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DISLOCATION BENDS IN HIGH STRESS DEFORMED SILICON CRYSTALS

H. Gottschalk

Abt. f. Metallphysik, II. Phystkalisches Institut, Universitdt Ksln,
Ziilpicher Str. 77, D-5000 X5in 41, F.R.G.

Résumé - Pour rendre compte des courbures de dislocations dans le silicium
différentes estimations de 1la tension de ligne sont présentées et
comparées aux résultats expérimentaux obtenus 2 faibles et fortes
contraintes.

Abstract - Different approximations for the line tension of dislocation
bends in silicon are discussed and compared with experimental results
obtained for low stress and high stress deformation.

Introduction ~ In TEM-studies of deformed materials it is a widely wused method to
estimate the local stress acting on a dislocation from the measured radius of its
curvature R. The static bow out of a dislocation between two obstacles is held in an
equilibrium position by the driving force
F =7b (1)
(7 = res. shear stress, b = Burgers vector of the perfect dislocation) and the
backward directed force in the following text shortly called self force (8 = 1line
tension)
F = S8/R (2) T = §/(Rb) (2a)

In silicon crystals deformed under high uniaxial stress the dislocations mainly
are lying straight along the {110%-directions with 60°-~bends as transitions from one
{110) -Peierls trough to another one{(Fig.l) /1/. This is also true for low stress
deformed specimens if the dislocation density is low (A. Toénnessen, H. Gottschalk,
and H. Alexander, to be published; Fig.3). On cooling the crystals with the load
applied the dislocation motion is frozen in whereby the curvatures of the bends are
maintained.

It is reasonable now to try to apply the concept of 1line tension to these
dynamic bends as outlined for the static bow out. F. Louchet /2/ used this method to
calculate the stress acting on dislocations in in-situ straining experiments in the
HVEM.

A problem, however, 1lies in the arbitrariness of the line energy of a
dislocation and therefore of the line tension which arises by the arbitrariness of
the cut-off radii. To achieve a reasonable choice for the cut-off parameters
different approaches to the line tension problem for this special case of 60°-bends
are investigated and compared with experimental results in the low stress range. The
best matching parameters are used to apply the method to isolated partial
dislocations and to more complicated bend structures in the high stress range.
Experimental - Silicon crystals (Fz-Si, 9-1012 cm-3 B) were deformed in wuniaxial
compression and cooled to room temperature with applied load. .
Specimens Type A: Compression axis (2137,%T = 30 MPa, T = 650°C,& = 0.2%, 0.8% and
2.5%.

Specimens Type B: Compression axis {213),T = 250 MPa, T =420°C, after predeformation
T =30 MPa, T = 75000, € = 1.5%.

Specimens Type C: Compression axis ¢2,1,11> , T = 420°C, after predeformation along
213> , T = 750°C, & = 1.5%.
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Fig.l - Dislocation loop in 8i deformed Fig.2 - Geometrical approximation of a
by high uniaxial stress along (213> 60°-bend

Different types of bends - After 1low stress deformation the separation of the
partials d is small compared with the radius of curvature R. Therefore the
dislocations may be treated like perfect ones. For high stresses this condition 1is
not fulfilled and the actual situation of all partials in the bend has to be taken
into account.

In a hexagonal loop of a perfect dislocation two types of bends occur determined
by the character of the tangent at the apex (segment BD, Fig.2):
1. the 30°-type (transition from a srew to a 60°-dislocation)
2. the 90°-type (transition from a (-60°)- to a(4+60°)-dislocation).

In a dissociated dislocation loop for both the leading and the trailing partial
other two types of bends occur:
1. the 0°-type (transition from a (-30°)- to a (+30°)~partial)
2. the 60°-type (transition from a 30°- to a 90°-partial).

Three approaches to the line tension
1. A rough approximation of the line tension which is often given in the literature
is 2

S = Gb (G = shear modulus) 3)
Here the variation of line energy with the character of the dislocation is not taken
into account.Since there is a clear evidence for an orientation dependence of the
line tension from the experimental results (Fig.3, different curvatures for
different types of bends) this approximation is not useful.

2. The orientation dependent line tension approximation first givem by de Wit and
Koehler /3/ and discussed by Hirth and Lothe /4/ for a bow out of length L is given
in the form (v = Poisson's ratio)

2
S = wS/L +C)ﬂ2(w /L) m ((l-Hl)cosﬂ + (1- 2v)51nﬂ) 1ln (L/e?) (4)
lne =1; (Gb /4u)K'1n(L/eg) (4a)
with the energy of a dlslocatlon segment of length L
= (Gb /4‘»‘)(cosﬂ + sinﬂ/(l-v)) L ln(L/ef) (5)
Considering the dislocation bend the parameter L is not clearly defined.Bis the
angle between dislocation line and Burgers vector and is a suitable cut-off para-

meter which Hirth and Lothe assume to be b/8 /5/. Hirth and Lothe chose ¢ so small

to include the dislocation core energy. In the literature some similar relations are

predented variing in the logarithmic term. In most cases the cut-off radius is

chosen larger. Weertman and Weertman /6/ in a simpler approximation not taking into

account the orientation dependence of line tension use 1n(R/5b). When the 1length L

is identified with the segment BD in Fig.2 the comparison of both parameters yields:
L = BD = R/(2tgl5°) = 2R/(2+¥3) (6)

t

L/(eg) = R/(1.866ep) = R/(5.07¢) = R/(5b); ¢ = b (6a)

It is shown later that the experimental results for ¢ = b are in satisfying
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agreement with this calculation, if the applied stress is low and therefore the
radii of curvature are large. That confirms that the properties of the bend are
determined by the character of the dislocation segment BD (Fig.2) in the apex of the
bend. Another simple choice for L is L = R; its effect is described later.

3. VWhen using the orientation dependent .line tension eq.(4) the actual arrangement
of dislocation segments outside the bend 1is not considered. The forces of the
straight segments adjacent to the bend, however, acting on the dislocation at the
apex are parts of the self force.
To improve the calculation of the line tension for an application to dislocations at
high stress a method described by Hirth and Lothe /4/ is applied to the approximated
bend according to Fig.2. The curved dislocation segment ACE, 60°-sector of a circle
with radius R is approximated by the straight segments AB, BD, and DE. The energy of
an arbitrary segmented dislocation arrangement considered by the authors is composed
of the self energies W,, and the interaction energies W.. of all segments
S3i i
W= S W, + & W
8i i<j ij
For a dislocation bend part of a large loop (diameter D>”R) the line tension results
to
FOUSE S =m]'_iL“w(aw/al)/m = const. 2
m = MT = M'T (Fig.2); for dl, the differential change of the dislocation length 1,
one finds (see Fig.2)
dl = dL(1-2/43)
For the four bend types in consideration the results are (v (Si) = 0.217), setting:

p =42 +f)  q=20 -NWEBE -2)  E= (/e
1. 0°-type S = (E/Q){q -~V In (L/¢) + (4 -~ 3v) 1n p) (8>
8(si) = E K in (R/2.687¢); K = 1.517 9)
2. 30°-type 5 = (E/2q)((4¥3 - 8 - v(3/3 - 5)1n (L/g) + (8 - 5v) 1n p) (10)
8(8i) = E K 1In (R/2.869¢); K = 1.328 1n
3. 60°-type S = (E/2q)((4¥3 - 8 - v (/3 - 3)) In (L/g) + (8 - 3v) 1n p) 12)
8(si) = E K 1n (R/3.538¢); K = 0.949 (13)
4. 90°-type S = (E/qX(2(f3 - 2) + %) 1n (L/@) + (4 -v) 1n p) 14)
5(si) = E K In (R/4.247¢); K = 0.760 (15)
g%u
3004

250

: f ] ” . R
; i ———— = am
100 200 300 400 500 600 700

Fig.3 - Dislocation loop in a speci- Fig.4 - Calculated stress vs radius of
men with low stress applied (30 MPa) curvature R. Lines 2 to 4:30°-type bends
bend A: 30°-type; bend B: 90°-type Line 5: 90°-type bends (eq.(15),¢=b)

Line 1: both types (eq.(3));
2: eq.(11) ¢=b/8; 3: eq.(11) ¢ =b;
4: eq. (4) ¢=b, L from eq.(6).

Comparison of the calculations - The comparison of the pre-logarithmic factors K in
eq. (8) ... (15) with the factors K' given by the orientation dependent line tension
calculation (eq.(4a)) shows that they are identical in practice (Table 1).
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Table 1 - Pre-logarithmic factors for the actual 60°-bend calculation K and for the
orientation dependent line tension calculation K' (eq(4a)).

Bend-type K K'
0° 1.517 1.554
30° 1.328 1.346
60° 0.949 0.931
90° 0.760 0,723

Both results for S only differ in the logarithmic term in a factor of the cut-off
parameter ¢ . Setting Q@ = b and calculating the self stress for a bend of the
30°-type using eq.(2a) and L according to eq.(6) yields a larger increase of the
stress for small radii of curvature when using eq.(11) instead of eq.(4) (Fig.4,
lines 3 and 4). If L = R is used in eq.(4) the results are nearly equal to those of
eq. 11 (line 3 in Fig.4).

If9 = b/8 as assumed by Hirth and lothe is applied to eq.(ll) the stresses
become remarkably higher (line 2 in Fig.4).

Line 5 is the stress calculated for bends of 90°-type (eq.(15)). For the self
stresses of 90°-type bends calculated by eq.(4) (L = R, ¢ = b) slightly higher values
are obtained (5% for large radii of curvature (500mm) up to 10% for small radii
(25nm) .

Additionally the results using the rough estimate of eq.(3) (line 1) ‘are shown
in Fig.4.

Results of the measurements and discussion
1. Perfect dislocation under a stress of 30 MPa (Fig.3)

30 30
20 20 :
10 10 i
R ; -
300 500 700 fnm] 20 30 40 50 MPa
Fig.5a Histogram of measutred R of bends Fig.5b Histogram of calculated stresses
of 30°-type in samples of type A. from Fig.5a using eq.(2a;4;6) ¢ =D

(From A. Ténnessen, H. Gottschalk,and H. Alexander, to be published)

Fig. 5b shows an accumulation at 30 MPa,the deforming stress. Because of the
interaction of dislocations in the deformed specimen it is reasonable that stresses
below and above 30 MPa are found. In this stress region the use of eq.(4) or eq.(11)
does not change the results (Fig.4, lines 3 and 4) ifo = b is chosen. Ifg = b/8 is
used in eq.(11) (Fig.4, line 2) for all measured radii (R < 800nm) the calculated
stresses lie above the applied stress 7 = 30 MPa which is not reasonable. When using
the simple line tension approximation according to eq.(3) the overestimation of the
stresses becomes even higher.

Therefore the cut-off parameter ¢ = b which leads to a satisfying agreement
between the measurements and the calculations for low stresses shall be used for the
high stress experiments,too.

For the bends A and B of different types in Fig. 3 the radii of curvature are: A
(30°-type bend), R = (540#30) nm; B (90°-type bend) R = (250 % 20)nm. Both
curvatures lead to the samé stress 7 = (322 2) MPa which is in good agreement with
the applied stress.

2. High stress (7 = 350 MPa) acting on isolated partials (Fig.6)

In high stress deformed {2,1,11)-oriented specimens dislocations with very wide
separations (d> 1 pm) are found (Fig.6). In such a case the partials can be treated
as isolated and from the radii of curvature of their bends the local total force on
the dislocation can be calculated which is the sum of the driving force on the
dislocation and the stacking fault energy (g*(Si): 58 mJ/m2 /7/). The driving forces
in general are different for the leading and the trailing partial. In the given
crystallographic orientation of the stress axis one obtains for the driving force
on the leading partial Fp], and the driving force on the trailing partial Fpr :

FpL = (7/12)bt FpT = (5/12)b%
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The total force on the leading partial F, and on the trailing partial FT is:

L

-2 -2
FL = FDL -y= 2.0-107° N/m FT = FDT +p=11.4-10"" N/m (Z = 350 MPa)

These forces should be equal to the self forces of the bends what in fact is found
from the experiment for the leading partials. For the average values of S/R of both
types of bends (0°-~type and 60°-type) using eq.(2), and (9) and (13) respectively
(g = H}) one obtains: ( n is the number of bends measured)

0°-type: n =20 S/R = (1.9% 0.5)-1075 N/m

60°-type n = 15 S/R = (2.2 % 0.5)-107° N/m

The bends of trailing partials in the isolated form are less frequent. Therefore
only a few measurements could have been performed until now.

0*-type: M5 $/R (8/8/5.3/4.4/4.4)~10'§ N/m
60°-type: n=4 S/R = (6.3/6.1/5$2/4.6)-10' N/m
For both types the measured radii are found too large and the self forces too small.
Though the number of measurements must be increased it may be concluded that there
is no equilibrium between driving force and back force in case of the trailing
partials. As the driving force is higher than the back force one may assume
obstacles beeing present at the trailing partial /8/.

R=50+10nm 30/30 B
> 1

R=65¢15nm D2
71nm

90/30
B
R=30+5nm R=2525nm
e —
30/90 16 o
nm
45
45:10nm nm
- >
1 um R=50+10nm 30730 f
Fig.6 - Isolated partials (350 MPa), Fig.7 - "Average'' dislocation loop
stress axis ¢(2,1,11° (250 MPa), stress axis <213)

3. High stress (7 = 250 MPa) acting on complex bend configurations (Fig.l)

For the partial dislocations in specimens of type B beeing deformed by compression
along (213) the driving forces are
P, = (5/12)b% = 4+107 N/m Fop = (7/12)b% = 5.6-107 N/m

By taking the averages of the bend curvatures and of the separations measured for a
large number of dislocation loops an average dislocation loop is constructed which
is shown in Fig.7. According to the different positions of the partials three
different bend-types occur, called A, B, C.

Taking the mean values of the outer and inner bend for the three types though they
are found to be different and considering the loop dislocation as a perfect one the
following stresses are calculated:

A 166 MPa (eq.(2a),(4)) 190 MPa (eq.{(la), (11))
B 145 MPa (eq.(2a),(4)) 163 MPa (eq.(2a),(15))
c 189 MPa (eq.(2a),(4)) 220 MPa (eq.(la),(11))

With this simple method a fairly good agreement with the deformation stress is only
achieved for the bend type G wusing the improved 1line tension calculation
(eq-{11),(15)). It fails for bend types A and B.

For a detailed calculation of the line tension the complicated actual situation
of the partials in the bend has to be taken into account. The geometrical
approximation according to Fig.2 is shown in Fig.8. A further approximation is made
by taking the self force (eq.(2),(9) or(13)) of the isolated partial contributing to
the force on the segment L and L' respectively. Then the forces of the three partial
segments lying opposite to the segment L or L' in consideration must be added. For
the calculation of the interaction forces of these segmented partial dislocations a
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method given by Hirth and Lothe /9/ is applied. The
resulting forces on the segments L and L' are slightly
locally variing but only the value at the apex of each bend
is considered here. Table 2 contains the results of the
computations for the three leading and the three trailing
bends. The interaction force Fj; means the force exerted by
dislocation i on dislocation™ j. The dislocations are
numbered according to Fig.8. The forces pointing in the

Fig.8 - Dissociated direction of the driving forces are counted positive.
dislocation bend 2
Table 2 - Forces on the dislocations in a dissociated dislocation bend (10™° N/m)
Bend type A{lead.) A(trail.) B(lead.) B(trail.) C(lead.) C(trail.)
S/R ~2.10 -2.92 -3.07 -3.51 -3.58 -2.28
F25 or F52 +2.61 -2.31 +4.63 -5.60 +6.65 -6.55
F15 or F42 +0.01 -0.45 +0.53 -0.66 +0.18 -0.30
F35 or F62 -0.17 -0.09 +0.71 +0.10 -0.62 -0.28
T -5.80 +5.80 -5.80 +5.80 -5.80 +5.80
FD +4.00 +5.60 +4.00 +5.60 +£4 .00 +5.60
Sum -1.45 +5.98 +1.00 +64.53 +0.74 +1.99

The sum in the last line of Table 2 should yield zero. While the results for the
leading partials in bend B and C are fairly satisfying, if the error is considered
which arises when adding up so many contributions, the results for the trailing
partials in particular do not fit to the assumption of an equilibrium between the
driving force and the back force in the bend.

Conclusion - It is shown that the calculation of the line tension and the stresses
in a bend is very sensitive to the choice of the cut-off parameter ¢ . Setting it
equal to the Burgers vector excellent agreement of the stress derived from the bend
curvatures with the applied stress is achieved. Using an improved calculation of the
line tension taking the actual dislocation arrangement into account the applied
stress can be derived from the bend curvatures for isolated leading partials, too.
That fails, however, completely for the trailing partials.

These results mean that for the dislocation under low stress conditions and for
the isolated leading partials under high stress conditions a steady state motion of
the bends can be assumed for which a perturbation of the equilibrium state can relax
in a short relaxation time. This seems not to be valid for the trailing partials for
which interaction with unidentified obstacles may occur. These assumptions are
confirmed by the results for dissociated dislocation bends. As 1in these cases the
measured radii of curvature for the leading and the trailing partial are fairly
similar a breakdown of the computations because of quite different radii of
curvature is impossible.

The special role the trailing partials apparently play should be further
investigated by additional measurements of isolated dislocation bends and by an
improvement of the calculation of the complicated configuration of dissociated
bends. The application  of  the linear anisotropic elasticity theory to curved
dislocations, however, as outlined e.g. by Scattergood /10/, should only result in
slight modifications since the anisotropy factor of Si is only A = 1.56.

Acknoledgements - The author wishes to thank Prof. Dr. H. Alexander for stimulating
discussions and Dipl. Phys. W. WeiB for his experimental contributions.
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