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Abstract

The G-protein coupled receptor (GPCR) superfamily is currently the largest class of ther-
apeutic targets. In silico prediction of interactions between GPCRs and small molecules is
therefore a crucial step in the drug discovery process, which remains a daunting task due to the
difficulty to characterize the 3D structure of most GPCRs, and to the limited amount of known
ligands for some members of the superfamily. Chemogenomics, which attempts to character-
ize interactions between all members of a target class and all small molecules simultaneously,
has recently been proposed as an interesting alternative to traditional docking or ligand-based
virtual screening strategies.

We propose new methods for in silico chemogenomics and validate them on the virtual
screening of GPCRs. The methods represent an extension of a recently proposed machine learn-
ing strategy, based on support vector machines (SVM), which provides a flexible framework to
incorporate various information sources on the biological space of targets and on the chemical
space of small molecules. We investigate the use of 2D and 3D descriptors for small molecules,
and test a variety of descriptors for GPCRs. We show fo instance that incorporating informa-
tion about the known hierarchical classification of the target family and about key residues in
their inferred binding pockets significantly improves the prediction accuracy of our model. In
particular we are able to predict ligands of orphan GPCRs with an estimated accuracy of 78.1%.

1 Introduction

The G-protein coupled receptor (GPCR) superfamily is comprised of an estimated 600-1,000 mem-
bers and is the largest known class of molecular targets with proven therapeutic value. They
are ubiquitous in our body, being involved in regulation of every major mammalian physiological
system (Bockaert and Pin, 1999), and play a role in a wide range of disorders including allergies, car-
diovascular dysfunction, depression, obesity, cancer, pain, diabetes, and a variety of central nervous
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system disorders (Deshpande and Penn, 2006; Hill, 2006; Catapano and Manji, 2007). They are in-
tegral membrane proteins sharing a common global topology that consists of seven transmembrane
alpha helices, an intracellular C-terminal, an extracellular N-terminal, three intracellular loops and
three extracellular loops. There are four main classes of GPCRs (A, B, C and D) depending on
their sequence similarity (Horn et al., 2003). Their location on the cell surface makes them readily
accessible to drugs, and 30 GPCRs are the targets for the majority of best-selling drugs, represent-
ing about 40% of all prescription pharmaceuticals on the market (Fredholm et al., 2007). Besides,
the human genome contains several hundred unique GPCRs which have yet to be assigned a clear
cellular function, suggesting that they are likely to remain an important target class for new drugs
in the future (Lin and Civelli, 2004).

Predicting interactions in silico between small molecules and GPCRs is not only of particular
interest for the drug industry, but also a useful step for the elucidation of many biological process.
First, it may help to decipher the function of so-called orphan GPCRs, for which no natural ligand
is known. Second, once a particular GPCR is selected as a target, it may help in the selection of
promising molecule candidates to be screened in vitro against the target for lead identification.

In silico virtual screening of GPCRs with classical approaches is however a daunting task for
at least two reasons. First, the 3D structures are currently known for only two GPCRs (bovine
rhodopsin and human β2-adrenergic receptor). Indeed, GPCRs, like other membrane proteins, are
notoriously difficult to crystallize. As a result, docking strategies for screening small molecules
against GPCRs are often limited by the difficulty to model correctly the 3D structure of the target.
To circumvent the lack of experimental structures, various studies have used 3D structural models
of GPCRs built by homology modeling using bovine rhodopsin as a template structure. Docking a
library of molecules into these modeled structures allowed the recovery of known ligands (Evers and
Klabunde, 2005), and even identification of new ligands (Cavasotto et al., 2003). However, docking
methods still suffer from docking and scoring inaccuracies, and homology models are not always
reliable-enough to be employed in target-based virtual screening. Methods have been proposed to
enhance the quality of the models by global optimization and flexible docking (Cavasotto et al.,
2003), or by using different sets of receptor models. Nevertheless, these methods are expected to
show limited performances for GPCRs sharing low sequence similarity with rhodopsin, especially
in the case of receptors belonging to classes B, C and D. Alternatively, ligand-based strategies,
also known as quantitative structure-activity relationship (QSAR), attempt to predict new ligands
from previously known ligands, often using statistical or machine learning approaches. Ligand-based
approaches are interesting because they do not require the knowledge of the target 3D structure and
can benefit from the discovery of new ligands. However, their accuracy is fundamentally limited by
the amount of known ligands, and degrades when few ligands are known. Although these methods
were successfully used to retrieve strong GPCR binders (Rolland et al., 2005), they are efficient
for lead optimization within a previously identified molecular scaffold, but are not appropriate
to identify new families of ligands for a target. At the extreme, they cannot be pursued for the
screening of orphan GPCRs.

Instead of focusing on each individual target independently from other proteins, a recent trend
in the pharmaceutical industry, often referred to as chemogenomics, is to screen molecules against
several targets of the same family simultaneously (Kubinyi et al., 2004; Jaroch and Weinmann,
2006). This systematic screening of interactions between the chemical space of small molecules
and the biological space of protein targets can be thought of as an attempt to fill a large 2D
interaction matrix, where rows correspond to targets, columns to small molecules, and the (i, j)-
th entry of the matrix indicates whether the j-th molecule can bind the i-th target. While in
general the matrix may contain some description of the strength of the interaction, such as the
association constant of the complex, we will focus in this paper on a simplified description that
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only differentiates binding from non-binding molecules, which results in a binary matrix of target-
molecule pairs. This matrix is already sparsely filled with our current knowledge of protein-ligand
interactions, and chemogenomics attempts to fill the holes. While classical docking or ligand-based
virtual screening strategies focus on each single row independently from the others in this matrix,
i.e., treat each target independently from each others, the chemogenomics approach is motivated
by the observation that similar molecules can bind similar proteins, and that information about
a known interaction between a ligand and a GPCR could therefore be a useful hint to predict
interaction between similar molecules and similar GPCRs. This can be of particular interest when,
for example, a particular target has few or no known ligands, but similar proteins have many: in
that case it is tempting to use the information about the known ligands of similar proteins for a
ligand-based virtual screening of the target of interest. In this context, we can formally define in

silico chemogenomics as the problem of predicting interactions between a molecule and a ligand
(i.e., a hole in the matrix) from the knowledge of all other known interactions or non-interactions
(i.e., the known entries of the matrix).

Recent reviews (Kubinyi et al., 2004; Jaroch and Weinmann, 2006; Klabunde, 2007; Rognan,
2007) describe several strategies for in silico chemogenomics. A first class of approaches, called
ligand-based chemogenomics by Rognan (2007), pool together targets at the level of families (such
as GPCR) or subfamilies (such as purinergic GPCR) and learn a model for ligands at the level of the
family (Balakin et al., 2002; Klabunde, 2006). Other approaches, termed target-based chemogenomic

approaches by Rognan (2007), cluster receptors based on ligand binding site similarity and again
pool together known ligands for each cluster to infer shared ligands (Frimurer et al., 2005). Finally,
a third strategy termed target-ligand approach by Rognan (2007) attempts to predict ligands for a
given target by leveraging binding information for other targets in a single step, that is, without first
attempting to define a particular set of similar receptors. This strategy was pioneered by Bock and
Gough (2005) to predict ligands of orphan GPCR. They merged descriptors of ligands and targets
to describe putative ligand-receptor complexes, and used SVM to discriminate real complexes from
ligand-receptors pairs that do not form complexes. Erhan et al. (2006) followed a similar idea with
different descriptors, and showed in particular that the SVM formulation allows to generalize the
use of vectors of descriptors to the use of positive definite kernels to describe the chemical and the
biological space in a computationally efficient framework. Erhan et al. (2006) were not able to show,
however, significant benefits with respect to the individual approach that learns a separate classifier
for each GPCR (except in the case of orphan GPCRs, for which their approach performed better
than the baseline random classifier). Recently, in the context of predicting interactions between
peptides and different alleles of MHC-I molecules, Jacob and Vert (2008) followed a similar approach
and highlighted the importance of choosing adequate descriptors for small molecules and targets.
They obtained state-of-the-art prediction accuracy for most MHC-I allele, in particular for those
with few known binding peptides.

In this paper we go one step further in this direction and present an in silico chemogenomics
approach specifically tailored for the screening of GPCRs, although the method could in principle
be adapted to other classes of therapeutic targets. We follow the idea of Bock and Gough (2005)
and the algorithmic trick of Erhan et al. (2006), which allows us to systematically test a variety of
descriptors for both the molecules and the GPCRs. We test two families of 2D and 3D descriptors
to describe molecules, including a new 3D kernel, and six ways to describe GPCRs, including a
description of their relative positions in current hierarchical classifications of the superfamily, and
information about key residues likely to be in contact with the ligand. We test the approach on
the data of the GLIDA database (Okuno et al., 2006), which contains 34686 reported interactions
between human GPCRs and small molecules, and observe that the choice of the descriptors has a
significant impact on the accuracy of the models. In particular, the best results are reached when

3



using the description of GPCRs within the hierarchical classification of the superfamily, combined
with a set of 2D descriptors of small molecules. This allows us to obtain dramatic improvements of
the prediction accuracy with respect to the individual learning setting. In an experiment where we
simulate the prediction of ligands for orphan GPCRs, we obtain accuracies of 78.1%, significantly
above the 50% baseline accuracy of a random predictor.

2 Method

In this section, we first review the methods proposed by Bock and Gough (2005); Erhan et al. (2006)
for in silico chemogenomics with SVM, before presenting the particular descriptors we propose to
use for molecules and GPCRs within this framework.

2.1 In silico chemogenomics with machine learning

We consider the problem of predicting interactions between GPCRs and small molecules. For this
purpose we assume that a list of target/small molecule pairs {(t1,m1), . . . , (tn,mn)}, known to
interact or not, is given. Such information is often available as a result of systematic screening
campaigns in the pharmaceutical industry, or on dedicated databases. Our goal is then to create a
model to predict, for any new candidate pair (t,m), whether the small molecule m is likely to bind
the GPCR t.

A general method to create the predictive model is to follow these four steps:

1. Choose ntar descriptors to represent each GPCR target t in the biological space by a ntar-
dimensional vector Φtar(t) = (Φ1

tar(t), . . . ,Φ
ntar

tar (t));

2. In parallel, choose nmol descriptors to represent each molecule m in the chemical space by a
nmol-dimensional vector Φmol(m) = (Φ1

mol(m), . . . ,Φnmol

mol
(m));

3. Derive a vector representation of a candidate target/molecule complex Φpair(t,m) from the
representations of the target Φtar(t) and of the molecule Φmol(m);

4. Use a statistical or machine learning method to train a classifier able to discriminate be-
tween binding and non-binding pairs, using the training set of binding and non-binding pairs
{Φpair(t1,m1), . . . ,Φpair(tn,mn)}

While the first two steps (selection of descriptors) may be specific to each particular chemogenomics
problem, the last two steps define the particular strategy used for in silico chemogenomics. For
example, Bock and Gough (2001, 2005) proposed to concatenate the vectors Φtar(t) and Φmol(m)
to obtain a (ntar +nmol)-dimensional vector representation of the ligand-target complex Φpair(t,m),
and to use a SVM as a machine learning engine. Erhan et al. (2006) followed a slightly different
strategy for the third step, by forming descriptors for the pair (t,m) as product of small molecule
and target descriptors. More precisely, given a molecule m described by a vector Φmol(m) and a
GPCR t described by a vector Φtar(t), the pair (t,m) is represented by the tensor product:

Φpair(t,m) = Φtar(t) ⊗ Φmol(m) , (1)

that is, a (ntar×nmol)-dimensional vector whose entries are products of the form Φi
tar(t)×Φj

mol
(m),

for 1 ≤ i ≤ ntar and 1 ≤ j ≤ nmol. A SVM is then used as an inference engine, to estimate a
linear function f(t,m) in the vector space of target/molecule pairs, that takes positive values for
interacting pairs and negative values for non-interacting ones.
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The main motivation for using the tensor product (1) is that it provides a systematic way to
encode correlations between small molecule and target features. For example, in the case of binary
descriptors, the product of two features is 1 if both the molecule and the target descriptors are 1,
and zero otherwise, which amounts to encode the simultaneous presence of particular features of
the molecule and of the target that may be important for the formation of a complex. A potential
issue with this approach, however, is that the size of the vector representation ntar × nmol for a
pair may be prohibitively large for practical computation and manipulation. For example, using
a vector of molecular descriptors of size 1024 for molecules, and representing a protein by the
vector of counts of all 2-mers of amino-acids in its sequence (dt = 20 × 20 = 400) results in more
than 400k dimensions for the representation of a pair. As pointed out by Erhan et al. (2006), this
computational obstacle can however be overcome when a SVM is used to train the linear classifier,
thanks to a trick often referred to as the kernel trick. Indeed, a SVM does not necessarily need the
explicit computation of the vectors representing the complexes in the training set to train a model.
What it needs, instead, is the inner products between these vectors, and a classical property of
tensor products is that the inner product between two tensor products Φpair(t,m) and Φpair(t

′,m′)
is the product of the inner product between Φtar(t) and Φtar(t

′), on the one hand, and the inner
product between Φmol(m) and Φmol(m

′), on the other hand. More formally, this property can be
written as follows:

(Φtar(t) ⊗ Φmol(m))⊤
(

Φtar(t
′) ⊗ Φmol(m

′)
)

= Φtar(t)
⊤Φtar(t

′) × Φmol(m)⊤Φmol(m
′) , (2)

where u⊤v = u1v1 + . . .+udvd denotes the inner product between two d-dimensional vectors u and
v. In other words, the SVM does not need to compute the ntar × nmol vectors to describe each
pair, it only computes the respective inner products in the target and ligand spaces, before taking
the product of both numbers.

This flexibility to manipulate molecule and target descriptors separately can moreover be com-
bined with other tricks that sometimes allow to compute efficiently the inner products in the target
and ligand spaces, respectively. Many such inner products, also called kernels, have been developed
recently both in computational biology (Schölkopf et al., 2004) and chemistry (Kashima et al., 2003;
Gärtner et al., 2003; Mahé et al., 2005), and can be easily combined within the chemogenomics
framework as follows: if two kernels for molecules and targets are given as:

Kmol(m,m′) = Φmol(m)⊤Φmol(m
′),

Ktar(t, t
′) = Φtar(t)

⊤Φtar(t
′),

(3)

then we obtain the inner product between tensor products, i.e., the kernel between pairs, by:

K
(

(t,m), (t′,m′)
)

= Ktar(t, t
′) × Kmol(m,m′). (4)

In summary, as soon as two vectors of descriptors or kernels Klig and Ktar are chosen, we can
solve the in silico chemogenomics problem with an SVM using the product kernel (4) between pairs.
The particular descriptors or kernels used should ideally encode properties related to the ability of
similar molecules to bind similar targets or ligands respectively.

In the next two subsections, we present different possible choices of descriptors – or kernels –
for small molecules and GPCRs, respectively.

2.2 Descriptors for small molecules

The problem of explicitly representing and storing small molecules as finite-dimensional vectors
has a long history in chemoinformatics, and a multitude of molecular descriptors have been pro-
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posed (Todeschini and Consonni, 2002). These descriptors include in particular physicochemical
properties of the molecules, such as its solubility or logP, descriptors derived from the 2D struc-
ture of the molecule, such as fragment counts or structural fingerprints, or descriptors extracted
from the 3D structure (Gasteiger and Engel, 2003). Each classical fingerprint vector and vector
representation of molecules define an explicit “chemical space” in which each molecule is repre-
sented by a finite-dimensional vector, and these vector representations can obviously be used as
such to define kernels between molecules (Azencott et al., 2007). Alternatively, some authors have
recently proposed some kernels that generalize some of these sets of descriptors and correspond to
inner products between large- or even infinite-dimensional vectors of descriptors. These descriptors
encode, for example, the counts of an infinite number of walks on the graph describing the 2D
structure of the molecules (Kashima et al., 2004; Gärtner et al., 2003; Mahé et al., 2005), or various
features extracted from the 3D structures (Mahé et al., 2006; Azencott et al., 2007).

In this study we select two existing kernels, encoding respectively 2D and 3D structural infor-
mation of the small molecules, and propose a new 3D kernel:

• The 2D Tanimoto kernel. Our first set of descriptors is meant to characterize the 2D structure
of the molecules. For a small molecule m, we define the vector Φmol(m) as the binary vector
whose bits indicate the presence or absence of all linear graph of length u or less as subgraphs
of the 2D structure of l. We chose u = 8 in our experiment, i.e., characterize the molecules
by the occurrences of linear subgraphs of length 8 or less, a value previously observed to
give good results in several virtual screening tasks (Mahé et al., 2005). Moreover, instead of
directly taking the inner product between vectors as in (3), we use the Tanimoto kernel:

Kligand(l, l
′) =

Φlig(l)
⊤Φlig(c

′)

Φlig(l)⊤Φlig(l) + Φlig(l′)⊤Φlig(l′) − Φlig(l)⊤Φlig(l′)
, (5)

which was proven to be a valid inner product by Ralaivola et al. (2005), giving very compet-
itive results on a variety of QSAR or toxicity prediction experiments.

• 3D pharmacophore kernel While 2D structures are known to be very competitive in ligand-
based virtual screening (Azencott et al., 2007), we reasoned that some specific 3D confor-
mations of a few atoms or functional groups may be responsible for the interaction with the
target. Thus, we decided to test descriptors representing the presence of potential 3-point
pharmacophores. For this, we used the 3D pharmacophore kernel proposed by Mahé et al.

(2006), that generalizes 3D pharmacophore fingerprint descriptors. This approach implies
the choice of a 3D conformer for each molecule. In absence of sufficient data available for
bound ligands in GPCR structures, we chose to build a 3D version of the ligand base in
which molecules are represented in an estimated minimum energy conformation. For each of
the 2446 retained ligands, 25 conformers were generated with the Omega program (Open-
Eye Scientific Software) using standard parameters, except for a 1Å RMSD clustering of the
conformers, instead of the 0.8 default value. A 3D ligand base was generated by keeping the
conformer of lowest energy for each ligand. Partial charges were calculated for all atoms using
the molcharge program (OpenEye Scientific Software) with standard parameters. This ligand
base was then used to calculate a 3D pharmacophore kernel for molecules (Mahé et al., 2006).

We used the freely and publicly available ChemCPP1 software to compute the 2D and 3D
pharmacophore kernel.

1Available at http://chemcpp.sourceforge.net.
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2.3 Descriptors for GPCRs

SVM and kernel methods are also widely used in bioinformatics (Schölkopf et al., 2004), and a
variety of approaches have been proposed to design kernels between proteins, ranging from kernels
based on the amino-acid sequence of a protein (Jaakkola et al., 2000; Leslie et al., 2002; Tsuda
et al., 2002; Leslie et al., 2004; Vert et al., 2004; Kuang et al., 2005; Cuturi and Vert, 2005) to
kernels based on the 3D structures of proteins (Dobson and Doig, 2005; Borgwardt et al., 2005;
Qiu et al., 2007) or on the pattern of occurrences of proteins in multiple sequenced genomes (Vert,
2002). These kernels have been used in conjunction with SVM or other kernel methods for various
tasks related to structural or functional classification of proteins. While any of these kernels can
theoretically be used as a GPCR kernel in (4), we investigate in this paper a restricted list of
specific kernels described below, aimed at illustrating the flexibility of our framework and test
various hypothesis.

• The Dirac kernel between two targets t, t′ is:

KDirac(t, t
′) =

{

1 if t = t′ ,

0 otherwise.
(6)

This basic kernel simply represents different targets as orthonormal vectors. From (4) we
see that orthogonality between two proteins t and t′ implies orthogonality between all pairs
(l, t) and (l′, t′) for any two small molecules c and c′. This means that a linear classifier for
pairs (l, t) with this kernel decomposes as a set of independent linear classifiers for interactions
between molecules and each target protein, which are trained without sharing any information
of known ligands between different targets. In other words, using Dirac kernel for proteins
amounts to performing classical learning independently for each target, which is our baseline
approach.

• The multitask kernel between two targets t, t′ is defined as:

Kmultitask(t, t′) = 1 + KDirac(t, t
′) .

This kernel, originally proposed in the context of multitask learning Evgeniou et al. (2005),
removes the orthogonality of different proteins to allow sharing of information. As explained in
Evgeniou et al. (2005), plugging Kmultitask in (4) amounts to decomposing the linear function
used to predict interactions as a sum of a linear function common to all GPCRs and of a
linear function specific to each GPCR:

f(l, t) = w⊤Φ(l, t) = w⊤

generalΦlig(l) + w⊤

t Φlig(l) .

A consequence is that only data related to the the target t are used to estimate the specific
vector wt, while all data are used to estimate the common vector wgeneral. In our framework
this classifier is therefore the combination of a target-specific part accounting for target-
specific properties of the ligands and a global part accounting for general properties of the
ligands across the targets. The latter term allows to share information during the learning
process, while the former ensures that specificities of the ligands for each target are not lost.

• The hierarchy kernel. Alternatively we could propose a new kernel aimed at encoding the
similarity of proteins with respect to the ligands they bind. In the GLIDA database indeed,
GPCRs are grouped into 4 classes based on sequence homology and functional similarity: the
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rhodopsin family (class A), the secretin family (class B), the metabotropic family (class C) and
some smaller classes containing other GPCRs. The GLIDA database further subdivides each
class of targets by type of ligands, for example amine or peptide receptors or more specific
families of ligands. This also defines a natural hierarchy that can be used to compare GPCRs.

The hierarchy kernel between two GPCRs was therefore defined as the number of common
ancestors in the corresponding hierarchy plus one, that is,

Khierarchy(t, t
′) = 〈Φh(t),Φh(t′)〉,

where Φh(t) contains as many features as there are nodes in the hierarchy, each being set to 1
if the corresponding node is part of t’s hierarchy and 0 otherwise, plus one feature constantly
set to one that accounts for the ”plus one” term of the kernel.

• The binding pocket kernel. Because the protein-ligand recognition process occurs in 3D space
in a pocket involving a limited number of residues, we tried to describe the GPCR space
using a representation of this pocket. The difficulty resides in the fact that although the
GPCR sequences are known, the residues forming this pocket and its precise geometry are
a priori unknown. However, the two available X-Ray structures, together with mutagenesis
data showed that the binding pockets are situated in a similar region for all GPCRs (Kra-
tochwil et al., 2005). In order to identify residues potentially involved in the binding pocket
of GPCRs of unknown structure studied in this work, we proceeded in several steps. (a) The
two known structures (PDB entries 1U19 and 2RH1) were superimposed using the STAMP
algorithm (Russell and Barton, 1992). In the superimposed structures, the retinal and 3-
(isopropylamino)propan- 2-ol ligands are very close, which is in agreement with global con-
servation of binding pockets, as shown on Figure 1. (b) The structural alignment of bovine
rhodopsin and of human β2-adrenergic receptor was used to generate a sequence alignment of
these two proteins. (c) For both structures, in order to identify residues potentially involved
in stabilizing interactions with the ligand (residues of the pocket), we selected residues that
presented at least one atom situated at less than 6Å from at least one atom of the ligand.
Figure 2 shows that these two pockets clearly overlap, as expected. (d) Residues of the two
pockets (as defined in (c)) were labeled in this structural sequence alignment. These residues
were found to form small sequence clusters that were in correspondence in this alignment.
These clusters were situated mainly in the apical region of transmembrane segments and
included a few extracellular residues. (e) All studied GPCR sequences, including bovine
rhodopsin and of human β2-adrenergic receptor were aligned using CLUSTALW (Chenna
et al., 2003) with Blosum matrices (Henikoff and Henikoff, 1992). For each protein, residues
in correspondence with a residue of the binding pocket (as defined above) of either bovine
rhodopsin or human β2-adrenergic receptor were retained. This lead to a different number of
residues per protein, because of sequence variability. For example, in extracellular regions,
some residues from bovine rhodopsin or human β2-adrenergic receptor had a corresponding
residue in some sequences but not in others. In order to provide a homogeneous description
of all GPCRs, in the list of residues initially retained for each protein, only residues situated
at positions conserved in almost all GPCRs were kept. (f) Each protein was then represented
by a vector whose elements corresponded to a potential conserved pocket. This description,
although appearing as a linear vector filled with amino acid residues, implicitly codes for
a 3D information on the receptor pocket, as illustrated on Figure 2. These vectors were
then used to build a kernel that allows comparison of binding pockets. The classical way
to represent motifs of constant length as fixed length vectors is to encode the letter at each
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position by a 20-dimensional binary vector indicating which amino acid is present, resulting
in a 180-dimensional vector representations. In terms of kernel, the inner product between
two binding pocket motifs in this representation is simply the number of letters they have in
common at the same positions:

Kpb(x, x′) =
l

∑

i=1

δ(x[i], x′[i]),

where l is the length of the binding pocket motifs (31 in our case), x[i] is the i-th residue in
x and δ(x[i], x′[i]) is 1 if x[i] = x′[i], 0 otherwise. This is the baseline pocket binding kernel.
Alternatively, using a polynomial kernel of degree p over the baseline kernel is equivalent, in
terms of feature space, to encoding p-order interactions between amino acids at different posi-
tions. In order to assess the relevance of such non-linear extensions we tested this polynomial
pocket binding kernel,

Kppb(x, x′) =
(

Kpb(x, x′) + 1
)p

.

We only used a degree p = 2, although a more careful choice of this parameter could further
improve the performances.

• The binding pocket hierarchy kernel. Because of the link between binding pockets and ligand
recognition, we also defined a new hierarchy based on the sequence alignment of the binding
pocket amino acid vectors without gaps. To do this, we used a PAM matrix with high values
of gap insertion and extension to compare each couple of GPCR vectors. The obtained scores
were used in UPGMA (Unweighted Pair Group Method with Arithmetic mean) to determine
a binding pocket similarity based hierarchy. We obtained a tree comparable to phylogenetic
trees, and that happens to be share many substructures with the GLIDA hierarchy.

Figure 1: Representation of the binding pocket of β2-adrenergic receptor (in red) and bovine
Rhodopsin (in black) viewed from the extracellular surface. On the center of the pocket, 3-
(isopropylamino)propan-2-ol and cis-retinal have been represented to show the size and the position
of the pocket around each ligand. Figure drawn with VMD (Humphrey et al., 1996).
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Figure 2: 3-(isopropylamino)propan-2-ol and the protein environment of β2-adrenergic recep-
tor as viewed from the extracellular surface. Amino acid side chains are represented for 6 of
the 31 residues (in cyan, blue and red) of the binding pocket motif. Transmembranes helix
and 3-(isopropylamino)propan-2-ol are colored in black and red respectively. Figure drawn with
VMD (Humphrey et al., 1996).

3 Data

We used the GLIDA GPCR-ligand database (Okuno et al., 2006) which includes 22964 known
ligands for and 3738 GPCRs from human, rat and mouse. The ligand base contains highly diverse
molecules, from ions and very small molecules up to peptides. In order to eliminate unwanted
molecules such as inorganic compounds and molecules with unsuitable molecular weights, we fil-
tered the GLIDA ligand base using the filter program (OpenEye Scientific Software) with standard
parameters. The most important filtering feature here was to keep molecules of molecular weights
ranging from 150 Da to 450 Da. Overall, the GLIDA ligand base was filtered in order to re-
tain molecules that had the physico- chemical characteristics of drugs. This filter retained 2688
molecules. Because the GLIDA ligand base contains a few duplicates, we eliminated these redun-
dancies, which lead to 2446 different molecules, available under a 2D description files and giving
4051 interactions with the human GPCRs. Elimination of duplicates present in the GLIDA base
was important here because it could have lead to overfitting in the learning step. For each positive
interaction given by this restricted set, we generated a negative interaction involving the same re-
ceptor and one of the ligands that was in the database and was not indicated as one of its ligands.
This probably generated some false negative points in our benchmark, and it would be interesting
to use experimentally tested negative interactions. We loaded the sequences of all GPCRs that are
able to bind any of these ligands, which lead to 80 sequences, all corresponding to human GPCRs.
In the GLIDA database, GPCRs are classified in a hierarchy (as mentioned above) which was also
loaded for use in the hierarchy kernel.

4 Results

We ran two different sets of experiments on this dataset in order to illustrate two important points.
In a first set of experiments, for each GPCR, we 5-folded the data available, i.e. the line of the
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Ktar\Klig 2D Tanimoto 3D pharmacophore

Dirac 86.2 ± 1.9 84.4 ± 2.0
multitask 88.8 ± 1.9 85.0 ± 2.3
hierarchy 93.1 ± 1.3 88.5 ± 2.0
binding pocket 90.3 ± 1.9 87.1 ± 2.3
poly binding pocket 92.1 ± 1.5 87.4 ± 2.2
binding pocket hierarchy 93.0 ± 1.4 90.0 ± 2.1

Table 1: Prediction accuracy for the first experiment with various ligand and target kernels.

interaction matrix corresponding to this GPCR. The classifier was trained with four folds and the
whole data from the other GPCRs, i.e., all other lines of the interaction matrix. The prediction
accuracy for the GPCR under study was then tested on the remaining fold. The goal of these first
experiments was to evaluate if using data from other GPCRs improved the prediction accuracy for
a given GPCR. In a second set of experiments, for each GPCR we trained a classifier on the whole
data from the other GPCRs, and tested on the data of the considered GPCR. The goal was to
assess how efficient our chemogenomics approach would be to predict the ligands of orphan GPCRs.
In both experiments, the C parameter of the SVM was selected by internal cross validation on the
training set among 2i, i ∈ {−8,−7, . . . , 5, 6}.

For the first experiment, since learning an SVM with only one training point does not really
make sense and can lead to ”anti-learning” less than 0.5 performances, we set all results r involving
the Dirac GPCR kernel on GPCRs with only 1 known ligand to max(r, 0.5). This is to avoid any
artefactual penalization of the Dirac approach and make sure we measure the actual improvement
brought by sharing information across GPCRs.

Figure 3: GPCR kernel Gram matrices (Ktar) for the GLIDA GPCR data with multitask, hierarchy,
binding pocket and binding pocket hierarchy kernels.

Table 1 shows the results of the first experiments with all the ligand and GPCR kernel combi-
nations. For all the ligand kernels, one observes an improvement between the individual approach
(Dirac GPCR kernel, 86.4%) and the baseline multitask approach (multitask GPCR kernel, 88.4%).
The latter kernel is merely modeling the fact that each GPCR is uniformly similar to all other
GPCRs, and twice more similar to itself. It does not use any prior information on the GPCRs,
and yet, using it improves the global performance with respect to individual learning. Using more
informative GPCR kernels further improves, sometimes considerably, the prediction accuracy. In
particular, the hierarchy kernels add more than 4.5% of precision with respect to naive multitask
approach. All the other informative GPCR kernels also improve the performance. The polynomial
binding pocket kernel and the pocket binding hierarchy kernels are almost as efficient as the hier-
archy kernel, which is an interesting result. Indeed, one could fear that using the hierarchy kernel,
for the construction of which some knowledge of the ligands may have been used, could have intro-
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duced bias in the results. Such bias is certainly absent in the binding pocket kernel. The fact that
the same performance can be reached with kernels based on the mere sequence of GPCRs’ pockets
is therefore an important result. Figure 3 shows four of the GPCR kernels. The baseline multitask
is shown as a comparison. Interestingly, many of the subgroups defined in the hierarchy can be
found in the binding pocket kernel, that is, they are retrieved from the simple information of the
binding pocket sequence. This phenomenon is even more visible for the binding pocket hierarchy
kernel that is based on the hierarchy built from the binding pocket alignment scores.

Figure 4: Improvement (as a performance ratio) of the hierarchy GPCR kernel against the Dirac
GPCR kernel as a function of the number of training samples available. Restricted to [2 − 200]
samples for the sake of readability.

The 3D kernel for the ligands, on the other hand, did not perform as well as the 2D kernel. This
can be either explained by the fact the the pharmacophore kernel is not suited to this problem, or
by the fact that choosing the conformer of the ligand is not a trivial task. This point is discussed
below.

Figure 4 illustrates how the improvement brought by the chemogenomics approach varies with
the number of available training points. As one could have expected, the strongest improvement is
observed for the GPCRs with few (less than 20) training points (i.e., less than 10 known ligands since
for each known ligand an artificial non-ligand was generated). When more training points become
available, the improvement is less important, and sharing the information across the GPCRs can
even degrade the performances. This is an important point, first because, as showed on Figure 5,
many GPCRs have few known ligands (in particular, 11 of them have only two training points),
and second because it shows that when enough training points are available, individual learning
will probably perform as well as or better than our chemogenomics approach.

Our second experiment intends to assess how our chemogenomics approach can perform when
predicting ligands for orphan GPCRs, i.e., with no training data available for the GPCR of interest.
Table 2 shows that in this setting, individual learning performs random prediction. Naive multitask
approach does not improve much the performance, but informative kernels such as hierarchical and
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Figure 5: Distribution of the number of training points for a GPCR. Restricted to [2−200] samples
for the sake of readability.

Ktar\Klig 2D Tanimoto 3D pharmacophore

Dirac 50.0 ± 0.0 50.0 ± 0.0
multitask 56.8 ± 2.5 58.2 ± 2.2
hierarchy 77.4 ± 2.4 76.2 ± 2.2
binding pocket 78.1 ± 2.3 76.6 ± 2.2
poly binding pocket 76.4 ± 2.4 74.9 ± 2.3
binding pocket hierarchy 75.5 ± 2.4 76.5 ± 2.2

Table 2: Prediction accuracy for the second experiment with various ligand and target kernels.

binding pocket kernels achieve 77.4% and 78.1% of precision respectively, that is, almost 30% better
than the random approach one would get when no data is available. Here again, the fact that the
binding pocket kernel that only uses the sequence of the receptor pocket performs as well as the
hierarchy-based kernel is encouraging. It suggests that given a receptor for which nothing is known
except its sequence, it is possible to make reasonable ligand predictions.

5 Discussion

We showed how sharing information across the GPCRs by considering a chemogenomics space of
the GPCR-ligand interaction pairs could improve the prediction performances. In addition, we
showed that using such a representation, it was possible to make reasonable predictions even when
no ligand was known for a given GPCR, that is, to predict ligands for orphan GPCRs. Our ap-
proach is simply to apply well known machine learning methods in the constructed chemogenomics
space. We used a systematic way to build such a space by combining a given representation of the
ligands with a given representation of the GPCRs into a binding-prediction-oriented GPCR-ligand
couple representation. This allows to use any ligand or GPCR descriptor or kernel existing in the
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chemoinformatics or bioinformatics literature, or new ones containing other prior information as
we tried to propose in this paper. Our experiments showed that the choice of the descriptors was
crucial for the prediction, and more sophisticated features for either the ligands or the GPCRs
could probably further improve the performances.

In all experiments, 3D pharmacophore kernels did not reach the performance of 2D kernels for
the ligands. This is apparently in contradiction we the idea that protein-ligand interaction is a
process occurring in the 3D space, and that introduction of 3D information should increase the
performance. Different explanations can be proposed. The choice of the low energy conformer was
guided by the following idea. Because only two ligand conformations bound to GPCR receptors
are available, it was not possible to derive any general information that could be used to choose
a potential bioactive 3D conformer for each molecule of the ligand base. In this context, the
only possible reasonable assumption was that, while interaction with the receptor will certainly
perturb the conformational energy surface of a flexible ligand, high affinity would be observed for
ligands that bind in a conformation that is not exceptionally different from a local free state energy
minimum (Boström, 2001). Although there exists a large number of methods for exploring the
conformation space of a molecule, we used the Omega program that performs rapid systematic
conformer search, because it has been showed to present good performances for retrieving bioactive
conformations (Boström et al., 2003). However, the set of parameters used to run Omega in
this study (because of calculation time limitations) may not have allowed to reach a local energy
minimum: generating a larger number of conformers, with a smaller RMSD clustering value may
have helped to find better energy minima, and this could be further evaluated. Moreover, some
studies report that the bioactive conformation of a molecule can differ from the minimum energy
conformation, and that significant strain energies can indeed be found for molecules in complex
with proteins (Perola and Charifson, 2004). We cannot rule out the possibility that this is the
case for GPCR ligands. In the future, resolution of additional 3D structures in this family will
help to clarify this point. One possible improvement of the method could be to use homology
models for the GPCRs, dock the ligand base in the modeled binding pockets, and build a 3D ligand
base using, for each molecule, the conformer associated to the best docking solution. In other
families of proteins, enzymes for example, where many structures are available and can be used to
define bioactive conformers, the 3D pharmacophore kernel is expected to improve performance, as
observed in a previous pure ligand-based study involving ligands in a given series, for which the
bioactive conformation can be inferred from a known 3D structure (Mahé et al., 2006).

Various evidence suggest that, within a common global architecture, a generic binding pocket
mainly involving transmembrane regions hosts agonists, antagonists and allosteric modulators. In
order to identify this pocket automatically, other studies report the use of sequence alignment and
the prediction of transmembrane helices. Kratochwil et al. (2005) detected hypervariable positions
in transmembrane helices for identification of residues forming the binding pocket. The underlying
idea was that conserved residues were probably important for structure stabilization, while variable
positions were involved in ligand binding, in order to accommodate the wide spectrum of molecules
that are GPCR substrates. Using this method, they proposed potential binding pockets for GPCRs,
and found that the corresponding residues were frequently in the GRAP mutant database for
GPCRs (Kristiansen et al., 1996). Interestingly, these authors pointed that residues corresponding
to these hypervariable positions were found within a distance of 6Å from retinal in the rhodopsin
X-Ray structure. Therefore, although we used a different method to automatically extract binding
pocket residues in the GPCR families, our results are in good agreement with this study.

Interesting developments of this method could include application to quantitative prediction
of the binding affinities, that would be straightforward using regression algorithms in the same
chemogenomics space. Another possibility is application to other important drug target families,
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like enzymes or ion channels (Hopkins and Groom, 2002), for which most of the descriptors used for
the GPCRs in this paper could directly be used, and other, more specific ones could be designed.
From a methodological point of view, many recent developments in multitask learning (Vert et al.,
2006; Argyriou et al., 2007; Bonilla et al., 2008) could be applied to generalize this chemogenomics
approach using, for example, other regularization methods.
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Fredholm, B. B., HÃ¶kfelt, T., and Milligan, G. (2007). G-protein-coupled receptors: an update. Acta Physiol (Oxf), 190(1), 3–7.

Frimurer, T. M., Ulven, T., Elling, C. E., Gerlach, L.-O., Kostenis, E., and Högberg, T. (2005). A physicogenetic method to assign

ligand-binding relationships between 7tm receptors. Bioorg. Med. Chem. Lett., 15(16), 3707–3712.
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positions on β2-adrenergic receptor 82 109 110 113 114 115 116 117 118 121 175 183 195 199 200

β2-adrenergic receptor M W T D V L C V T I R N T Y A

5-hydroxytryptamine 5A receptor V W I D V L C C T I I E S Y A

Adenosine A2b receptor V L A V L V L T Q I I K K M V

Gamma-aminobutyric acid type B receptor E D E E A V E G H T L G S F D

Relaxin 3 receptor 2 L V L T V L N V Y I V G L Y Q

positions on β2-adrenergic receptor 203 204 207 208 212 282 286 289 290 293 308 311 312 313 315 316

β2-adrenergic receptor S S S F L F W F F N Y L N W G Y
5-hydroxytryptamine 5A receptor S T A F L F W F F E K F L W G Y
Adenosine A2b receptor N F C V L F W V H N M A I L S H
Gamma-aminobutyric acid type B receptor G S A W E F L Y H R L T V G L V
Relaxin 3 receptor 2 R V A F L F W N H T F T T C A H

Table 3: Residues of 5-hydroxytryptamine 5A receptor, Adenosine A2b receptor, Gamma-aminobutyric acid type B receptor and Relaxin
3 receptor 2 (shown as examples) aligned with β2-adrenergic receptor binding site amino acids. the binding pocket motif of β2-adrenergic
receptor has been used as reference to determine residues involved in the formation of the binding site of the 79 other GPCRs. Bold
columns correspond to the residues shown on Figure 2.
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