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and 
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Rbsumb. - On dkveloppe une mkthode qui permet d'kvaluer les proprietes Blectroniques des 
metaux liquides et amorphes, des alliage's et des semiconducteurs liquides. Cette mkthode est parti- 
culikrement adequate pour traiter les metaux de transition, les metaux nobles et les terres rares. 
On prdsente des expressions explicites pour la fonction de Green B un 6lectron dans I'approximation 
B un site selfconsistente. Les difficult6s inhkrentes aux systkmes presentant des d6g6n6rescences 
orbitales, une probabilit6 de hopping dependant des angles et de l'hybridation sont grandement 
simplifikes dans notre formalisme. La mkthode est appliquke au calcul de la densite d'ktats pour un 
systhme presentant une transition metal-isolant du type Wilson. 

Abstract. - Methods are developed for evaluating the electronic properties of non-simple liquid 
and amorphous metals, their alloys and liquid semi-conductors. By non simple metals we mean those 
for which the nearly free electron model does not hold, such as transition, noble and rare earth 
metals. Explicit expressions for the one electron Green's function of such systems are evaluated 
within the self consistent single site framework. The formalism presented effects considerable simpli- 
fication of technical difficulties inherent in the treatment of orbital degeneracy, angular dependent 
hopping and hybridization. An application of these methods to the calculation of the density of 
states for a system undergoing a Wilson-type metal-non metal transition is presented in the form of 
numerical calculations on expanded liquid mercury. The results are also compared with various 
calculations on expanded crystalline mercury. The dependency of the critical density on various 
model parameters, type of pair distribution, as well as different types of wave functions is analyzed. 

l. Introduction. - Calculation of the electronic 
density of states in liquid metals presents formidable 
problems. One approach is to.presume that the crys- 
talline band structure resembles that of the liquid 
state [l] and perform calculations on crystals of appro- 
priate density. Another method is to calculate results 
for finite clusters which are made to simulate very 
large systems [2]. One may, on the other hand attempt 
to deal with an infinite system by making simplifying 
approximations for the correlation functions descri- 
bing the structural disorder. The latter approach 
involves averaging the Green's functions < G > over 
the appropriate atomic configurations. Most such 
methods have concentrated on treating the mean 
effect of N - 1 atoms on an arbitrarily chosen Nth 
atom as a kind of self consistent effective medium 
(the so-called self consistent single site approximation- 
SSSA [3-71). These approximations include the cohe- 
rent potential approximation (CPA) [S-101 and various 
related simplifications [ l  1, 51. Within such approxima- 
tions the averaged single particle Green's function 

< G > is related to the mean density of states, conduc- 
tivity and Hall coefficient. 

Some of the above SSSA work has included numeri- 
cal results for the density of states within a tight bin- 
ding approximation, but these have all been restricted 
to one band cases. For non simple liquid metals, a 
multi band treatment which deals with orbital degene- 
racy, angular dependent hopping and hybridization is 
indespensible. A straightforward extension of SSSA 
formalisms to multi-band cases results in matrix 
equations of considerable formal difficulties. In this 
paper we outline a formalism in which these difficul- 
ties are avoided. 

As an application of this formalism we shall pre- 
sent the results of a number of numerical calculations 
of the density of states of expanded liquid Hg. Any 
divalent metal, whether crystalline or liquid, can be 
expected to transform to an insulating state at a 
sufficiently low density. In both cases the transition 
can be understood from the single particle point of 
view as resulting simply from the narrowing and 
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separation of valence and conduction bands which 
overlap at normal densities. In the low density limit 
these correspond to highest occupied and lowest 
unoccupied atomic levels, regardless of the presence of 
long range order. Liquid Hg has been an especially 
attractive object of experimental study because of its 
relatively accessable critical point 112- 161. The appea- 
rance of an optical gap at a density between 5 and 
6 g cmp3 [l61 can be associated with the above men- 
tioned band separation. One may interpret the semi- 
conducting behaviour observed up to about 9 g cm-3 
as resulting from disorder induced localization [17]. We 
take this point of view in what follows, although it may 
be at variance with recent Knight shift measure- 
ments 1181. Thus we shall calculate values for an 
optical critical density, nc, at which a band gap appears, 
and examine its dependency on various model para- 
meters, pair distributions and different types of wave 
functions. Finally we compare our results with those 
of calculations on expanded crystalline Hg, in an 
attempt to examine the role of disorder in determining 
BC. 

2. Formalism. - We illustrate the formalism 
with a tight binding Hamiltonian : 

where alv(ai,v) designates the creation (annihilation) 
operator for an electron in the orbital qv(r - Ri), and 
atomic basis function appropriate to the vth band, 
centered at the ith site : The summations over i and j 
are taken over a given configuration of disordered 
atomic sites. 

In what follows, we assume the atomic level, Ei,v, to 
be site independent, and the usual transfer energy, 
t r ,  to be a function of R, - Rj = Rij. It is defined as 

Note that v(/ r - Rij 1) is a spherical atomic potential. 
A one-electron Green's function for a given confi- 

guration of atoms is defined by 

The averaged Green's function is usually obtained 
by expanding the right-hand side of this equation in 
terms of an unperturbed locator G(') = (E+ - E,)-' 
and the transfer energy tGv, and then taking the average 
of each expanded term and resumming the averaged 
terms. If we make the assumption of zero overlap 
between atomic functions on different sites, we may 
define the mean density of states as [l91 
D(E) = - K-' ImTr < Gii >, where a Green's 
function matrix < G,, > is defined such that its 
uvth matrix element is < G:: >. We have assumed 

site independent. The restriction of zero overlap 
between atomic functions on different sites can 
always be removed and the corresponding selfconsis- 
tent equations obtained. The proof to follow is also 
easily generalized to the cases where nonorthogonality 
effects and some higher-order diagonal terms are 
taken into account [19]. 

In all SSSA theories, the Green's function is deter- 
mined by a selfconsistency equation of the form 

< Gii > = F@) d3k, where 9(k) is a functional J 
matrix of < Gii > and V(k). The pvth matrix element 
of V(k) is defined by 

in which g(R) is a pair distribution function. Therefore, 
the solution < Gii > must be determined by an 
iterative procedure. As a practical matter, solving the 
above three dimensional integral numerically with 
reasonable accuracy is somewhat difficult. 

Because the iterative nature of the solution requires 
that it be solved repeatedly, the problem becomes 
extraordinarily cumbersome. Although the angular 
part of the integration is trivially done analytically in 
the case of S bands, this is not in general the case for 
non spherical atomic wave functions. In addition to 
this, the more bands that are taken into acount, the 
more matrix elements defining < Gi, > must be 
determined in a simultaneously self consistent manner. 
The angular integrations may be performed analyti- 
cally, however, as follows : If we assume spherically 
symmetric atomic potentials, we may take our basis 
(either in the case of muffin tin potentials or tight 
binding) to depend on the usual principal, angular 
and magnetic quantum numbers, n, l, m. 

Then it can be shown (see reference [20] for details) 
that the matrix elements for the averaged Green's 
function may be written 

< GF > = < G",,,,,,,,, > = 

and we may separate out the angular and radial parts 
of the integral in the following form 

where the k vector, k = (k, 0,, qk), the T matrices are 
rotation matrices and functions of angle alone, and 
F(k) is a function only of the magnitude, k. Using 
eq. (4) we may perform the angular integrations analy- 
tically, and we find 

statistical homogeneity, and thus made < Giv > < Gii > = GcO) + GcO) E < Gii > ( 5 )  
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where the matrix elements of are given by 

In the case of the SSSA scheme of reference [ 5 ] ,  
taken as an example, we find the matrix F given by 

The matrix elements of U in eq. (7) are 

where the < 1'NMO/Z'NlM > are Clebsch-Gordon 
coefficients, and U(R) is the transfer energy integral, a 
function only of the separation between centers, R. 
Eq. (8) illustrates the simplification of the remaining 
matrix problem, which is blocked into considerably 
more tractable submatrices. 

3. Numerical results. - Eq. (4) (8) have been 
applied to liquid Hg with a number of different sets 
,of approximations. The crudest calculation chose 
simple Slater 2s  and 2~ wave functions as a basis. 
The pair distribution function g(R) of eq. (8) was that 
of a simplified hard core liquid (G(R) equal to 0 or 1 
accordingly as R < a or >, o) where o was first taken 
to be determined on the basis of Ashcroft-Leckner 
theory for normal densities. Because of the large value 
{o = 5.4 a. u.) compared to the extent of the nodes of 
the actual 6s and 6P functions of Hg, the simple 
Slater functions are not totally unreasonable if the 
effective Bohr radius is chosen to match the charge 
density maximum of the Hermann-Skillman [21] Hg 
wave functions. The large hard core plus the relatively 
low densities of interest make our further assumption 
of orthogonality quite reasonable : at the distance of 
closest approach the S-S overlap was 0.035 in this 
approximation. Calculating the density of states at 
various densities results in a gap opening at about 
2 g cm'3. 

Some obvious questions arising are the extent to 
which this result depends on a) details of wave func- 
tions, b) form of g(R), c) size of a, and in general, 
d) liquid disorder. The results of further calculations 
presented below are meant to be some first steps 
towards providing answers to these questions. 

a) We have found that although the general shape 
(band widths, curvatures etc.) of the density of states 
at n, is not especially sensitive to choice of wave 
functions, the value of the density itself is very sensi- 
tive to this choice. We repeated the above calculation 
using Hg 6s  and 6P functions from a non relativistic 
Hermann-Skillman calculation [22]. and the resulting 
self consistent Hartree-Fock-Slater potential in the 
transfer energy integral. This results in an n, of about 
3 g cmp3. A plot of the density of states resulting 
from these wave functions at a density somewhat 
below n, is shown in figure 1. It is typical of all our 

FIG. 1. -Density of states of Hg at a density just below n ~ .  
Energy in Rydbergs. Inverted arrows ( .j ) mark the energies of 
the atomic levels (~i," of eq. (1)) and an upright arrow (T ) 

denotes the Fermi energy. 

calculations. The use of relativistic Hermann-Skill- 
man functions and potentials, keeping all other 
parameters as above, results in ann, of about 4 g cm-3. 
This sensitivity of the exact value of n, to choice of 
wave functions and potentials has its counterpart in 
crystalline calculations, as we indicate below. 

b) In contrast to point a) we have found that 
improvement of the pair distribution function by using 
the results of a Perkus-Yevic equation, in the case of 
any given wave function, does not result in equally 
significant changes in n,, so long as the hard core 
diameter a is left unchanged. 

c) Variation of a in the above calculations, however, 
results in a very strong variation in n,. Results for n, 
over a wide variation in a for simplified wave functions 
and pair correlation are shown in figure 2. The simpli- 
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d) A number of calculations of n, for expanded 
crystalline Hg have been performed. A simple local 
pseudopotential calculation in a few symmetry points 
of the Brillouin zone [23] results in a gap opening at 
about 8.5 g cm-3. This density was found to be appro- 
ximately independent, of crystal structure. A more 
sophisticated pseudopotential calculation [24] elimi- 
nates this structural independence and gives different 
values for the critical density in FCC, BCC and SC 
structures (6.5, 5.5, and 4.0 g respectively). 
These latter results are roughly equivalent to those 
obtained with a relativistic KKR method [25] except 
that the transition densities are somewhat higher 
(5.5 g cmF3 for SC and 8.2 g cm-3 for FCC). Other 
KKR calculations (26) indicate sensitivity of n, to 
details of the muffin tin potential, corresponding to 
points a) and c) above. Two generally expected effects 
of the liquid state as compared to the crystalline are 
observed. The lower occupied band in the liquid is in 
general more than twice as broad as in the crystal, 

.o 6.0 7.0 and, as a result of the tailing of both bands the gap 
o c a . u . ~  opens up in the liquid at lower densities. 

FIG. 2. - Density at which the bands separate, nc, as a function 
of hard core diameter, o. 

fied wave functions were chosen as Slater functions 
whose orbital exponents were chosen to give the same 
n, at a = 5.4 a. U. (Ashcroft-Leckner theory) as 
relativistic Hermann-Skillman functions. These simpli- 
fication~ were made to cut down on the extensive 
computer time required for a smooth curve. Similar 
variations in the case of the actual Hermann-Skillman 
functions were found. 

All the above calculations indicates ensitivity of 
n, to details of electronic structure. Among other things 
one clearly may no longer choose to ignore hybridiza- 
tion effects. Furthermore the extreme sensitivity to a 
suggests the possibility of the importance of tempera- 
ture effects. Thus it is doubtful whether detailed agree- 
ment between experiment and theory will result 
from simple models, and we must conclude that 
unambiguous theoretical description of the observed 
data must await either further elaboration of the 
available models, or new ones. 
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