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ONE-ELECTRON ENERGY SPECTRUM IN LONG-PERIOD SUPERLATTICES 

M. AVIGNON 

Groupe des Transitions de Phases, C.N.R.S., B.P. 166, 38042 Grenoble Cedex, France 

RCsumC. - On etudie le spectre d'energie a un electron d'une structure ordonnee modulte avec 
un modele unidimensionnel quand la fonction d'ordre est une fonction sinus et la periodicite n 'cs~ 
pas un nombre entier de mailles elementaires. Nous utilisons la methode de la matrice de transfert 
dans l'approximation du cristal virtuel. L'existence et les amplitudes relatives des mini-gaps sont 
comparees au cas d'une fonction crCneau. 

Abstract. -The one-electron energy spectrum of long-period superlattices is investigated in a 
simple one-dimensional model when the ordering wave is a sine wave and its periodicity is not an 
integral number of unit cells. We use the transfer matrix method in the virtual crystal approximation. 
The existence and relative amplitudes of the mini-gap are compared with the square-wave case. 

Introduction. - The occurrence of long-period 
superlattices or periodic antiphases structures is quite 
common in alloys of noble metals. First discovered by 
Johannson and Linde [I] the most typical and also the 
most extensively studied example of these super- 
structures is certainly CuAu I1 [2-51. This structure is 
stable between the disordered and the normal ordered 
structure CuAu I. In the completely ordered state, the 
normal ordered phase CuAu I consists of planes 
alternately filled with Cu (a sites) and Au (B sites) 
along, say the Z-axis (the unit cell is shown in figure la). 
In the original description of Johannson and Linde [I], 
the CuAu I1 structure is obtained by shifting along 
the y-axis the normal structure by the vector (a/2, 0, 
a/2) so that planes filled by Cu become filled by Au 
and so on (figure Ib). This corresponds to regular 
arrangement of antiphases domains of size Ma which 
can be described by a one-dimensional square wave 
variation of the order parameter S(y) (figure lc). 
This would correspond probably to a good description 
at very low temperature, however for temperatures at 
which the structure is stable, the variation of the order 
parameter is smoother. Low values of the order para- 
meter have been observed in the antiphase boundary 
region [5]. The new period is just twice the domain size 
and in such a description M is necessarily an integral 
number. However experimental values obtained from 
X-ray diffraction appear to be non-integral [2-41. This 
is generally interpreted as a mixture of domains of two 
different sizes M and M', M and M '  being inte- 
gral [2, 6, 71. 

But Jehanno and Perio [4] have shown that the 
structure can be described by an order function S(y) 
of defined period 2 Ma ; non-integral values of M being 
considered as characteristic of these long-period 
superlattices. It may be shown that such orderfunctions 

CuAu I a )  

FIG. 1. - The unit cell of CuAu I (a) and of CuAu I1 in the Johann- 
son and Linde description for M = 5 together with the order 

parameter profile (c). 

appear as stationnary states in an inhomogeneously 
ordered system [8] ; from such thermodynamic deri- 
vation Ma can take values which are not commen- 
surable with the lattice. On this basis, Villain [9] and 
Pick [lo] have shown that longrange pairwise 
interactions between atoms are necessary to stabilize 
the long-period superlattices. This is in close agreement 
with the standard explanation [2, 111 m terms of the 
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lowering of the energy of conduction electrons when 
the Fermi surface touches new energy gaps introduced 
by the superimposed periodicity of the ordering 
function as first suggested by Slater [12]. For arbitrary 
values of M, the overall structure is an almost periodic 
one and it is df icul t  to predict a priori the band 
structure [13]. All previous calculations of electronic 
states are based on the Johannson and Linde model i.e. 
with integral values of M [ l l ,  14-17]. In order to 
attempt to clarify the effect of the ordering function 
S(y) on the one-electron energy spectrum, the one- 
dimensional model proposed by Jones [15, 161 will be 
considered. It has been proved to have some relevance 
to the real situation because of the one-dimensional 
character of the long-period superlattice [15- 171. 

We will compare the existence and the relative 
magnitude of energy gaps in the three following 
cases : i) M is integer and S(y) is a square wave; 
ii) M integer but S(y) becomes a sine wave 

XY S(y) = sin - ; 
Mu 

i i i )  we keep S(y) as a sin(> wave but M has a non- 
integral value. 

The onedimensional model. - The one-dimensio- 
nal model is simply a chain of sites of two different 
types alternately cc and f l  at distance a from each other 

a B a B a B  
U 

a 

a and f l  rather simulate layers of atoms so that an 
order parameter can be defined in each of them. 

So the long period superlattice with a square wave 
for S(y) and M = 4 corresponds to the following 
sequence 

- - -  BA ARAB BABA AB - - - 
1-2 Ma- I 

while the ordinary ordered state has a constant order 
parameter S 

- - - ABABABABAB - - - 

In the general case, we will use the virtual crystal 
approximation which restitutes to the lattice poten- 
tial V(y) the pseudo-periodicity created by S(y) : 

'(Y) = 1 { P ~ ( ~ a )  'A(Y ,- ye) + 
a .;ites 

+ P B ( Y ~ )  VB(Y -Y,> ) + 1 { PA(yS) VA(Y-Y,) 
B sites 

+ PB(YS) VB(Y -yo) 1 
where : 

are the probabilities of getting respectively an 
atom A(B) and B(A) on site a@) in position y,(ys) in a 
system with equal concentration of atoms A and B. 

For'simplification purposes, we represent the atoms 
by delta functions and use two sets of b-fiinctions of 
different strengths : 

In the numerical calculations presented in this paper 
we have taken PA = 3 and PB = 1. The results are not 
qualitatively affected when one chooses different sets 
of these parameters. 

In order to make close comparison between the 
different cases mentionned above, we have chosen the 
transfer matrix method which we outline very briefly. 
Let the potential in a given region be V(x), and u(x), 
v(x) two solutions of the Schrodinger equation such 
that, at a point x, 

then, the wave function $(x) and its derivative $'(x) at 
a point x can be obtained from the knowledge of theses 
functions at x, 

where 

is the transfer matrix from x to x,. 
The overall transfer matrix T is just the product of 

all transfer matrixes for each cell. For a really periodic 
structure of period b, from Bloch theorem, the two 
eigenvalues of the total transfer matrix are e* ' lb and 
the condition for allowed energies is that its trace is 
between - 2 and 2. Similarly, for nearly periodic 
systems the condition is that the transfer matrix for the 
whole crystal has eigenvalues equal to unity to satisfy 
cyclic boundary conditions [18]. Numerically we stop 
the products of the transfer matrixes after N cells when 
the pseudo-periodicity of the potential is achieved 
(the relative change in the potential being less than E ; 
we choose E z From the value of the trace of T 
one gets the dispersive curve E(k) 

Tr  T = 2 cos kh , 
where b = Na. 

Each cell is defined such that the atom is at the 
center of the cell. The transfer matrix for a delta 
function is simply 
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and The same result can be obtained with a tight binding 

1 P A  + PB P A  - PB calculation [20]. 
Yi = - + S ( Y ~ )  2 for i = a a 2 ii) S = sin ny/Ma WITH M INTEGER. - The band 

structure is represented on figure 3 for M = 4. We see 
- 1 P A  + PB 
- - P A  - PB - s ( ~ i )  2 for i = /I . clearly that the amplitudes of the gaps are deeply 

a 2 modified as compared with case i) (table I). 

For a constant V = 0 potential 

.2 = - mE, E being the energy eigenvalue. 
h 

T(x, x,) = 

So that the transfer matrix for a cell centered at yi 
becomes : 

1 
cos a(x - x,) - sin a(x - x,) 

a 

- a sin a(x - x,) cos a(x - x,) 

1 For square wave functions S(y) (case i), Tr T can be I 1 - 
evaluated for any integral value of the period M 1161. D 1 2 3 ha 

Results and discussion. - i) JOHANNSON AND FIG. 3. - E(k) for S(y) = sin ny/Ma, M = 4. 
LINDE MODEL : squure wave. - For illustration, 
the dispersion curves E(k) are shown on figure 2 for 
M = 4, together with E(k) for the usual ordered state 
(constant order parameter). Qualitatively we retrieve 

n x 3 %  x 5 n  3 x  7 %  
k - - - - - -  - 

8 a  4 a  8 a  2 0  8 a  4 a  8 a  
- - - - - - - - 

J Square 
I wave 0.38 0 0.9 0.27 0.8 0 0.18 

b4, , I  The gaps at k = n/8 a and 7 n/8 a are now very 
small, and, although small, gaps appear at k = 4 4  a 
and 3 nj4 a. The gap at k = n/2 a becomes conside- 

I I rably narrower than in the previous case. These .- I I I 
I I important changes are illustrated even more clearly 

I I 

1 t 2  3 x h. 
by the density of states (figure 4). This shows the 
important role played by the gradient of the order 

10. 

FIG. 2. - E(k) for M = 4. S(y) being a square wave as represented parameter in determining the electron energy spec- 
on figure Ic. The broken curve shows the band structure for the trum. 

ordinary ordered state (constant order parameter). 
iii) We keep the same profile S(y) but M takes non- 

Sinewave <0.03 0.09 0.72 ~ 0 . 0 2  0.64 <0 .03  <0.03 

integral values. The band structure changes slightly ; 
the of Jones 16] except for the gap at the position as as the amplitude of the major gaps 
k = n/2 a i.e. where the ordered state has a gap. This varies in a regular fashion. The case M = 4.2 is 
gap at k = n/2 a is considerably smaller than in the plotted on figure 5. The lowest gap appears at a slightly 
ordered system' In for the ordered state higher value of k (between 0.42/a and 0.46510 instead 
ciently high values of S are necessary to get a gap as 
shown in the coherent potential approximation [19] of n/8 a), while the next one appears at a lower value 

and this indicates the limitations of the virtual crystal 
(between 0.72910 and 0.771~ instead of n/4) and are 

approximation. New energy gaps appear at very small. The gaps around 3 n/8 a and 5 n/8 a remain 
important, while other gaps, too small, do not appear 

( 2 n  + (n = O , l ,  ..., M - 1).  
in our calculation. The effect amplifies for M = 4.4, 

k = 
2 Ma  4.6, etc.. . 
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FIG. 5. - E(k) for S ( y )  = sin ny/Ma, M = 4.2. 

'I The problem we have considered here presents some 
similarity with frozen spin density waves as in Chro- 
mium for instance [21]. The position and the relative 
amplitude of the energy gaps are found different from 
what is normally expected from a perturbation 

5 10 
1 n 

ME method [22]. First order gaps should occur at + - - 
h' 2 Ma ' 

FIG. 4. - - Densit!. o f  \t;~tc\ obta1nt.d from E ( k )  plotted In figure 2 
The results show that the profile of the order para- 

~d.~zlicd I~nc) and tisurc 3 ( I 'UII  I~ne). meter plays a determining role, probably as or even - 
more crucial than its period. 
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