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MULTIPLE LIGHT SCATTERING IN COLLOIDAL SUSPENSIONS ;
CROSS-CORRELATION PHOTON COUNTING SPECTROSCOPY

C.G. de Kruif, J.K.G. Dhont and H.J. Mos

Van't Hoff Laboratory for Physical and Colloid Chemistry, University of
Utrecht, Padualaan 8, Trans III, De Uithof, 3584 CH Utrecht, The Netherlands

Résumé - Les principes de base et la théorie sont donnés pour
une expérience de diffusion dynamique de la lumiére dans laquelle
les diffusions multiples sont éliminées. Cette nouvelle tech-
nique utilise deux faisceaux laser se recouvrant et traversant
1'&chantillon en provenant de directions opposées. A angle
droit avec les faisceaux laser on dispose deux photomulti-
plicateurs dont les compteurs sont corrélés. Cette technique
sera illustrée par des résultats expérimentaux obtenus sur des
dispersions colloidales de silicates. Nous montrons que les ef-
fets de diffusions multiples peuvent &tre &liminés par cette
méthode.

Abstract - The basic principles and theory are given for a dynamic
light scattering experiment in which multiple scattering is
eliminated. This new technique uses two spatially overlapping
laser beams travelling through the sample cuvet from opposite
directions. At right angles to the laser beams two photo-multi-
pliers are positioned. Their photon counts are cross-correlated.
The feasability of the technique will be illustrated by experi-
mental results from colloidal silica dispersions. It is shown
that the effects of multiple scattering can indeed be eliminated
in this way.

1. INTRODUCTION

In the study of static and dynamic interactions in colloidal suspens-
ions, light scattering is one of the powerful applied experimental tech-
niques. The development of lasers in the 1960's and of digital cor-
relators in the first half of the preceding decade have resulted in an
extensive application (1-3) on so-called, laser beat spectroscopy, pho-
ton counting spectroscopy (PCS), quasi-elastic scattering spectros-
copy (QELS) or dynamic light scattering spectroscopy (DLS). As it is

a relatively new technique it still has many names, but they all refer
to a technique where time correlations on fluctuations of intensities
in scattered laser light are related to the diffusive properties of the
(colloidal) scatterers, or more generally to number density fluctu-
ations. In dilute solutions the technique is then used to determine
colloidal size from the Stokes-Einstein relation while with increasing
volume fraction the effects of static and hydrodynamic interactions
come into play.

A limitation of the theory coupling light scattering and number density
fluctuations is that in the light scattering process considered, double
and multiple scattering are excluded. Therefore it is necessary to do
experiments either on very dilute suspensions or on suspensions where
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the solvent has practically the same index of refraction as the dis-
persed phase, This is called optical matching, but as usual new prob-
lems and possibilities arise. For instance, when there is a poly-
dispersity in scattering power a careful interpretation of the measure-
ments is required. The optical matching@®n £ 0.01) fails when suspend-
ed particles are inhomogeneous in index of refraction, for instance
when they have a core and peripheral layer with different refractive
index, These prerequisites and limitations exclude therefore many col-
loidal :systems of practical and theoretical interest from experimental
investigation wiht QELS.

It is the purpose of this paper to present the basic principles and
theory for a dynamic light scattering experiment in which double and
multiple scattering are eliminated. The feasibility of the technique
will be illustrated by means of experimental results recently obtained.
They show that the effects of multiple scattering can in fact be elim-
inated. We start with a short outline of single scattering and indi-
cate what kind of information is obtained from the intensity fluctu-
ation correlation function. Without going into details we assume that
the Rayleigh-Gans-Debye light scattering regime holds and that we work
with spherically symmetrical scatterers.

2. SINGLE SCATTERING

Consider a plane wave propagating in the KO' direction and polarized
in the E, -direction with amplitude |E,], scattered elastically at
position” r by a (spherical) scatterer, see figure 1.

Eo

Laser beam

Ko . x

= Ks-K 0
Ks detector
Figure 1. Scattering process, laser light is scattered at the origin.

At position in the direction KS is a detector (photo-
multiplier).

Then the field amplitude at a position R in a plane perpendicular to
E and through K is given by

0
2.2 =2~ SN
27 KOEO (1KS.RS~1wt) N ch(r') 1(K —K )(r +T7) 5 -
B0 = —90 22— i ()
m° R j=1 €
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F = £ b.e -z bje 0 s ) (3)
1 5=1 3 j=1
in this expression b. is called the scatterlng strength of particle j,
K, 1is the incident wave Vector |f | = Ks is the scattered wave
vector.[fsl =5 and (K —fs) = —K; (KI = 4) (sin ©8/2) where 6 is the

angle between

and K and J the wave length of the coherent laser light used.
Ig other %ords, E1 gives the instantaneous field amplityde (as a
function of scattéring angle, expressedas a function of XK which is the
direction of a stack of (Bragg) planes of equal phase each separated
by a distance A = 271/K) , of a large number N of scatterers whose
position is given by T. relative to the origin of the cell, Because
the particles undergo ﬂrownlan motion, the field strength will fluc-
tuate with time and so <F.s =0 The time scale on which §1(t)

1t *

changes considerabtly must be connected with the time needed for the
particles to wander from one Bragg plane to the next one over a dist-
ance A ., From this and Brownian diffusion theory it follows thaf
t —(‘A)Z/ZD For a typical particle D is of the order 107
so t is of the order 1072-10%s.

Another way of visualizing the scattering process is to say that con-
centration fluctuations can be decomposed into spatial Fourier modes,
from each of which the incident light is refracted into predetermined
angles given by the Bragg condition A = 27/K = X/(2sin 6/2). This
condition implies that at small K (thus small 8 or largeX ) large spac-
ings are observed, the so called (K =0) collective diffusion.

In practice one measures of course E(t)E*(t) = I(t) the scattered intens~
ity. For studying the statistics of the Brownian diffusion motion the
intensity-time auto correlation is measured

<I(t) . I(t+T)> (4)

<f[>2

Gz(K,r) =

with the help of the Siegert relation, stating that for a Gaussian pro-
cess

<x(0)x*(0)y (Dy*(£)> = <x*><yy*> + [<x(0)y(£)>]? + l<x(0)y*(t)>lz. (5)

The intensity correlation function is thus written in terms of the field
correlation functions and reads after normalization on <I>:

[<EE*(£)>[% | |<E()E(£)>]?
<I> <I>

Ak,e) = 1 + (6)

The last term on the right hand side of equation (6) averages out to
zero and is therefore eliminated. Incorrectly however, it is often not
included in the Siegert relation.The second term is coupled to the dif-
fusion of the colloidal particles.
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Figure 2. Appgrent dlfqu}on coefficient plotFed 2
against scattering angle expressed in K~,

Actually this is done by solving, after Fourier transforming, the sec-
ond law of Fick, and leads to an expression for the Fourier transform
of the density probability distribution p(X,t). On inserting eq.(3)
into eq.(6) and noting the similarity between this and the solution of
Fick's law -the basic equation of dynamic light scattering is found.

2 2
G“(X,t) = b + ce (7)

-2DK"t
Where b and ¢ are the result of experimental imperfections respectively
called baseline and contrast. In case more than one type of fluctua-
tionis present which decays (in)dependently, we will find the sum of
several exponentials each with its own decay rate and amplitude.

3. MULTIPLE SCATTERING

It is not difficult to imagine that light from the laser beam is scatter-
ed through an arbitrary angle and subsequently scattered once more into
the detector.It was shown by Van Rijswijk I{]that the statisticsof that
process is also Gaussian. As a rule of a thumb this double scat-
tering contribgfion will become significant whgf the average Rayleigh
ration R> 1 n or when turbidity exceedsl0 m ~, As the secondary
scattering volume » primary scattering volume these are upper limits.
The effect of multiple scattering shows up in the experiments as shown
iE figure 2 where the_aggarent diffusion coefficient is plotted against
K., At a certain X (= _72 sin 8/2), D3PP is found from the initial
slope of 1n G2(t) i.e.

lim

2
M = _op@PPy2. (8)
£+0 ¢
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As the decay rate of the double scattering correlation function is
larger than the single scattering correlation function it follows that
DaPP > D Reliable data fitting and evaluation of D, from dynamic
light scattering data "contaminated'" with multiple scattering are not
possible on the same grounds as it is difficult to interpret scat-
tering data from a polydisperse system. A way out of the problem was
proposed by Dhont [5 . He expressed the contribution of second and
higher order scattering events to the field strength (intensity) at

the detector in a recurrent expression containing the lower order scat-
tering. In an iterative scheme the respective contributions are cal-
culated and so the '"pure'" first order scattering contributions are
evaluated. With careful experiments, and precise knowledge of the scat-
tering geometry this scheme extends the useful turbidity or Rayleigh
factor range by a factor 10 but relies on computational methods.

4, EXPERIMENTAL ELIMINATION OF MULTIPLE SCATTERING
IN DYNAMIC LIGHT SCATTERING

An experimental elimination of multiple scattering is to be preferred
whenever possible. Phillies [6,7] devised a measuring procedure in
which he showed that multiple scatterlng can be suppressed. A quanti-
tative theoretical treatment was given by Dhont [8]. A schematic dia-
gram of our experimental set up is given in Figure 3. The scattering
geometry consists of two anti-parallel laser beams and perpendicular

to that two opposing photo-multipliers which signals are cross~correlat-
ed. The resulting correlation function contains to a very good ap-
proximation no multiple scattering contributions.

N:m Argdon laser

1 BS M

v

PuT AT} L (v 8}

Figure 3

Scheme of experimental cross correlation
set-up; abbreviations: C, cuvet; M, mirror;
BS, beamsplitter; pH, pinhole; PMT, photo-
multiplier tube; A, amplifier; D. discriminator;
VDU, visual display unit; CC, cross corre-
lator; MC, micro computer; MI, mini computer.
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5. THEORETICAL TREATMENT OF THE CROSS-CORRELATION

In order to understand and appreciate the underlying theory we give a
treatment where only 90 degrees scattering of single and double scat-
tering events are considered. This does not impose restrictions on
the general validity of this treatment. The electric field strength
of light scattered from laser beam A into detector A is:

A A A

EY = B} +E, (9)

where E_ represents n-fold scattered light. It was shown by Dhont(5)
that

22 (-iwt +ik_.R) N Ae(r! ) i(R Kt
N 7K _ s° s 0 h| 0 "s7)
- 0 -itl e = 0 o .,
= 3 e ; —_e drj
(2m) Rs JO V- € o
jo (10)
o
i(K —Ks)r % )E
X e . (KS 0
and
_ e S 4 . t P s _“) "'
. 2n3K3 el e( iwt +1KS.RS-F1W) N2 N] Ae(rj]) 1(!(0 K]).rjl N
E2 =—e z Zz —_— dr!
(2m) Ry i, i, € 3
i
= 4 > =+ > A (11)
Ae(r? ) i(K,-K )r! 1(K,~K. )hr. 1(K,-K )r.
i, 1 s iy 0 1 i 1 s i, =z e
x| —L e dr! .e e LT (K )T(R)HE . dS,.
e iy s 1770771
Via

The symbols have the following meaning (compare Figure 4).

ﬁo wave vector; length = %&? (m—I)

Ks scattered wave vector; length = %&? (mf])

il scattered wave vector; length = %&? (m_l)

AO wave length of laser light in vacuum (m)

n index of refraction of medium

€ dielectric constant of medium (= n2)

Ae variation in dielectric constant

T turbidity (m )

1 length of light beam to reach edge of cell (m)
14 -1

w angular light frequency (0) 10 s



ﬁs position of detector with reference to origin
NO number of particles in Yy
N, number of particles in v,
N2 number of particles in v,
r& coordinate inside particle j0 relative to its position coordinate X,
o
V. volume of particle j
g 0

T, position coordinate of particle jO
$o 1. &
3
T(K) I - —

(k|
EO incident electric field strength
as, infinitesimal element of half spherical surface with radius [KO]

directed along the positive (or negative) z-axis in Kl space.
|De( 8 I
£
3
Laser A N1 No Loser B g
Wy
N2

= Ko

Figure 4. Scattering geometry and wave vectors.
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As expressions (10) and (11) are rather lengthy and we are only inter-
ested in the relative magnitude of (contributions to) the correlation
functions, we write

R =
N x(KO—K )r.

s
E, =T e 0 (12)
ig
s > >
N2 N1 1(1(0'-1(1).1‘5l 1(K|-Kslrj2
E. =X X dSl(--~) e e (13)
i, i
Furthermore we will use:
E(t) = E (£)+E,(t); <E(£)> = 0; <E,(£)> = 0; <E,(r)> =0 (14)
and
) = P (15)
20 = eBoefee) . (16)

Then the intensity cross—correlation function is given by
e 6(n) = <*0).1%(0)> (17)

while the intensity auto-correlation function is defined as:

IACE  G2(n) = <1*0). 10> = <P (o). 1P (0)>. (18)

Substitution of the expressions (12) and (13) working out the ensemble
averages and applying the "full" Siegert-relation leads after some
algebra to the intensity correlation functions

IACF: <I(0) I(t)> = <r>? + |<E](0)ET(C)> * <Ez(0)1~:’§(t)>|2 (19)

Iccr: <120) 1B(r)> = <rf><aB> + |<E?(0)E?(t)> + <l€_".}_(0)‘£}z:(t)>I2 (20)

Cross-terms containing terms like <E .E2> are zero. Most strikingly

is the apparent symmetry in the rela%ions except that in the ICCF the
non-complex conjugate products survive. This is a result of the fact
that in the ICCF the intermediate scattering wave vector-(KO—Ks)=K is
just anti parallel to kB in contrast to the IACF, It may be empha-
sized that in using an incomplete Siegert relation the second term of
the right hand side of (20) is not found at all, leading to the wrong
conclusion that in the cross-correlation experiment no correlation is
present.

Furthermore it follows that when double and higher order scattering are
absent, the IACF = ICCF, which could also be argued on grounds of sym-
metry. It remains to be shown that the second order field strength
correlation gives different contributions in the respective experiments.
Substitution of (13) leads to
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A 5 Ny Ny Ny N,
wh@.E5> =2 T = x fas fas, (0
3 373,
43332 7
(21)
AT 0 iRATL 0 T () BT ()
1 J, 2 J2 1 J3 2 Jlo
x< e e e e > .
0
Laser-A Ko a Koo Laser-B8
— B —~
KA Kl \/
] _ - Kis

B
\\ K2
N
N\
\\
N Ksg
N
/

KsAv KZ
Det A 'DefB I

Figure 5. Definition of wave vectors.

In working out the ensemble average, we see that for j.]sziéjsfj4 the
net result is zero. So the following terms of the ensemblé avVerdge
remain

N iAo iBE (0 iRAZ (o) KB ()
1234 13, 1, 2°%, 2%,
I. z <e e ><e e >
J1234
+
LA > LA > 3B » .3B >
le% 1K}l\~.rjl(0) 11\2.rj2(0) 1KI.rJ3(t) 1K2.rj4(t)
1. = <e e ><e e >
J1234
+
A 2B > LA +B -+
N]234 1k].rjl(0) 1K2.rj4(t) 1K2.rjz(0) 1K].rj3(t)
111, = <e e ><e e >

J1234
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IT1 is independent of t, hence does not+give riie to a time-correlation.
zransforming thg position coordinates r. into pij(t) = ri(0)+rj(t) and

qij(t) = ri(O)—rj(t) and using the defifitions

1, ilR.p .
3 J e ? d
GV(K,t)= ——!————~——-, form factor of scattering volume (22)
v
N. N. > > -
.. 1] iK. (r.(0)-1r.(t))
F(I’J)(K’t) S BN S PR 1 b > (23)
VﬁiNj i 3

which we will call dynamic structure factor, leads after some algebra
to the following expressions for I and III.

2
I. PV IV, Gy {(K? + K?)} Ff”3){(K? - K?),t}
1

A, B (2,4) _ B
x oy (G + X)) (< - k5,6

2 A . B (1,4);, A B
I, PV, le{(K] + KD} Fy {(K1 hz),t}

A B (2,3) B
* Gy 16 + KDY (s ~ kD,e).

Each term (I,III} is seen to contain the product of two form factors
and two "dynamic structure factors'. The form factors differ signific-
antly from zero when their argument (KA+ xBy » 0. 1If particles are

independent, of the structure factors only those terms in the double
summation survive for which j. = j

j..
These conditions are summarizdd as”follows:

A, B s Lo A B . _ .
I, K[ +K ~0; =i, III. Ky + Ky =05 3) =13,
& Bapg: 5. =3 B ~os 5. =i
5 + KZ = 0 iy =, Kg + Kl 03 i, g

> -
with KOA = —KOB; KSA = -KSB it follows that both for I and III
= -K = -K
KlA RIB and

and state that, the scattering process must be completely antisymmetric-
al in A and B otherwise the contributions I and III average out to zero.
We may visualize one situation (structure) occurring in the ensemble

averages I and III as in Figure 6.

As we see the condition of an antiparallel scattering process is easi-
1y fulfilled in both cases. The condition for I that particle j, at
r., coincides with particle j, at rj; can be fulfilledA However™ the
ca%dition that j4 = j2 cannot”be met when we require K* = -KB and

J].— 33.
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Figure 6. Schematic picture of double
scattering process

Intuitively one suspects the scattering process in Figure 6.1 not to be
correlated. This is in contrast to the situation in Figure 6. III
with jl = 3j, and j, = j,. Now particles j. and j3 are positioned in
the spatialiy over%appi%g laser beams whilg j3 ahd j, must be 'vis-
ible" for the opposing detectors, compare Figlire 4. Qhe requirement
that, at least for independent particles, j, = and j, = j; can
therefore only be fulfilled in the intersec%ion volume” vy n v, = V-
The condition j, = ‘4 actually is the condition that the positions of
particles j an& j4 are correlated., For independent particles this re-
quires their coincidence. For highly structured suspensions their cor-
relation may extend through the scattered volume. This was shown in

an elegant experiment by Clark [9]. He also cross-correlated two
photo-multipliers but these were directed on different parts of a col-
loidal crystal, thus showing the spatial correlation in the position

of particles.

As we consider relatively dilute suspensions with independent particles
we thus find that the only contribution, if any, to the correlated

part of <Eé (0)E§(t)> comes from Vo and is given by

ff <..‘><...)p"-vfJ

)

<E§(0)E§(c)>

X

B (1,4) B
GVO(K‘I‘ +K) . F; {(Kfx - K),t} (24)

X

GVO(KQ + x?) ) F§2’3){(K§ - xf),t}dsldsz.
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In order to compare this to the conventional set up in auto-correla-
tion we must calculate <E2(0)E*(t)>. Again inserting the equation

(14) for E_(t), working out thé& ensemble averages will lead to the con-
clusion that the scattering process at t = 0 and t = t must be cor-
related with respect to the position of the particles while from the
geometrical factors it follows that the scattering vectors must be
parallel. This is found by replacing every K,- wave vector in equ-
ation (21) and in the ensemble averages by -K, because for the auto-
correlation part we have EX(t), the complex conjugate. Then of the
ensemble averages (I,II,II%), the term I is nonzero leading to:

<EHOEL (0> - £ £ (...)(...)pzvlv2

X

A A (1,3) A
le(l\]—-k]) . F, {(K?ﬂ(l),t} (25)

X

A A (2,4) A
sz“z““z) i {(Kgﬂ(z),t}dsldsz.

Again we may visualize this contribution as in figure 7.

1

Ko A

Figure 7 Double scattering
—— ——— in autocorrelation
experiment

I Det A l
A B

. A B . .
Expressing K1 s K2 R K1 and K2 in terms of K1A and KlB it
follows that the relative contributions to the correlated part of the
correlation functions are found as:

<E (0)E*(t)> voz <E (O)F (£)> Vg
<El(0)E*l‘(t)> ~VV ICCE: g (O)Ez(t)>~;,—2—
2 2 12 2 0

IACF:

Hence the Eelative double scattering contribution is suppressed by a
factor V0 /V1V2 in the ICCF relative to the IACF.

As similar result was given by Phillies[7,8] but based on a less rigor-
ous treatment. The result may be interpreted by saying that double
scattering is proportional to the number of scatterers "available"
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for the first order scattering and for the second order scattering i.e.
V.V.. In the cross correlation experiment this is confined to the

squiare of the intersection of vln vy = V-

A quantitative estimate of VOZ/V V7 is 2.10-3 as calculated from figure
4 where we give representative éimensions for a typical scattering ex-
periment. For ease of calculation we consider a rectangular geometry.

It may indeed be argued that employing a very small scattering cell

(V,) would lead to the same result. In that situation however the pre-
sence of the cell walls will give an unwanted contribution to the dynam-
ic structure factor. A marked example of that effect is found by Hurd
[10] et al. On the other hand Pusey [11] uses the proportionality fact-
or V1V in equation 25 to detect multiple scattering contributions to
his megsurements by varying the position of the scattering volume in

the cell. 1In this way V.V, is changed and accordingly the relative con-~
tribution of the multiplé Scattering.

In the above treatment we considered scattering of radiation from laser
A into detector A only and similarly for B. Interchanging either de-
tector A and B or laser A and B does give exactly the same contribution
to the correlated part of the ICCF. All other scattering geometries do
not contribute.

Alignment of the set-up requires a high degree of precision as follows
from the following reasoning. The geometrical factors GV (K)GV (K)

already become very small when the product |K|ais only sllghtlyodiffer—

ent from zero. Allowing a 10-fold decrease in the product GV . GV from

1 to 0.1 gives Gy = 0.3. As a typical dimension of the scgtterlng
4mowe calculate AK ﬁ*104m. From AK = 4wn/X sin(8/2)
where 6 is the "misalignment"angle, we calculate 6 = 6.10_4(rad) or
roughly 1 mm per meter. For this reason one should use small pinholes
and a non-divergent laser beam.

volume is a=10"

6. EXPERIMENTAL RESULTS

As expected it appeared to be rather difficult to align all optical
components of figure 3 in such a way that a cross correlation signal
was observed. When using an argon-ion laser in the current~-stabilized
mode the correct positioning of the optical parts is manifested by a
sharp upswing in.light output of the laser. The reason for this is,
that an extended cavity is made. Actually placing the cell in the
cavity of a laser would be easiest, but then threshold will not be rea-
ched with turbid samples. To get things started we mainly used the fol-
lowing optical train, which can be applied with medium turbid samples
and is easier to operate than the set-up of figure 3.

In figure 9 we plotted apparent diffusion coefficients (according to
equation 8) as a function of sample turbidity. We made two series of
measurements i) a square 1 cm optical cuvet is used and ii) a rect-
angular 2 x 5 mm inside measure cuvet is used. The scattering sample
was_a2 40 nm radius sterically stabilized silica dispersed in toluene
Inp_nsoh'.l *0,05.

As the cells were not thermostated there is still some scattering in

the cross-correlated data, especially as the measurements were made ov-
er a period of a few weeks. In our opinion figure 9 shows unambiguous-
ly that the experimental set-up is capable of suppressing very efficient-
ly multiple scattering for rather turbid samples.
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Figure 8 Actugl‘experlmental set-up for rﬂ
obtaining the data of figure 9.
Components are: PHC, adjustable PMT B

vertical slit; pH, pinholes;

c, measuring cell; M, flat mirror;
L. cylindrical lens; PMT, photo-
multiplier tube.
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