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Résumé - La méthode de Langevin s'est présentée comme un cadre intuitif et 
phénoménologique pour descrire les phénomènes dissipatifs nucléaires tel que 
la reaction d'ions lourds et la désintégration fissionique. Nous présentons 
une méthode d'intégrer directement l'équation de Langevin avec la force de 
Langevin simulée par ordinateur. Quelques examples sont donnés en cas du 
mouvement libre de la particule Brownian et de la fission nucléaire comme 
une diffusion par-dessus la barrière. 

Abstract - Langevin approach is proposed as an intuitive phenomenological 
framework to describe nuclear dissipative phenomena such as heavy ion 
reactions and fission decay. We present a method to integrate Langevin 
equation directly with the computer-simulated langevin force. Examples are 
given for a free motion of Brownian particle and for nuclear fission as a 
diffusion over a barrier. 

1. Introduction 
Deep inelastic collisions between heavy ions have shown dissipative phenomena, 

for example, dampings of the relative motion, and hence have driven nuclear physi
cists to interest themselves in non-equilibrium statistical theories. Slow collec
tive degrees of freedom with a heavy mass are looked as a Brownian particle and fast 
nucleon degrees of freedom as a heat bath. This picture relies upon.the basic 
assumption that an equilibration time of nucleon degrees of freedom is much shorter 
,than a typical time scale of collective motions, i.e., the time over which collective 
variables change significantly. Many efforts have been devoted to clarify a validity 
of the assumption and to derive physical parameters describing dissipative collective 
motions, for example friction and diffusion coefficients, from the microscopic 
Hamiltonians. This is out of the present talk and one can refer to extensive 
reviews /l/. The subject of the present talk is concerning how to describe nuclear 
dissipative dynamics. So far we have employed the classical trajectory equation or 
Fokker-Planck equation. It is really bizarre that we have never utilized Langevin 
equation, which is more intuitive than Pokker-Planck one. Actually the former is 
more general than the latter one. As will be briefly discussed, it can describe 
non-Markovian process, which is likely in nuclear dissipative dynamics because 
collective masses are not so large as in the Brownian particle floating on fluid, 
compared with that of particles in the heat bath. The purpose of the present talk is 
to propose Langevin approach for a description of nuclear dissipative phenomena. In 
addition to its intuitiveness and its generality, it has also a practical advantage 
to accommodate many collective degrees of freedom straightforwardly. First we will 
remind the equivalence of Langevin and Fokker-Planck equations under certain condi
tions. Next we will develop the iteration method to solve stochastic equations 
directly with the computer simulated Langevin force. Finally we will discuss about 
results obtained by numerical calculations. 
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2. Reminder of Langevin and Fokker-Planck Equations: Equivalence 
In order to clarify the relation between Langevin and Fokker-Planck equation, 

we will derive Fokker-Planck equation starting from Langevin equation /2/. Following 
Langevin, a Brownian particle floating on a fluid, i.e., a slow motion with heavy 
mass exerted frequently by random force is described by the equetion, 

,where u is a velocity of the Brownian particle with mass m, y is a friction coeffi- 
cient, and R(t) is a random force which is plausibly assumed to be Gaussian due to 
a large number of exertibns, with the following properties; 

The property (b) means no time-correlation among random forces and is essential to 
derive Fokker-Planck equation as will be seen in the following. In other words, 
Fokker-Planck equation applies only to Markovian processes. 

We start with (stochastic) Lioville equation which describes the conservation 
of probability, i.e., with the continuity equation for probability, 

d ,where u(t) = - u(t) and f is a distribution function in velocity space. Inserting 
dt 

Eq. (2.1) into Eq. (2.2) , we obtain 

a f(u,t) = Q(u,~)*~(u,~) 
at 

a 1 Q (u, t) = - (y-u - - R) a~ rn 

Integrating Eq.(2.3) over t-t+At, where At is much larger than the time scale of the 
random force ~ ( t )  and still smaller than that of the macroscopic motion of the 
Brownian particle. 

Taking an average over all possible variations of R(t) with the properties (a) and 
(b) , 

where IR = m.y.kT/Tl with Boltzmann constant k and the temperature of heat bath T 
-. 

from the fluctuation-dissipation theorem as will be simply discussed below. After 
integration, we take the limit At + 0. We can readily see that the first term of 
the second equation and the higher order terms will vanish with the aid of the 
Gaussian assumption. Hence we have 

,where d denotes a distribution function of slowly varying argument, whereas f in 
Eq's(2.2) and (2.3) is that of rapidly varying stochastic variable. Eq.(2.4) is the 
diffusion equation in velocity space, i.e., Fokker-Planck equation. 



Here we note that Eq.(2.4) has a solution of the Boltzmann distribution as a 
stationary solution, i.e., the formula IR = msy.kT/r guarantees the correct thermal 

equilibration of the Brownian particle with the heat bath. This is seen more direct- 
1 2  

ly by calculating a mean kinetic energy -m<u > with Langevin equation (2.1). A 
solution of Eq. (2.1) is 2 

Again using the property (b), 

2 -2Y'(t-to) IT01 -2y' (t-to) 
< u > = u  R 

oSe + -  [l-e I .  
Y-m 

Then 

If we are interested in a motion of Brownian particle in an external force 
field, we start with a coupled Langevin equation, 

where q and p is a coordinate of Brownian particle and its conjugate momentum, and V 
is a usual conservative potential. We can repeat the same procedure as in the case 
of the original Langevin equation, starting with Lioville equation in phase space 
and using the properties of random force (a) 'and (b). We will obtain Fokker-Planck 
equation in phase space, 

This is often called Kramers equation, whose stationary solutions were first discus- 
sed by Kramers /3/ ,  and recently analyzed in detail to understand fission dynamics of 
highly excited compound nucleus by Weidemfiller, Grange, Gregoire and their 
collaborators /4/. 

Thus we have seen that Langevin equation is equivalent to Fokker-Planck equation 
hnder the properties of random force (a) and (b). In applications to nuclear 
dynamics, the former seems to be more intuitive than the latter. An average of 
Eq.(2.6) over all possible random forces gives us the classical trajectory equation, 
under the assumption that the potential does not change so much around the average, 

,which was extensively used to analyze heavy ion collisions by Bondorf, Gross and 
others /5/. It is worth noticing here that Eq.(2.7) is not enough to describe dis- 
sipative systems, because a friction force is always accompanied by Langevin force 
which gives rise to a fluctuation. This is generally true as long as the 
dissipation-fluctuation theorem holds. On the other hand, the coupled Langevin 
equation (2.6) properly describes not only the average trajectory but also the 
fluctuation, which sum up to be equivalent to the description by Fokker-Planck 
equation. 

Before proceeding to the problem of how to solve Langevin equation numerically, 
we should notice that we can easily generalize Langevin equation to non-Markovian 
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processes by introducing a delayed friction, 

Here the random force R(t) can no more have the property (b) but has a time- 
correlation given by y, 

,which means that the random force does not have a white noise but a coloured one. 
This seems more suitable for nuclear physics and hence the generalized Langevin 
equation will have a wider applicability. 

3. Direct Numerical Integrations of Langevin-Type Equations 
3.1. The iteration method with simulated Langevin force 

Langevin equation is so-called stochastic differential equation, which has 
rapidly changing force in addition to the ordinary one. As is well known, the former 
has no well-defined derivatives, and hence we cannot utilize usual methods of solving 
differential equations such as Runge-Kutta, Adams and so on, because they assume an 
existence of derivatives of the right-hand side of the differential equation. We 
will now try to solve the equation by the iteration method /6/. We start with 
Langevin equation t2.6) by rewriting as follows, 

d 1 
z q = m P ,  

and 

av g 

g = & G  

,where = m0y. By integrating Eq.(3.1) over t-t+T, 

Bence, starting at: t=O and iterating n times, we will obtain pfT) and q(T) with - 
T=n0T. At each step of iterations, we need r (t)= dt1r(t'), where random force r(t) 
satisfies the conditions i"' t 

corresponding to the conditions (a) and (b) for R(t). Since r (t) is a sum of -. 1 
Gaussian random variable r(t), r (t) is also Gaussian one and hence can be simulated 1 
by Gaussian random numbers which are generated, in a computer. From the property 
(B)  , 



- 
<rl(t) 2> = 2T , hence we can write 

- 
rl(t) = at1 r(tt) = fi . wl(t) I:" 

,where w (t) is a Gaussian random number with the properties 1 

By repeating the same procedures many times starting from the same initial conditions 
and averaging over all the realizations, we will obtain a solution of Langevin 
equation. 

Eq's(3.4) and (3.5) are the first order approximation. If we want to improve 
an accuracy (in other words, if we want to use a larger step T with good accuracy), 
we can expand the equations to higher order in T. For the sake of simplicity, we 
assume that h(p,q) is of 1st order in p and of 2nd order polynomials in q separately, 
i.e., the potential is well described by the 3rd order polynomials in the coordinate 
9 - 

,where p' and q' denote p(tl) and q(tl) respectively. Inserting the above 
expressions into the first lines of Eq' s. (3.4) and (3.5) , we obtain 

1 2  p(t+T) - p(t) = Teh + - T (hq &? + hpeh) 2 m 

ah a2h ,where hp = * , hq = - and hqq = - 
8~ aq as2 ' 

t+T ' 
P2(t) = I'T' 1 dt* I'(t.1 

t 

... . - * 

r2(t) is also Gaussian random number which is different from rl, but is not independ- - - - 
2 

- 
ent of r (t), because <rl(t)r2(t)> = T . We can simulate T2(t) as follows 1 



JOURNAL DE PHYSIQUE 

so  a s  t o  s a t i s f y  a l s o  <; (t) '> = 2 T ~ .  r3 (t) , F4 (t) , . . . w i l l  be generated i n  t h e  2 3 
same way. It is important t o  no t ice  here t h a t  there  appear no d e r i v a t i v e s  of t h e  
random force  T ( t )  i n  t h e  above equations. Eq.Is(3.7) and (3.8) a r e  t h e  b a s i c  
equations which a r e  t o  be i t e r a t e d  t o  obtain so lu t ions  of Langevin equation (3.1) .  
As is r e a d i l y  seen, i f  we want t o  include severa l  c o l l e c t i v e  degrees of freedom such  
a s  t h r e e  dimensional r e l a t i v e  motion between heavy ions,  mass asymmetry i n  f i s s i o n  
e t c . ,  we can simply add re levan t  var iab les  i n t o  the  s e t  of t h e  equations above. Of 
course, we need more random numbers t o  descr ibe  t h e i r  f l u c t u a t i o n ,  b u t  we s u f f e r  no 
more complications. 

In  o rder  t o  confirm a v a l i d i t y  of  t h e  above i t e r a t i o n  method, we can ca lcu la te  
an energy balance, i . e . ,  an energy gain due t o  kick-off by the  random force  and an 
energy l o s s  due t o  t h e  f r i c t i o n .  I n  the  equilibrium l i m i t ,  they should compensate 
with each other .  For t h e  o r i g i n a l  Langevin equation, t h e  energy v a r i a t i o n  of t h e  
Brownian p a r t i c l e  over t-t+-r is  

- 
,where u ( t ' )  i s  t h e  ve loc i ty  and F = F + F2 = - p + g a r .  Inser t ing  Eq. (3.7) i n t o  

Eq.(3.11) and averaging over a l l  poss ib le  r e a l i z a t i o n s  of t h e  random force ,  we obtaii  

Thus <AE> = 0 a t  t h e  equi l ibr ium with the  hea t  bath. 

3.2. Comparison of r e s u l t s  by t h e  numerical i n t e g r a t i o n  with exac t  ones: o r i g i n a l  
Langevin equation 

A s  a l ready given i n  Eq.(2.5) ,  t h e  a n a l y t i c  so lu t ion  of Langevin equation (3.1) 
with V=O i s  simply given by 

, where po and qo a r e  t h e  i n i t i a l  values respec t ive ly .  Then 

-& m 
< p > = p 0 e  

And 

2 -2i . t  2-2%.t 
<p > = m-kT.[l - e ] + m 

I 



On t h e  o ther  hand, we w i l l  solve the  equation numerically with t h e  method explained 
above. We c a l c u l a t e  N=10000 examples by t h e  use of Gaussian random numbers f o r  
{w ( t ) )  and average over them a t  each time step.  The q u a l i t y  of t h e  random numbers 

1 
{wl(t)}  i s  shown i n  Fig.1. I n  Fig.2, r e s u l t s  obtained by t h e  presen t  method a r e  

I " " " " " " I " " " ' "  " ' I  

Fig.  1 - Example of Gaussian random numbers. 

2 2 
Fig. 2 - <q > and i p  > of t h e  f r e e  Brownian p a r t i c l e  s t a r t i n g  with two d i f f e r e n t  
i n i t i a l  momenta po ls .  Mass and f r i c t i o n  parmeters a r e  the  same a s  those i n  Fig.3. 
( see  t e x t )  The presen t  r e s u l t s  (x )  a r e  always very c lose  t o  t h e  exact  values. 

I 
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B - m 0 ~ r 2 / n e v ~  - exact <p2> r -  mo mi --- exact <x2> 
m, - 205 "'/160 

X x nmer lca l  solutions - 
wl th 11 * 10009 
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compared with those of Eq~~(3.17) and (3.18) for the cases starting with p =O and - - 0 
p =2'pL where pL =m.kT. The numerical results almost coincide with the analytic 
0 eq eq 
solution at any steps. We can see that the Brownian particle approaches to the 

2 
thermal equilibrium with the heat bath, i.e., <p > -+ m - k ~ = ~ ~  . The errors are 

eq 
within 1%2% which is comparable with 1/6. Of course <p> and <q> are much better 
reproduced, although not shown here. 

3.3. Calculations of fission decay width : escape over a barrier 
Next we take up a fission decay rate of highly excited compound nuclei as one of 

more realistic examples. Kramers viewed the nuclear fission decay as a diffusion 
process over a potential barrier, i.e., the collective elongation mode leadlng the 
nucleus to fission is assigned to a Brownian particle and non-collective nucleon 
degrees of freedom in the excited nucleus to the heat bath. This is not peculiar, 
because we know a lot of experimental data in heavy ion reactions which indicate a 
very fast thermalization of nucleon degrees of freedom, faster than some collective 
motions as discussed by previous speakers in this Conference. 

We solve Eq.(3.1) which is equivalent to Kramers equation(2.7) with the present 
method starting with the same initial conditions as Scheuter and ~rBgoire's/4/, i.e., 
the initial distribution is given by 

2 

I 
N.exp[- (p /2B+V(c) )/kTl for c - < c saddle=lm8 

d(c,p) = 

d(c = Csaddle 1 for c > c saddle 

, where N is a normalization constant. physical parameters used are also the same as 

those employed by them. The collective mass of the elongation B = m =~'/~/160 
2 c 0 

[h /MeV] and the friction coefficient 7 = f-7 =m [#I], where the mass number A is 205 
0 0 

of At. The potential V is given as a function of the elongation coordinate c, 

37.46. (c-1) 
2 

I for 0 < c < 1.27, 

V(C) = 

8.0 - 18.73.(~-1.8) 2 for 1.27 < c 

At each iteration step, we calculate a probability of the system being compound 
nucleus P C.N., i.e., number of examples with c < c saddle devided by the total number 

of examples initially prepared, and then calculate escape rate as follows, 

As the rate calculated at each step is still slightly fluctuating, we make a time- 
averaging over At 

Results are compared with those obtained by solving Fokker-Planck equation with the 
bundle propagation method/4/ where the momentum distribution is always assumed to be 
Gaussian and with the following ICramers formulae/3/, 



v~ Y Q o - k ~  & (Jw - 21 exp(--) kT for B >  - 
vs 

where Q and S l  are the local frequencies in the minimum and at the saddle point, 0 
and V is the barrier height. Using the parameters given above, the critical 
f rictyon coefficient is given as follows , 

Y QOakT 
f . = (-1 . E - = 0 . 3 2 5  crlt y crit 0 vs 

, with k ~ = m  where the excitation energy E* is taken to be 80MeV and the level 
density parameter a to be A/10. 

Fig. 3 - Time-dependence of calculated escape rate (sol$$ line) is compared with the 
bundle propagation and Kramers's limit, for fission of 5~t. 

.-I 
8 8 -  
0) 

m 
rl 

0 
4 6 -  - 
w + 

In Fig.3, the escape rates are compared as functions of the time t. We can see 
that the present results are very similar to those by the bundle propagation method. 
Both show a transient behaviour at short time periods and then approach to the 
Kramers's limit given by the second formula of Eq.(3.21). It is rather surprising 
that the present calculation is so accurate, because the decay rate is not an average 
property of the total examples initially prypared, but is determined by a tiny 
portion of them, although they amount to 10 . In order to confirm an applicability 
of Langevin approach further, we calculate the escape rate over a wide-range of the 
friction coefficient. We compare stationary values as functions of f=Y/Y in Fig.4. 
The present calculations surprinsingly well reproduce Kramers's limit in goth low and 
high friction regimes. The bundle propagation method is also very accurate in high 
friction regime, but fails In lower side. This is probably due to the fact that the 
assumption of the Gaussian distribution in momentum space does not persist to be a 
good approximation in low frictions, because there the system takes a long time to 
approach to the thermalizatlon even in momentum space. The arrow in Fig.4 points the 
critical value f which is a border between the two regions. In the region around cri 
the arrow, however,tboth Kramers's formulae are shown not to provide correct station- 
ary llmits. The present calculations well bridge Kramers's two limiting cases. 

' 0 5 ~ t  

- r = Yo - 
Lansevin approach - 

- - 
- - ---7; - 
- 

- - -  - Bundle Propagation 
I I 
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-1 '\ 
- 

I \ A = 205 
Langevin approoch - 

- 

- 

--- Bundled Propagation - ---- Kramers 
0 I I I 

Fig. 4 - Dependence of calculated stationary escape rate on friction coefficient is 
compared with the bundle propagation method and two Kramers's limits. Present 
calculations well bridge two limits. 

4. Concluding Remarks 
As I mentioned in the introduction, it is really peculiar that most nuclear 

physicists prefer to use Fokker-Planck equation rather than Langevin equation. 
The reason might be due to the fact that the former equation is a partial differen-. 
tial equation without any stochastic variables, which allows us to manipulate 
analytically as Kramers did. On the other hand, the latter one is an ordinary 
differential equation but with Langevin force, which is not easily manageable with 
usual analytical methods. However, by virtue of its intuitiveness and its generality, 
it is worth developing some ways of solving Langevin equation and applying it to 
nuclear dissipative dynamics. In the present talk, we have developed the iteration 
method with the computer-simulated Langevin force, and have succeeded in solving 
the nuclear fission decay process as a diffusion over the barrier. An extension to 
include several degrees of freedom is straight-forward and hence we expect that the 
present method applies to heavy ion collisions leading to highly excited compound 
nuclei, which subsequently decay through flssion-like processes, only if we can assume 
that the nucleon thermalization is much faster than collective motlons. 

One of the authors (Y.A.) acknowledges the GANIL laboratory for the kind hospi- 
tality extended to him during his stay in Caen, while most of the present works have 
been made. Numerical calculations were performed by the computers at GANIL and at 
the Data Processing Center of Kyoto University. 
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