

ON THE MECHANISM OF SILICON NITRIDATION IN THE PRESENCE OF ZrO2

K. Rundgren, R. Pompe

▶ To cite this version:

K. Rundgren, R. Pompe. ON THE MECHANISM OF SILICON NITRIDATION IN THE PRESENCE OF ZrO2. Journal de Physique Colloques, 1986, 47 (C1), pp.C1-515-C1-519. 10.1051/jphyscol:1986177. jpa-00225608

HAL Id: jpa-00225608

https://hal.science/jpa-00225608

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON THE MECHANISM OF SILICON NITRIDATION IN THE PRESENCE OF ZrO2

K. RUNDGREN and R. POMPE*

Department of Inorganic Chemistry, Chalmers University of Technology and University of Göteborg, S-412 96 Göteborg, Sweden *The Swedish Institute of Silicate Research, Box 5403, S-402 29 Göteborg, Sweden

$$2ZrO_2 + (3-x)Si \longrightarrow ZrSiO_4 + ZrSi_{2-x}$$

Ultérieurement, la nitruration peut mener à une apparition de ZrN, $\text{Zr}_{20_{11}N_2}$ et $\text{Si}_{2}N_2$ 0. Certains de ces composés (par ex. ZrN et $\text{Zr}_{7}0_{11}N_2$) pourraient diminuer la resistance à l'oxydation du matériau fritté.

<u>Abstract</u> - The present work addresses the interaction between Si and ZrO₂ which may occur during the nitridation stage of silicon and can affect the final reaction products. Using the thermoanalytical methods combined with X-ray diffractometry it has been shown that the Si, parallel to the nitride formation, disproportionates in the presence of ZrO₂ forming ZrSiO₄ and ZrSi_{2-x} according to

$$2ZrO_2 + (3-x)Si \longrightarrow ZrSiO_4 + ZrSi_{2-x}$$

It is shown further that these reaction products form ZrN, $\rm Zr_70_{11}N_2$ and $\rm Si_2N_20$ during the nitridation. $\rm Zr0_2$ thus affects the nitridation so that less desirable by-products are introduced (i.e. $\rm ZrN$, $\rm Zr_70_{11}N_2$) which may cause a decreased oxidation resistance of the sintered body.

I - INTRODUCTION

Increasing attention has been given in recent years to improving the strength and fracture toughness of ceramics by providing crack arresters in the ceramic matrix. Zirconia systems appear to be the most promising ones to study these phenomena. In partially stabilized zirconia (PSZ) the metastable tetragonal phase will transform to the monoclinic phase in the stress field of propagating cracks. This stress-induced transformation is assumed to provide the principal toughening mechanism in the PSZ. Zirconia is also being considered as a sintering aid for the fabrication of dense $\mathrm{Si}_3 \mathrm{N}_{\Lambda}$ -based ceramics. The emerging techniques (Sintered Reaction Bonded and Nitrided

Pressureless Sintered Silicon Nitride (SRBSN and NPS-technique))/1,2/ for fabrication of complex shapes of dense $\mathrm{Si}_3\mathrm{N}_4$ -based ceramics involve use of Si powder in the starting powder materials. In these new techniques it is of interest to mix the Si powder, before nitridation, with the sintering and/or toughening aids to get dense $\mathrm{Si}_3\mathrm{N}_4$ -based ceramics without posttreatments. In this work the interaction between ZrO_2^2 and Si_4 has been studied in both Ar and N_2 atmosphere to elucidate the reaction sequence in this system.

II - EXPERIMENTAL METHODS

The characteristics of the starting powders are given below.

Origin		Impurities (wt.%)	BET Spec.Surface area (m ² /g)		
Si	Kema Nord AB	0.40 Fe ; 0.23 Al; 0.02 Ca	2.3		
ZrO ₂	Kebo Grave AB	p.a.	6.5		

The powders were mixed in molar ratios ZrO2:Si = 1:2 - 1:3 in an agate mortar and powder compacts then were formed by uniaxial and isostatic pressing. Mettler thermoanalyzer TAI(TGA) and Harrop Dilatometer TD716 (TDA) were used to determine the mass and volumetric change, respectively. The dilatometric (TDA) curves were electronically compensated for the expansion of the alumina holder. The characteristic parameters were as follows: TGA sensitivity/range: 0.05 mg/100 mg; TDA sensitivity/range: 2·10⁻⁴ mm per mm rec./1% per inch; gases used: N2-SR, Ar-SR (nominal impurity content: less than 15 ppm); flow rate: ca 5 l/h. The phases were identified by X-ray powder diffractometry (XRD).

III - RESULTS AND DISCUSSION

1. Dilatcmetry, thermogravimetry and XRD.

Fig. 1 shows a dilatometric (TDA) curve for a $\rm ZrO_2/2.5$ Si powder compact in an argon atmosphere. Above about 980 °C the compact is seen to start shrinking but at ca. 1200 °C the shrinkage is altered to expansion which recedes slowly up to 1450 °C. The minimum on the TDA curve coincides with the m—>> t- $\rm ZrO_2$ phase transition temperature (1175°C/3/).

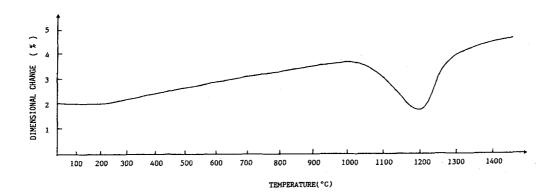


Figure 1. Dilatometric (TDA) curve for a $\rm ZrO_2/2.5~Si$ (molar ratio) powder compact heated at 5 /min in an $\rm argon^2$ atmosphere.

As shown in Table 1 the reaction products obtained at 1450°C are 2rSiO_4 and $2\text{rSi}_{2-\mathbf{x}}$, the reaction is however not completed and some unreacted Si and 2rO_2 is always left regardless of the $2\text{rO}_2/\text{Si}$ molar ratio.

Temperature (^O C) (cf. fig. 1)	Phases identified by XRD						
980° 1150° 1200° 1300° 1450°	Si "	m-ZrO ₂	ZrSiO ₄	(traces) ZrSi 2-x "	sio ₂		

Table 1. Phases identified by XRD for ZrO₂/Si compacts heated (5 min) to different temperatures in Ar atmosphere.

The XRD analysis of the specimens heated at $5^{\circ}/\text{min}$ to the temperatures indicated in Table 1 gave the following picture of the reaction processes: At 980°C the incipient formation of ZrSiO_4 suggests an initial reaction of ZrO_2 and the surface silica on the Si particles. The increasing intensities for ZrSiO_4 and the appearance of ZrSi_2 at 1150°C indicate a reaction proceeding according to

$$2m-Zro_2 + (3-x)Si \longrightarrow ZrSio_4 + ZrSi_{2-x}$$
.

At 1200 $^{\circ}$ C, which temperature is the turning point of the TDA curve, SiO₂ appears as a new phase and the relatively increasing intensity of ${\rm ZrSi}_{2-{\bf x}}$ at 1300 $^{\circ}$ C suggests that the main reaction is

$$t-ZrO_2 + (3-x)Si \longrightarrow ZrSi_{2-x} + SiO_2$$
.

At 1450 $^{\rm O}$ C, however, the SiO₂ phase has disappeared and only ZrSiO₄ and ZrSi_{2-x} remain. TGA indicates a start of weight loss above 1200 $^{\rm O}$ C. The disappearance of SiO₂ is thus probably due to the reaction of SiO₂ with residual Si (and perhaps even ZrSi_{2-x}) giving SiO(g).

TGA-followed nitridation of the products formed in Ar at 1450 $^{\circ}$ C in N₂ gas starts at about 1200 $^{\circ}$ C giving ZrN, Zr₇O₁₁N₂ /4/ and Si₂N₂O.

Direct nitridation of the compacts starts at about 1150°C and, in addition to the above products, alpha-Si $_3\text{N}_4$ is obtained.

It thus can be concluded that silicon disproportionates in the presence of ${\rm ZrO}_2$ forming ${\rm ZrSiO}_4$ and ${\rm ZrSiO}_{2-x}$ as final products. The reaction seems to be initiated at a lower temperature or proceeds parallel to the nitridation of Si. The reaction sequence is as shown below.

$$\begin{array}{c} \text{Si+ZrO}_2 \xrightarrow{\text{Ar}} \text{ZrSiO}_4 + \text{ZrSi}_{2-x} (+\text{SiO}_2) \xrightarrow{\text{N}_2} \text{ZrN+Zr}_7 \text{O}_{11} \text{N}_2 + \text{Si}_2 \text{N}_2 \text{O} \\ & \text{N} \\ & \text{ } + \alpha - \text{Si}_3 \text{N}_4 \end{array}$$

The intermittently released SiO(g) may favour the formation of alpha - Si_3N_4 .

2. Thermodynamical features of the reactions

2.1 Volumetric changes

As shown in Fig. 1 the TDA curve indicates a change at about 1200°C from shrinkage to expansion for the reacting Si/ZrO2 powder compacts.

This change coincides with (a) the appearence of SiO₂ as an intermediate phase and (b) the m \longrightarrow t-2rO₂ phase transition (Teq~1175°C). The chemical equation for the phases formed below 1200°C (Table 1) is

$$2ZrO_2 + (3-x)Si \longrightarrow ZrSiO_4 + ZrSi_{2-x}$$
 (1)

and corresponds to a change of molar volume $\Delta \bar{V} \sim -9.0$ % (for x = 0) and thus is consistent with the observed contraction. Above 1200°C formation of SiO₂ occurs. The summary equation of

$$3\mathbb{Z}rO_2 + (6-x)Si \longrightarrow \mathbb{Z}rSiO_4 + 2\mathbb{Z}rSi_{2-x} + SiO_2$$
 (2)

leads to $\Delta \bar{V} \sim$ -6.4 %, (x = 0) while, instead, an expansion is observed (Fig.1). Considering only the partial process of

$$t-ZrO_2 + (3-x)Si \longrightarrow SiO_2(trid.) + ZrSi_{2-x}$$
 (3)

the $\Delta \bar{V} \sim 0$ for x = 0 and will change to expansion for x>0 unless a significant contraction of the $ZrSi_2$ lattice occurs as a result of non-stoichiometry. No such evidence has been apparent from the XRD spectra. The expansion as observed in Fig.1 above 1200°C will certainly be assisted by the transformation of m-ZrO₂ to the t-ZrO₂ of lower \bar{V} . (The above \bar{V} values are based on room temperature data and a significant difference of expansion coefficients for the phases involved may also be of importance in a rigorous treatment).

2.2 Free enthalpy changes

Table 2 below shows the thermodynamic data for the total reaction (1) and the partial reaction (2) with the intermediary SiO_2 formation.

T(K)	ΔH(cal/mol)		ΔS(cal/mol K)		ΔG(cal/mol)	
	(1)	(2)	(1)	(2)	(1)	(2)
1	1.0.103		-0.4	0.9	1	7.2.103
1	$-0.9 \cdot 10^3$	_	-3.2	-4.1	3.6.103	9.8.103
1600	-3.8:10 ³	$-0.3 \cdot 10^3$	-5.2	-7.1	4.5.103	11.1.10 ³

Table 2. Thermodynamic data obtained /5/ for reaction (1) and (2).

As is apparent the ΔH and ΔS value for the total reaction is positive and negative, respectively, over the temperature range of 298-1600 K (25-1327°C). Thus according to the tabulated data there is no driving force for the reaction (1). For the reaction (2) including the formation of SiO the ΔH is negative only at 1600 K but ΔS is still negative thus giving positive ΔG (but much less positive than for the reaction (1)). The reaction (2) however still takes place. To an extent this discrepancy certainly reflects the lack of accuracy in the tabulated data but, at the same time, suggests that the driving force for this reaction is very low.This is consistent with the results of XRD showing that the reaction is never complete - residual Si and ZrO_2 is always present in a relatively significant amount.

Besides, if the reaction (2) gives $ZrSi_{2-x}$ with x>O the entropy on the left side will be lower and the entropy on the right side will be increased by a configurational term, due to the non-stoichiometry of $ZrSi_{2-x}$. Thus the total ΔS term may turn positive and give a negative ΔG already at the temperature of the observed start of the $ZrSi_{2-x}$ formation (980°C (1253K), Fig. 1).

Formation of non-stoichiometric ZrSi $_{2-x}$ is also consistent with the observed expansion above about 1200°C (Fig.1).

IV - CONCLUSION

Pure zirconia reacts with silicon, the reaction being already initiated below 1000°C. This reaction seems to start at a lower temperature or occurs parallel to the silicon nitride formation. The products formed, $\tt ZrSiO_4$ and $\tt ZrSiO_2_x$, give $\tt ZrN$, $\tt Zr_7N$, $\tt O_2$ and $\tt Si_2N_2O$ as by-products of nitridation. The introduction of these by-products may destroy the oxidation resistance of $\tt Si_3N_4$ materials sintered with $\tt ZrO_2$.

ACKNOWLEDGEMENT

Financial support from the Swedish Natural Science Research Council (NFR) is gratefully acknowledged.

REFERENCES

- /1/ Antona, P.L., Giachello, A. and Martinengo, P.C., Ceramic Powders (1983) 753.
- /2/ Pompe, R., Hermansson, L. and Carlsson, R., Brit. Ceram. Soc. <u>11</u> (1981) 65.
- /3/ Kubaschewski, O. and Alcock, C.B., Metallurgical Thermochemistry, Pergamon Press (1979), 322.
- /4/ Gilles, J-C., Bull. Soc. Chim., (1962), 2118.
- /5/ Barin, I. and Knacke, O., Thermochemical Properties of Inorganic Substances, Springer-Verlag, (1973).