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SOME PROPERTIES OF ONE ELECTRON ATOMS IN INTENSE MAGNETIC FIELDS

M.R.C, McDowell

Mathematics Department, Royal Holloway College,(University of London),Egham
AL1ll, Egham, Surrey TW20 OEX, U.X.

Résumé. - Les propriétés des systémes a& un é&lectron dans un champ
magnétique intense sont tout d'abord passées en revue. Un travail
récent sur les états 1liés et sur les transitions entre &tats liés
est ensuite discuté ainsi que le probléme de l'espacement des
niveaux d'énergie associés au mouvement transverse, dans le con-
tinuum. De nouveaux résultats sur la variation de cet espacement
avec z sont présentés dans le cas d'un champ d'intensité 107G,
pour m = ~1. On montre que les états de nombre quantique principal
n & 5 deviennent "1liés" pour z petit. Ceci est interprété en
termes d'ionisation par champ. Des lois d'échelle pour la diffu-
sion d'électrons par des cibles & un électrcn sont ensuite rapide-
ment discutées.

Abstract. - The properties of one electron systems in intense
magnetic fields are reviewed. Recent work on bound states and
bound-bound transitions is discussed, as is the problem of the
energy level spacing for the perpendicular motion in the
continuum. New results are presented for the variation of this

spacing with z in the case of a field of 107G, for m = -1.
It is shown that states with Landau quantum number n < 5
become "bound" at small z. This is interpreted in terms of

field ionisation. Scaling laws for electron scattering by one
electron targets are briefly discussed.

1. Introduction. ~ We consider some properties of one-electron atoms
in intense magnetic fields. Relativistic effects are neglected.

We first discuss the bound states and their scaling. This leads
on to a discussion of the bound-bound transition probabilities, and
their scaling. The main new results concern an adiabatic approx-
imation to the energies and wave functions of the guasi-Landau levels
embedded in the continuum. Some remarks are made on photoionisation,
and recent exact and approximate scaling laws for this process
reviewed. The problem of electron scattering by one electron targets
in a magnetic field is discussed, and it is shown that the first Born
approximation is valid for all energies at sufficiently high nuclear
charge.

2. Bound states and energy levels. - We consider a uniform static
magnetic field B along the z-axis, and choose cylindrical polar co-
ordinates (p,0,2). We write

B=BZ (1)
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with
= B = 5
Y =§ . B, 2.3505 10°T (2)
and suppose that the mass of the nucleus may be taken as infinite.
Finite mass effects are significant at very high fields _(y >> 1)
and have been considered by, among others, Herold et al . We take
the nuclear charge as o e. The Schrd&dinger equation is

HY = EY (3)

with

Q

(9]

o, 1 1.2 2
2t gvL, tgvie (4)

and the eigenfunctions ¥ have a conserved value m of azimuthal
quantum number and parity w. We may put
-1 i

Y(r) = p % £(p,z)el™ (5)

to obtain

22, % el -
— + -V, (pr2z) + E £flp,2z) =0 (6)
dp? 222 J
with
E'=E-+vym (Ry)
and
2 _ 3 20
Vo (pez) = S o0y izl (8)
0 (p? +.2%)7

The boundary conditions are
£(0,z) = 0O, f(»,z)> O

and in general we consider quadratically integrable solutions. The
differential equation (6) is of course non-separable, and recourse
must be had to approximate methods. Work up to 1975 has been reviewed
by Garstang(2), and we will comment only on some recent results. For
weak fields the quadratic Zeeman term %v2p2% may be treated as a,
perturbation. For very high fields (y >> 1) the Coulomb term - 0o
may be considered as the perturbation and an expansion made in x
terms of Landau functions. At intermediate field strengths, vy ~ 1,
variational methods are available, either in terms of specified basis
functions, or in a Hartree-Fock approach. Here Yy = y(op, = 1) and
we will see later that it must be scaled for o, # 1. Most calcu-
lations are confined to the lowest fourteen levels, that is those
which go to the nth level, 'n < 3. However Patil(1l7) has recently
given analytic expressions for the high field energies of states with
n > 3. At low fields we may label the energies by the quantum numbers
(n2m) as in the field free case. The results (Schiff and Snyder({3))
have recently been compared with variational calculations by Ruder et
al(4). 'The perturbation calculation is accurate for the ground state
to better than 1% for Y1 < 0.43 and to better than 0.7% for all
these states at v; = 4.3 10™° when compared with the variational
calculations of Kara and McDowell(5). fThe |3s > and |3a > states
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combine as

1
|3sO > 0.402 |3s > + 0.916 [3a >

(9)

|3do'> 0.916 |3s > - 0.402 |3d > .

The tabulated values omit the finite mass correction term which is of
order 1.5 107° ym(eV) = 10”7 ym Ry.

A mixed variation-perturbation calculation which uses only two
variational parameters by Cohen and Herman (6) for Ilso>, |2so>,
|2po>, |2p 1> fails badly for |[2s,> at vy, = 0.43.

The adiabatic approximation has been used by Simola and vertamo (7)
and by Wunner(8) and polynomial approximations to the energy levels
given by Wunner and Ruder(2)., They give results for vy < 2 x 10°.
The states are labelled by the Landau guantum numbers (n,m) and the
number v of nodes in the longitudinal wave function. For odd, but
not for even, Vv the energies approach the infinite-field limit by
vy v 2 x 10*. Wunner and Ruder(9§ use these results to compute the
wave lengths of the Balmer series lines in fields appropriate to
neutron stars. An alternative approach has been used by Bender et
a1(18) for the lowest state of each m. They expand

Y o
- =-s
E——z- % Esk
n s=1
with k =2 (|m| + 1) and n is a dimensionless parameter related to

the minimum of V, (p,2z). They obtain analytic expressions for E-,
through E,.

As was first shown by Surmelian and 0'Connell (10) the energies
scale as

= 2 2
Ej(ao,B) = o Ej(l,B/ocO ) (10)
and the wave functions as
3
= /2 2
wj(ao,B,g) = o ¢j(l,B/aO 10 X) (11)
as may readily be proved from (1) and (2). Thus non-relativistic
energies are known for the lowest fourteen states for the entire iso-

electronic sequence. Fig. 1 shows the variation of the lowest
energy levels with field strength (o, = 1).

Fig. 1

The six lowest lying levels
of atomic hydrogen as a
function of magnetic field
strength. B (Gauss) (after
Ruder et al(4)).
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3. Dipole matrix elements and oscillator strengths. - Einstein Ajj
coefficients and oscillator strengths of transitions connecting the
lowest fourteen levels have been given by a number of authors (Brandi
et al{ll), smith et a1{l2), Kara and McDowell(5), Wunner et al(l3),
Wadehra{l4)). The results are in general in close agreement, and
those for six transitions are shown in Fig. 2, adopted from ref. (13).

Fig.2.
T

T T T

3po—230

Fig. 2

Oscillator strengths for
transitions among the low
lying levels of atomic
hydrogen as a function of
field stren?th (after
Ruder et al{4).

o
10949 B(G)

It is important to note that fp,+* can vary by almost five orders of
magnitude when <Yy changes by a factor of 100! This is, in particular,
the case for the |[2s > > |2p,>  transition. The discordant results
of ref. (11) and ref. (8) for the very weak [3d:1> + |3p*1> tran-
sitions have been resolved by Ruder et al{4) in favour of Brandi et
al(ll). wWunner et al(l3) show that the dipole matrix element scales

as

2

d vy (0G/B) = a5 d ., (1,B/af) (12)

n'n
so that the oscillator strength scales as{(15)

£1n(00/B) = £, (1,B/0?) (13)

nl
as might have been expected in view of the sum rule.

These results have been used by Ruder et al(1l5) to discuss the
spectrum of H-like iron (Fe XXVI) in neutron star accretion layers
where fields of order 10'! to 10'3G may be present. This corresponds
to effective fields <y in the range 0.1 < y < 10. The Ly 1line
has a photon energy increasing from 7 keV at 10!'G to 21 keV at 10!%¢G
and a lifetime of order 10-1!%s.

A guite different approach is required for the Rydberg levels, and
has been discussed by Clark and Taylor in a number of papers(16).
Since they will be discussing their work in detail at this meeting we
merely note here that they consider states near the ionisation limit,
where the ionisation potential is of the same order as the cyclotron
energy. They use a very large Sturmian function basis and obtain the
eigenvalues for n > 23, and corresponding oscillator strengths, to a
resolution of 0.1 cm~'at 4.7T. No study has yet been made of the
variation of oscillator strength with field, but we would anticipate
significant variation when Ay ~ O (AEpnp.). At n = 23, AEy p+) © 1.5
10°* Ry and at 4.7T, vy = 4.25 10°°® Ry, so one would not expect much
change between n manifolds for small field changes. However, we
would expect significant variation among the Balmer emission lines
from a given n.
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4. Continuum levels. - Much less is known about the continuum levels
of one-electron systems in magnetic fields. The photoabsorption
experiments of Garton and Tomkins(19), Garton et al(20), castro et
al(2l), Gay et al{22) and Delande and Gay(23) appear to show a level
spacing just above the ionisation threshold of AEp n+1 = 3y Ry. The
spacing expected in the absence of the Coulomb interaction is of
course 2y R{, the Landau spacing. The explanation was first given
by Edmonds(24). He argued that near E = O the semi-classical
frequency associated with motion along the z-axis was small compared
with that of the cyclotron motion, and evaluated the energy in a
plane perpendicular to 2z using a JWKB approximation,

& 1 1 2l
jI:En,L____%-_(m»,;ﬂpz) do= = (n+ % (19
P, (p? +2%)% 207

where n is the number of nodes in the radial wave function; pj

the classical turning points. The Landau spacing is recovered

when 2z >> p, but for small z he foynd (dE/dn)~! = 3,16y Ry.

This work was later refined by Starace(25) and Rau(26). very recently
Gallas and 0O'Connell{27) have shown, following Starace and Rau, that
for the motion in the 2 = O plane, the energy spacing can be
expressed analytically in terms of complete elliptic integrals, of the
first and third kinds. Applications to the experimental spacings in
Rb have been reported by Economou et a1(28) and to Ba and Sr by
Fonck et a1(2%2), There is no need to make the JWKB approximation: Kara
and McDowe1l1(30) have solved (6) directly for 2z = O. Their results for
two cases are compared in Table 1. The spacings found are appreciably
different from the JWKB Coulomb-Landau limit. It is well known that

Table 1

(1) B=107G6, m=-~-1

n En' En, (JWKB) AE

7 2.726 2.717

8 5.317 5.309 §°2g

9 7.796 7.789 .
(2) B=5x 10, m=-1

1 0.309

2 2.661 2.643 g'gi

3 4.872 4.857 2.21

4 7.020 7.006 .

Exact solutions of eqn. (6) in the 2z = O plane compared with
JWKB values. AE is the level separation. All guantities are
in units of y Ry.

AEéTﬁff + 2y Ry as n becomes large. What had not fully been apprec-
iated before the Kara and McDowell calculations was that there are

no solutions for n < npi, (y) £for the motion perpendicular to the
z-axis. Thus Kara and McDowell found (Table 1) that many gquasi-
Landau levels were missing in the 2 = O plane at fields below 10° G.
These states certainly exist as 2z » «: they are the field-free
Landau levels. Further, n is here the number of radial nodes in the
perpendicular motion, and is conserved as we vary 2. We can attempt
to trace these states adiabatically, and write (6) as
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Table 2
m  B(G) 107 108 5 x 10°% 10°
-1 6 3 1 1
o 7 3 2 2
1 6 2 1 o)

Minimum value of n for the perpendicular motion in the z = O
plane at different fields.

82 82 ' -
{5;2-+ 2 Vm (p,zo) + Em C(Z)on(p) =0 (15)
for fixed z = z,. We assume the radial wave function FZO(p) is a

slowly varying function of 2z and neglect Fy; = 3Fz,(p)dz and

Fzz = 3’Fz,(p)/3z%. That is, we assume <Fz> and <Fyzz> << kj?
where <> "indicate averages over p for fixed =z = z,. This
remains to be confirmed. Integrating outwards from the origin we can
obtain a starting series by putting

R L I 2T T (16)
0O

To find the eigenvalues for fixed Landau quantum number n, we either
start at z = O with Kara and McDowell's values, or at very large =z
with the Landau value. Nuzzo and McDowell(3l) have carried out
calculations initially for B = 107 ¢ and m = ~1. Further work is
in hand. The results to date are shown in Fig. 3. For n = 7 and

n = 6 the energy of the perpendicular motion decreases smoothly from
the Landau value with decreasing z to the 2z = 0 1limit. However,
for n =5 for which no z = O eigenvalue with E > O was found,
Es (z) changes sign near 2z, = 4.0 and goes to a zg = O limiting
value of =-2.095y7 Ry. Note that this lies almost exactly 3 YRy
below the first continuum state (n = 6): here vy = 0.0043, so at
Zo, = 0 the n =5 state lies just over 100 meV below the ionisation
threshold. It follows that the states with n = 0,1,2, 3,4 lie
below this at spacings of about 0.17 eV, and thus we predict the

n = 0 state to be bound by about 1 eV at 2z, = O. Within the limits
of our adiabatic approximation, which remains to be tested, this
appears to mean that the very high lying Rydberg states are in effect
field ionised by the magnetic field. This might be directly testable
at fields of 100 T (10° G) where the binding of the n = 0 level
should be about 0.1 eV, provided this is much greater than koT.

Fig.3.

Fig. 3

The adiabatic energies of
motion perpendicular to the
field in the n = 5,6, 7
states of m = -1 of the
continuum at a field

vy = 0.0043 (I107G):

10g49(2+1)
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5. Photoionisation. - The photoionisation cross section is given by(3o)

1o Nmax L, .
a, = 8.59 10 hv n=r21 ' ISigl 7 om (17)
min 4

where we adopt a quantisation length of L, along the field. The
density of states is

]
|-

= -2 .
P(E}) =55 ° 3

'

z

where E; = kz2 is the energy of the ejected electron in Rydbergs, and
Sif  is_the dipole matrix element. Calculations have been made by
Ruder(32) and his colleagues for Fe XXVI at very high fields (y >> 1)
using an adiabatic approximation for the continuum wave function

\Pn,m,kzz (x) = ¢1'(II];-:‘1) (o, ¢)gnmkzz (2) (18)

where the z-component is obtained by solving

20
4* 2, (1) o . (L) =
{dzz TR F <dnm | r Iq)nm g gnmkzz =0 (19)
with the boundary condition of no outgoing wave at 2z = -« and
regular and irregular solutions
gt N etikz exp{i ﬁi Ink z} . (20)
|zl-)-oo Z z

They use the full electromagnetic Hamiltonian and do not make the
dipole approximation, but restrict themselves to photoionisation into
the first Landau level. A scaling law(37) then allows them to write
down the result for any one electron system

o(ao,B,E,E', k) = ag' o(1,Ba5®,Eag®,E'ag”,kas’) (21)
E+hkc = E'.
Kara and McDowell(3o) have made similar calculations at interme-
diate field strengths 107 to 10° G (0.0043<v<0.43) for photoionis-

ation from both the 1s,> and |2po> states, using accurate ground
state wave functions. For the continuum wave functions they choose

with

=coX £nlp,0) elkz2 oimé (22)

lyn,m,kzz (r)

Because of the choice of z = z, they found the main resonant behaviour
at the thresholds of the bound states of perpendicular motion in the

z =0 plane, rather than at the L.andau energies (z + «). The dis-
cussion in section 4 above suggests that since these energies vary with
z some sort of averaging procedure will be needed to obtain accurate
results. Kara and McDowell found, following Blumberg et al(33) that
the cross section behaved near threshold as k, for |[Am|=1 tran-
sitions but as kz; ' for |Am|=0 odd parity bound states, and the
reverse for even parity bound states. They used the dipole approximate
for which the simple scaling law(37)

_ =2
a\) (aolB) = 0‘0 a\)l (lIB/OCOZ) (23)

with
v' o= v/ag? (24)

applies. There are no available measurements except those of Blumberg
et al(33) on S~, but both experiment and theory for H~ are in hand.
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6. Scattering of electrons by one electron targets. = McDowell (34)
has recently reviewed the work to date on the scattering problem, and
attempted to derive scaling laws. Using the uni-dimensional density
of final states for the scattered electron the cross section for the
transition in which the incident electron makes a transition from a
continuum state |njmjkij> to a final continuum state |ngmgke> while
the target goes from initial bound state |n{b)2imgi> to

|n{b)zimzi> to |néb)£fmgf> is(35)

2
2z

2y o L2
o, (k%) = K kg [<£]T|i>]". (25)

The only detailed calculations to date are by Ohsaki (36) who considers

e~ + H(ls) » e~ + H(ls,2s,2p)

at fields of 10° and 10° Gauss and impact energies up to 90 eV.
Unfortunately he uses unperturbed wave functions, which are of
doubtful value for the ground state at such fields, and totally
unreliable for the excited states. In addition he carries out the
calculation in the First Born Approximation (FBA) which is unlikely to
be valid at such energies. His quantitative results are thus unlikely
to be correct but the main gualitative feature may be. The incident
and scattered electron are, in FBA, represented by unperturbed Landau
functions so he finds large resonant enhancements of the excitation
cross when the kg = (AE;¢ + 2jv) Ry, J =1,2,3....

Consider an electron scattered by a one-electron target of nuclear
charge a,. The bound electron sees the full nuclear charge, but the
incident electron sees only the residual Coulomb field of charge
(uo - 1). We can therefore partition the Hamiltonian as

(o - 1) o
= 2__0o 7 2_ o -1 1
H Hl T, ] + [HZ rl] rl + T, (26)

where 1; is the full momentum (i = 1,2).
In FBA the T-matrix is, neglecting exchange,

BI _ . (b) .
Tig = <¥ingmik.;r,) ¥ (n'y kimzi,gz)

I S
rya r

. (b)
¥(ngmekesr;) ¥ (n'g m2f2f|£2)> (27)
wvhere Y(---; r;) satisfies (3) with charge f{(a, - 1) and
¥(---3xr,) with charge a,. It is clear that no simple scaling law
exists. An approximate result may be obtained when a, >> 1. The FBA
matrix element scales as o4, S0 for the nuclear charges o,;,a, >> 1,

hence for incident energies ki = ai*k? and fields Bj = a;i’B
(i =1,2),
BI — "2

o, (apkysB)) =07 C,p
and

o] Bz(a k,,B,) = a_z (o}

if 2720720 M if

so

B2
ar? o, B oy kB = 020, B2 (a,,k,,B,) . (28)
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The second Born term <i|V G}|v> scales_independent of charge,
since the Green's function G+ scales as agz; the third and higher
terms go as agl!, ag?, ... eté. That is, provided o, >> 1, the Born
series is an expansion in og!. Thus for sufficient large charge (28)
is true for the full cross section to a good approximation, at all

energies

Bl
dl Olf 2 af Oif(allker1) = mf Uif(uz:kerz) . (29)

In the case of atomic hydrogen alone, where the continuum electron see
the magnetic field modified by a short range field it may be a satis-
factory approximation to represent this electron by a Landau function.
This is not true when the residual charge (o, - 1) is non-zero:

then the solutions of (3) must be used for both electrons. Detailed
calculations will be very difficult, as cross sections for the atomic
processes must be summed over all allowable final quasi-Landau states
and averaged over all initial quasi-Landau states. Presumably for
transitions in, e.g. hydrogen-like iron, which are of interest for
astrophysical purposes, one could assume a Boltzmann distribution of
electron energies, but it is not clear how these should be partitioned
among quasi-Landau levels.
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