dW An(y)
An−1(y)

(
Wn(en) +Wn(en)

dW +d∞
dW

)
,

≤ − dW A

A

(
Wn(en) +Wn(en)

dW +d∞
dW

)
.

Hence the assumptions of Proposition 6 are satified with
i+ 1 = n.

We apply this Proposition recursively for i + 1 ranging
from n to 2 with, for i = n − 1, . . . , 2, αi = Ai

Ai−1
which

lies in [ A

A
, A

A
], and α1 = A1 ≥ A. In this way, we get

Ai = diag
(

Ai

Ai−1
, . . . , An

Ai−1

)
∀i ∈ {n− 1, . . . , 2} ,

A1 = diag (A1, . . . ,An) .

As a last comment, we remark that the idea of design-
ing an observer recursively starting from xn and going
backwards towards x1 is not new. It can be found in
(Gauthier and Kupka, 2001, Lemma 6.2.1), (Praly and
Jiang, 1998), (Shim and Seo, 2006) for instance.
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