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RESONANT DYNAMICAL REGIMES IN A LONG JOSEPHSON JUNCTION MODULATED BY A 
LARGE-SCALE SPATIAL INHOMOGENEITY 

J.C. FERNANDEZ and G. REINISCH 

Observatoire de Nice, BP. 139, F-06003 Nice Cedex, France 

R é s u m é - Dans une jonction Josephson longue, spatialement inhomogène, on peut obtenir des régimes 
dynamiques périodiques et stables pour un fluxon, sous l'action d'un champ externe oscillant et d'un faible 
courant. Ces régimes montrent une marche de voltage particulière sur la caractéristique courant-tension. 
Une telle signature suggère de faire une vérification expérimentale de ces accrochages de phase. 

A b s t r a c t - A fluxon, in a long and spatially inhomogeneous Josephson junction, undergoes stable periodic 
dynamical regimes, under the action of an external field and a weak bias current. These regimes show a 
special step in the I-V characteristics. Such an effect suggests the experimental verification of these phase-
lock regimes. 

1 - P R E L I M I N A R Y ON J O S E P H S O N E F F E C T 

Physically, a Josephson junction is a couple of superconductor metal layers built as a "sandwich" about thin layer 
of insulator (see figure 1). With respect to the observed phenomena, a Josephson junction is a system in which 
a quantum-mechanical quantity like the phase difference <j> of the wave functions describing the electrons, has a 
macroscopic meaning; this phase <j> is related to the current / and to the voltage V. 

The two basic Josephson equations are: 

(1) 

(2) 

where / is the tunnel suppercurrent, 1$ is the maximum Josephson current depending on the junction geometry, the 
material and the temperature, t is the time, <j>o is a flux quantum equal to h/2e (~ 2.10" I6V.s.), and V is the voltage 
(i.e. the potential difference across the junction). Equations (I) and (2) describe the dynamics of the so-called short 
junctions (this will be precised below). 

Even with V = 0 which is equivalent to d<f>/dt = 0, we may have <j> = Cte ^ 0, which corresponds to a non zero 
current. This presence of such a current at zero voltage is called the direct Josephson effect. 

Moreover, if V = Cte ^ 0, we obtain an alternative supercurrent whose frequency is close to 48iM HzjfiV. This 
corresponds to the ac Josephson effect. 

Introducing- the Josephson penetration length 

(3) 

with d = Ajr,i + A/,2 + t* in which \u represent the London depth I J of the ith superconductor and t" the barrier 
height, and coupling the Maxwell equations with the Josephson equations give 

(4) 

where R$ is the quasi particle resistance. 
In the static case, <p obeys 

and if 4> < 1, then <j>(x) = Aex/X> + Be" 1 /* ' . 
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Fig. 1 - Typical geometry of a Josephson junction (here an overlap junction). Typical material is Sn - Sn,O, - 
Sn.Typica1 dimensions are S - 4000A; AL; - 500A; t* - 10 - 40A; L - lmm; L/Xj - 5 - 40; W/Xj - 20pm. The 
tenlperature is around 4OK, E few % of c and wj  - lo9  - 10llHz. After S. Pagano. 
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Fig. 2a - Typical experimental I-V characteristic of a Josephson junction. I. is the Josephson critical current. The 
sample is Nb - NbxOy - P b  junction of overlap geometry. After S. Pagano. 
Fig. 2b - Typical low voltage region of the I-V characteristic of a Josephson junction. The sample is the same as for 
Figure 2. Six ZFSs are visible. After S. Pagano. 

This shows that A j  is the typical distance over which the phase changes. 
Taking into account this typical length, we get a more precise definition of a "short" and a "long" junction, 

corresponding respectively,to a junction whose length is respectively smaller or bigger than Xj. 
If we also introduce the Swihart velocity 5 = and the plasma frequency wj = 5, and if we normalise the 

lengthes to X j  and the times to wrl-, equation (4) becomes 

(btt - dzx + sin4 = -adt , 
which is a damped normalized sine-Gordon equation. 

2 - PRELIMINARY ABOUT SINE GORDON PHYSICS 

The most interesting solution of the sine-Gordon equation 



with respect to Josephson physics is the kink: 

where a defines the polarity. Depending on the sign of u we have a kink ( a  = -1) or an antikink (o = 1). The 
Lorentz invariance of the equation (6) allows a family of one parameter solutions deduced from (7) whose velocity v 

is limited to 1 

1 
( = r ( z  - vt) ; 7 = -- 

v c - 7  (8b) 

We emphasize that the direct proportionality between tlie voltage V and +r implies a proportionality of the voltage 
on the product av.  Linking the Josephson physics to the sine Gordon one, we point out that, in term of soliton Aj  
corresponds to  the soliton width. The equation (6) can be derived from an harniltonian density 

1 1  
h = - & t - & t  I - c o s 4  , 

2 2 
and we can calculate the energy corresponding to a soliton 

3 - ADDING AN INHOMOGENEITY TO THE JUNCTION 

hi the case of a large scale inhomogeneous long Josephson junction, the partial differential equation describing the 
phase can be written like 

where V(x) represent the spatial inhomogeneity or what is often called here below the potential well. 

We have shown 12] that, if t l ~ c  potential well is smooth enough, i.e. if its typical scale is large con~pared to the 
soliton width, the energy of the soliton in.the low energy limit V <( I can be written as 

where Y represent the soliton position. If, in addition we suppose that the soliton behaviour is restricted to non 
relativistic dynamic we get 

1 .  
H - -8y2  f V(Y) .- Cte = E , 2 (13) 

which correspond to a Newton law. 
If we take a potential well like X z Z  we recover for tlie non-relativistic soliton the dynamic of an harmonic oscillator. 
Assuming now that we allow relativistic dynamics we have shown 13] that the modulated kink like solution of 

equation ( I  1) can be written 

d (z , t )  = 4tan-'ezp(-ak(t)(z - Y(t))} , 
with 
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4 - PHENOMENOLOGICAL DESCRIPTION 

Assume first an homogeneous finite long Josephson junction with free ends, i.e. with boundary conditions 

If we consider a kit& with an initial velocity vo in such a junction without any damping (which is an unrealistic case) 
the dynamics correspond to  a shuttle regime at  velocity vo. Each time the kink reaches an end it is changed into a 
reflected antikink (i.e. its polarity a  changes its sign) which moves at  velocity - v o  In this periodic regime we get a 
non-zero voltage (averaged over the time)since the product avo remains constant. We must mention also that each 
time the kink or antikink reaches an end of the junction, it emits an electromagnetic signal. The frequency we of this 
emission basically depends on the velocity vo of the kink and the length L  of the junction: we = vo/2L.  
Considering now the same initial condition in the same junction but taking into account the resistive effect (i.e. the 
damping) of the junction, the kink will begin to  experience a shuttling regime with a decreasing velocity, until it is 
stopped. So, in a finite time we will recover a static kink and then the average voltage will be zero. We must point 
out another possible hehaviour for the kink; the reflection at  one end is equivalent to a collision between the real kink 
and a virtual antikink, and we know 14] that in presence of damping it exists a threshold value of the velocity of the 
colliding kink, under which the kink and the (virtual) antikink will be bunched together, giving birth to a breather 
which will also be damped, giving itself birth to phonons which finally damp out. The value of this threshold depends 
only on the damping coefficient a (see equation 5). 

Considering now a kink at  rest as the initial condition, in a junction without damping, but biased by a direct 
current (dc), the soliton will be accelerated and will reach its limit velocity which is 1 in the normalized units. We 
then recover a shuttle regime giving voltage and emission. 

If we now consider both damping and bias, the soliton will reach a limit velocity v1 which is the signature of the 
energy balance between the input energy trough the dc term Id, and the output energy through the damping term. 
This linlit velocity reads: 

We get also in this case a shuttling regime giving voltage and emission at  frequency q = v l / 2 L .  
Consider now an inhomogeneous junction, and more precisely a potential well Like V(x) = a(1  - sechbx) with 

b << 1 aud L  >> 1. This system has an  eigen frequency Rb due to the presence of the potential well. Indeed, linearizing 
tile solution around a kink, we can extract an eigenvalue problem !51. Suppose we start with a soliton at  rest at  the 
bottom of the well and we add all external rf field, the equation is then 

We have then tile possibility to excite the soliton with the external field. If fl # Rb we recover smaU "internal" 
oscillation of the kink. The slope of the kink oscillates but the kink remains located about the bottom of the well. 

If we choose R closer to  the value fib we recover, in addition to  this "internal" oscillations, a small amplitude 
oscillation of the position of the kink in the potential well. We have transformed a part of the external energy into 
kinetic energy for the soliton. 

If now R = Rb we are in a resonnance situation and most of the external input energy is transformed into kinetic 
energy for the kink. The kink experiences large amplitude oscillations. It may then happen (depending on the depth 

of the pote~~t ia l  well) that the kink goes out of the well and begin to shuttle in the junction, being reflected in an 
antikink a t  the end. There is a competition between this shuttle driven-damped regime and the resonnant-trapped 
regime. In order to  be sure that the kink movement is not stopped in the homogeneous part of the junction by the 
damping we also add a direct current to the equation (18). 

The question arising now: does a periodic regime exist, when taking into account this competition ? 
We have numerically shown that for given values of the direct current (which is taken as the control parameter) 

we obtain such regimes as limit cycles for the corresponding dynamical system (see fizure 3) 16].  
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Fig. 3 - The asymptotic phase-locked cycle obtained either by a direct numerical simulatioll of the PDE (20) or 
by tlte numerical solution of the ODE system (21-25) where: L = 40; a = 20; b = 0.095; E = 0.1; 0 = 0.049; a = 
0.01; Id, = 0.02. The cycle was obtained at  time t up to 20000. 

5 - MODELISATION OF THE PARTIAL DIFFERENTIAL EQUATION 

Inserting the ansatz (15) into the following PDE 

and projecting the resulting equation on the soliton Goldstone mode, then noting that  the k oscillations are at  11igll 
frequency while the Y ones are at  low frequency, which allows to arverage the motion of k over a period of Y ,  we get 
the following ordinary differential equation (ODE) for the dynamics of the kink-like solution i31: 

with 

One can recognize in equation (20) both (dc and ac) driving terms whose effect depends on the sign of a, the 
damping term slowing down the kink and the last term wllid~ describes the newtonian action of the potential well 
on the particle (see equation 13). 

Actually t h i s ' 0 ~ ~  describes the soliton dynamics governed by equation (19) except for the boundary conditions 
which we still have to  modelise. As said before, free ends boundary conditions for the PDE (19) described by equation 
(16) can be viewed like collision between a kink and a virtual soliton of opposite polarity. We know that there exists 
a phase shift, an additionnal loss of energy, a change of polarity and a possible death of the soliton due to a trapping 
between the particle and its virtual anti-particle during the reflexio~~ 14]. The phase shift is given by 

The lost energy during the reflexion is 

Tlle change of polarity consists only on replacing a by -a. 
Finally the soliton can be killed when its velocity is less than uth defined by 
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Nunlerical simulations have been done with this ODE (20-21) and the boundary conditions nlodelized by (22-24). 

They show extremely good agreement with what is nunlerically obtained by the PDE (19) i61. It is very surprising 
to see that choosing only one degree of freedom, namely I', we recovor the dynamic described by the PDE wluch 
depends on an infinite degrees of freedom. This is probably related to the very lug11 stability of the kink solution 
of sine Gordon, wluch admits an  adiabatic, WKB-like modulation of its parameters when the properties of the 
propagating medium slowly change. 

6 - SOME INTERESTING PROBLEMS 

If we vary the control parameter Id=, keeping dl other parameters constant, it seems that we obtain a route to chaos 
through period doubling. It is interesting to see that the "soliton" then behaves chaotically in time, still preserving 
its spatial coherence [7] 

Fig. 4 - Typical I-V cl~aracteristic obtained for phase-locked regimes. The dashed curve corresponds to the unper- 
turbed ZFS. 

Another interesting problem concerns the possible phase-lock of an  homorreneous junction driven with an rf 
external field without any bias ['I. This shows cyles of half the external period giving a possibility of a frequency 
doubler. We can for example imagine an array ['I of such coupled junctions which could both increase the emitted 
power and the output frequency by successive doubling. 

The phase lock in an  inhomogeneous junction and its signature on the I-V characteristic (see figure 4) suggest 
to build up the experiment in order to check this effect. Building up the potential well which is a controlled 
spatial modulation of the critical current does not seem an easy task, neither to check a posteriori the shape of tlus 
n~odulation. 
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thank our colleagues N. Flytzanis, M.J. Goupil, R. Grauer, S. Pagano, N.F. Pedersen, S. Pnevmatikos and M. Taki 
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