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THE COINCIDENCE SITE LATTICE (CSL) AND GRAIN BOUNDARY 
(DSC) DISLOCATIONS FOR THE HEXAGONAL LATTICE 

D. H. WARRINGTON 

Department of Metallurgy, Sheffield University, England 

R&sum&. - On prCsente une nouvelle technique pour calculer les vecteurs de Burgers des 
dislocations (DSC) des joints intergranulaires et cette technique est appliquCe au cas des rCseaux 
cubiques et hexagonaux. 

On peut toujours exprimer une rotation quelconque entre deux rCseaux hexagonaux comme 
une dLsorientation, en indexant convenablement les deux rCseaux. 

On prCsente la mCthode pour trouver la dksorientation correspondant a une valeur donnCe de 
8, quelconque, avec une valeur de ("lJ2 rationnelle. Les r6sultats sont donnCs pour quelques cas 
interessants et on montre que le nombre des valeurs possibles de 8 est voisin de celui du cas 
cubique. On Cvalue par une mtthode simple les probabilitCs qu'ont les joints de grains des 
mCtaux hexagonaux d'8tre proches d'un joint de coincidence. On montre que, dans chaque cas, 
le r6seau de Bravais donne une base convenable pour le systkme de coordonnCes. 

Abstract. - A new, general and convenient technique is presented for determining the 
burgers vectors of (DSC) grain boundary dislocations and it is applied to hexagonal lattices. 

A general rotation between two hexagonal I;~ttices may he expressed as a disorientation by :I 

suitable reindexing of the two lattices, and it  is shown how the disorientation giving rise to any 
desired possible value of 2 and any rational value of may be determined. The results are 
given for several interesting values and it is seen that the number of possible values of 2 is 
similar to that for the cubic case. A simple assessment is made of the possibilities of ordered 
structures within hexagonal metal grain boundaries. The unit cell of the Rr;rvais lattice is shown 
to provide a convenient basis of the coordinate system in every case. 

I . Introduction. - When two metal grains a re  in 
a relative orientation corresponding t o  a CSL, t he  
structure of a (planar) grain boundary possesses 
periodic repeat units related t o  the  (three dimensio- 
nal) repeat distances of t h e  CSL. For any given 
boundary plane and initial arbitrary relative displa- 
cement of the grains the  structure will be preserved 
on additional displacement by n unique set of 
displacement vectors (DSC vectors). These vectors 
therefore a re  allowed burgers vectors for  disloca- 
tions lying in the  grain boundary [ I ] .  Together they 
fo rm what  may be  termed the  DSC lattice. 
Networks of DSC dislocations will preserve the 
periodic pattern when the  relative orientation devia- 
tes from a CSL ideal orientation. A non planar 
grain boundary may find it energetically favourable 
t o  preserve elements of a three dimensional unit, o r  
it may facet  and preserve alternately two two  
dimensional units (both drawn from the three 
dimensional CSL).  In the  former case only DSC 
dislocations will be  necessary t o  maintain the 
structure on  deviation f rom a n  ideal orientation ; in 
the  latter case partial DSC displacements may be 
required t o  maintain continuity a t  arbitrary faceting 
positions. (Such displacements have apparently 
been detected a t  faceted  twin boundaries in 
:~luminium [2] and calculations fo r  body centred 
cubic materials indicate that  two  alternative structu- 

res arising from the  presence of a partial DSC 
displacement have closely similar energies [ 3 ] . )  

0 lattice theory has been used to  derive the 
possible CSL and DSC lattices, fo r  cubic crystals, 
and although one must not expect a geometrical 
theory t o  explain all structural effects within grain 
boundaries many predictions of the  O lattice theory 
have been verified both qualitatively and quantitati- 
vely. 

Attention is now beginning t o  turn t o  more  
complex boundaries than between two cubic crys- 
tals and it is apparent that  order does  exist in such 
boundaries [S-81. Ordered boundaries d o  appear to  
have lower energies and be  preferred and they may 
well govern precipitation behaviour in the  solid 
s ta te .  ~ t u d k s  of interphase boundaries have 
already been initiated and it seems opportune t o  
examine, f rom the  viewpoint of the  CSL and DSC 
lattices, possible structures in grain boundaries 
between hexagonal lattices. 

This paper shows how the 0 lattice approach to  
the  determination of CSL and DSC lattices may be  
simplified by numerical techniques and derives 
such lattices for  hexagonal materials. In  addition 
the  symmetries available in the  hexagonal lattice 
are  compared with those of cubic lattices and 
estimates made of the  relative number of bounda- 
ries of random rotation that may be  expected to  
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demonstrate the effects of geometrical periodicity. 
Only situations where three dimensional CSL's 
exist will be treated. 

The 
and 

Determination of rotations leading to a CSL. - 
technique used follows from that Warrington 
Bufalini [9] used for cubic crystals. A coinci- 

dence site lattice will occur for a cubic crystal for 
any rotation given by a rotation matrix R = (ri,)/2 
where 2 is the ratio of CSL and crystal unit cell 
volumes, and the matrix elements ri, are all integers 
and have no common divisor. In this way the three 
column vectors (all of unit length) represent the 
new rotated positions of unit vectors along the 
crystal axes. 

The most convenient system for hexagonal crys- 
tals is to use a crystal coordinate system to describe 
a rotation matrix. It is helpful to choose a system in 
which vectors are conveniently manipulated. Of the 
possible system the most convenient is the three 
axis hexagonal system [lo]. Let S be a matrix 
which transforms the crystal coordinates of a 
vector into orthogonal coordinate (for example, the 
x and z, axes of the two coordinate systems being 
respectively parallel) S-' be its inverse. G, the 
metric tensor, is then ST S where ST is ' the 
transpose of S. 

S may be written as a 0 f l  0 where c and a ia -: 
are the hexagonal repeat units along the z 'and x axes. 
The length of a vector is given as 

I \ 

and the angle between two vectors is given by 

A matrix R = (rij)/2 will lead to a CSL in the 
hexagonal system, provided the ' following condi- 
tions are satisfied : 

a )  the lengths of the three column vectors are 
respectively a,  a and c 

b) the angle between the first two column 
vectors is 120" and the angles these make with the 
third column vector are 90" 

c) 2 and r,, are integers with no common divisor. 

Two solutions are therefore required of the 
equation 

and one solution of the equation 

for the columns of the rotation matrix that satisfy 
conditions b) and c). 

In practice it is convenient to find solutions to 
eq. (I), check their correct angular relationship and 
treating them as zone axes to find the plane normal 
common to  the two zones. This normal may be 
converted (for rational ( c / ~ ) ~ )  to  a parallel unit 
vector to form the third solution (eq. (2)). 

We note that since any (rational) hexagonal cell 
may be chosen from a sub lattice of a cubic lattice 
all rotations leading to any cubic CSL will give rise 
to a CSL of the hexagonal lattice. The latter 
however will often be of a higher value of 2. 
Choose for example a hexagonal cell such that 

100 hex. = 033 cubic 
010 hex. = 330 cubic 
001 hex. = 444 cubic 

Then 

and 
-4 8 4 

S 8 - 4  4 1 .  
36 3 3 - 3  

The hexagonal lattice must give rise to values of 2 
of 36 times that for the same rotation applied to the 
cubic lattice o r  an integral factor of this. Thus for 
the cubic 2 = 5 the hexagonal lattice must give as 
one of 5 10 15 20 30 45 69 90 or 180. Different 
values will arise as cubic axes of the same form will 
be parallel to hexagonal axes of different forms. 

Having found a solution for a given 2 it will 
represent, in general one of 12 x 12 symmetry 
related rotation matrices (the hexagonal lattice 
possesses 12 symmetry rotations, and rotations of 
both crystals must be taken into account). These 
matrices are related by suitable combinations of 
changes of signs of rows or columns or suitable 
interchanges and additions of the first two rows or 
columns. Any given solution is therefore characte- 
ris.ed by the element n3(or ~ 3 ) .  In addition for an 
axial ratio m, where m and n are integers, 
equations (1) and (2) show that elements r3, and r32 
will be divisible by n and that u: + vz - u3 v3 will 
be divisible by m. In practice this latter condition 
means that both ul and v3 are divisible by m. 

The matrices presented in table I are those for 
the hexagonal disorientation, that is the crystal axes 
in crystals (I) and (2) and the designation of crystals 
( I )  and (2) are such that the rotation axis lies within 



THE COINCIDENCE SITE LATTICE (CSL) AND GRAIN BOUNDARY (DSC) DISLOCATIONS C4-89 

TABLE I 

Hexagonal lattice, cla = crystal coordinates 

Disorientation 
Rotation matrix 

R(x-9 
- 

8 -3 0 
3 5 0  
0 0 7  

10 0 0 
4 2 -16 

-3 6 2 

11 0 0 
3 5 -16 

-3 6 5 

15 -7 0 
7 8 0 
0 0 13 

14 0 0 
2 10 -16 

-3 6 10 

17 -8 -16 
0 1 -32 
0 9 1  

18 ---6 -16 
0 6 -32 
0 9 6 

21 -5 0 
5 16 0 
0 0 19 

22 4 -16 
0 14 -32 
0 9 14 

25 0 0 
1 23-16 

-3 6 23 

- 

Axis 
- 
00 1 

210 

210 

00 1 

210 

100 

100 

001 

100 

210 

- 
Angle 
- 
21.79 

78.46 

62.96 

27.80 

44.42 

86.63 

70.53 

13.17 

50.48 

23.07 

Basis vectors 
DSC(x2) 
- 

3 -1 0 
1 3 0  
0 0 7  

10 0 0 
0 2 -2 
0 1 4  

11 0 0 
0. 1 5 
0 -1 6 

4 -1 0 
1 3 0  
0 0 13 

14 0 0 
0 4 -2 
0 1 3  

9 1 6  
1 2 -5 

-4 1 6 

6 2 2 
-4 4 4 

0 -3 6 

3 2 0  
-2 5 0 

0 0 19 

10 2 -2 
-2 4 4 

5 1 10 

25 0 0 
0 7 -1 
0 4 3  

C.S.L. disorientations for hexagonal lattice c/a = a 
R(x2) Axis Angle 

Alternative 
- 
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TABLE I (suite) 

C.S.L. disorientations for hexagonal lattice c/a = 

Axis 

210 

Angle 

34.048 
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the stereographic triangle [loo]-[210]-[001] and the 
rotation angle is a minimum positive value consis- 
tent with the operation of the symmetry rotations 
(Fig. 1) ( I ) .  This manner of presentation clearly 

FIG. 1. - Stereographic projection showing symmetry related 
rotation axes of the form < u v w >. SymbolsOandOrepresent 
axes above and below the primitive and are related by the point 
group 32 ; symbols # and (d show similarly the additional axes 
related by the point group 622. In i~ddition ibn axis l in the 
triangle 100-210-001 is related to an axisOin the triangle 100 001 
210 by interchanging the labelling of crystals 1 and 2 and defining 
all rotations as positive and less than 180". The disorientation 
rotations all lie within a parametral region with limits of 30" 

rotation along [001] and 90° rotation along [I001 and [21w. 

indicates whether two 2 rotations are related by 
symmetry or not and also that no 2 values are 
omitted. These points are not clear when CSL 
rotations are derived about chosen axes by a 
generating function technique [I1 - 121. 

It is also seen that if the axial ratio is expressed 
as the ratio of integers of no common divisor then 
the parity of eq. ( 1 )  indicates that both odd and 
even values of 2 are possible provided a is odd. 

3 .  Determination of the DSC vectors for a given R. 
- It has been shown that the volume of the DSC 
unit cell is given by VI2. While the volume of the 
CSL of the direct lattice is equal to V2, the volume 
of the CSL formed from the reciprocal lattice is 
X/V. This lattice, which may be designated coinci- 
dent reciprocal site lattice or CRSL, is also present 
at any rotation giving rise to a CSL. In the case of 
the simple cubic lattice the CSL and the CRSL are 

( I )  Following the terminology used by Mackenzie (Mackenzie 
J .  K. Biornetrika 45 (1958) 229) for cubic crystals, and discussed 
in the calculations of the probabilities of given rotations 
occuring [I$], the hexagonal disorientation is defined as the 
rotation with the least rotation angle that may be used to 
describe ;In arbitrary rotation. If Ui represents a hexagonal 
symmetry operation and H a  rotation in hexagonal coordinates, 
the twelve rotations H Ui represent the same physical situation 
but with a reindexed crystal I .  They include all the possible 
angles of rotation and all possible forms of rotation axes of the 
different possible descriptions. There are in general twelve 
descriptions of a given angle about axes of the same form given 
by UjHUiUj-'. Putting Ui = Uj we can see all possible 
combinations of rotation axes and rotation angles are also given 
by UjH (i. e .  a set of descriptions obtained by reindexing 
crystal 2). 

coincident. A vector basis of the DSC lattice is 
therefore given by the matrix equation 

The meaning of this equation is that any chosen 
unit cell, of the CRSL, designated by the three 
column vectors of a matrix (CRSL), is related to  a 
unit cell of the DSC lattice, designated by the three 
column vectors of a matrix (DSC) or conversely the 
three row vectors of its transpose (DSC)T. This 
statement has been formally proved by Grim- 
mer [13] using the property of the DSC lattice 
that it is formed as the difference lattice of vectors 
of the two crystals. Equation (3) forms the simplest 
route to the determination of the DSC lattice for 
any crystal system. It is a highly convenient route 
when the coordinate systems of the crystal, and 
reciprocal lattices are used. 

Let the coordinate system for the equation be an 
orthogonal (cartesian) system. Using crystal coordi- 
nates the (DSC) matrix is given by S (DSC) and 
hence the transpose by (DSC)T(S)T. Using recipro- 
cal lattice coordinates the (CRSL) matrix is given 
by SG-' (CRSL) or S7-' (CRSL). Thus the 
equation still holds when the DSC lattice is 
expressed in crystal coordinates and the coinci- 
dence site lattice of the reciprocal lattice is 
expressed in reciprocal lattice coordinates. These 
latter coordinates are the natural choice for the 
CRSL which may be determined exactly as  if it 
were the CSL of a fictional crystal (suitably 
oriented) having a lattice identical with that of the 
reciprocal crystal. 

The route to the DSC lattice is to determine the 
CRSL either by number theory, or more convenien- 
tly by the 0 lattice technique [14], and then to 
apply the above equation. This technique is more 
direct than that previously used for cubic metal 
lattices [15] and demonstrates the advantages to  be 
gained from a suitable choice of coordinate system. 
The transformation relationships between the 
various lattices and coordinate systems are summa- 
rized in figure 2. 

The bases for the various DSC lattices given in 
the tables are for the quoted disorientation matri- 
ces. They have been reduced only in the sense that 
they are the three vectors of minimum length in the 
crystal coordinate system. Occasionally an alterna- 
tive description is given to indicate a symmetry 
with respect to the crystal axes ; this clearly 
demonstrates that, as  expected, unit vectors along 
rotation axes are always allowed DSC vectors 
(Table I). 

4. Discussion. - While linear features have been 
observed in grain boundaries of hexagonal 
metals [7] ,  it is still too early to say whether 
minimum length DSC vectors will necessarily have 
the minimum energy within such boundaries and 
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Coordinate transformations 
with examples of natural coordinate system transformations 

ST s-I 
G I 
ST RS S-I RS 
G(CSL) (CSL) 
G ( C S L ) ~  - ' ( C S L ) ~  - ' 
I G - I  

(CRSL) G - (CRSL) 
G(DSC) ( D s c )  

FIG. 2. - Coordinate transformations between systems. Carte- 
sian crystal 1 refers to a cartesian system of axes fixed with 
respect to crystal 1 .  The CSL systems are included (although not 
required by the procedures of this paper) to emphasize the 

RECIP. CRYST. 
COORD. 

indeed whether grain boundaries of given 2 value 
will have generally a comparable reduction in 
energy to that which occurs for cubic metals. True 
CSL data derived here are strictly valid only for 
ideal values of (eta). However, the same order as 
for an ideal ratio may be maintained in a boundary 
of a metal of non ideal ratio by the introduction of 
misfit nets of the relevant DSC dislocations. These 
misfit nets would play the role of Van der Merwe 
dislocations and would increase the minimum 
energy of the boundary above the value for an ideal 
ratio or alternatively could lead to stepped or 
faceted boundary interface. Until now such interfa- 
ces have been interpreted only in terms of combina- 
tions of structural units [16]. 

The total numbers of different CSL solutions are 
compared in the accompanying table. 

NO. of 2 Solutions 

 la)^ P range 
- 

3 to l l l l to  25 26 to 50 Total 
- - - - 

1 (cubic) 5 12 30 47 
512 4 I 1  3 1 46 
813 3 7 23 33 
712 2 10 18 30 

R -' 

CARTESIAN 
Crystal 2 

sT s 
( G )  

The ideal values of   la)^ correspond approximately 
to Ti, Mg, Zn respectively. It is seen that while in 
general low Z values are fewer, higher 2 values 
occur with a frequency close to that of the cubic 
system. 

The axes of the CSL disorientations lie mostly 
in mirror planes of symmetry of the holosymme- 

I Cartesian crystal 1 
S Crystal 1 
RS Crystal. 2 
S(CSL) CSL 
S(CSL)~  - ' Rec. CSL 
ST-' Rec. crystal 1 

s T -  '(CRSL) CRSL 
S(DSC) DSC 

distinction between the reciprocal CSL lattice and the coinci- 
dence site lattice o f  the reciprocal crystal (termed CRSL). The 
DSC and CRSL lattices are further related by equation (3). 

CRYST. 
COORD. 

tric class. Thus below 3 = 50 only 3 = 49 
for cla = -2 has an axis, [621], not in a symme- 
try plane, and thus this is the one CSL not having a 
twin description. In such a situation, a reversal of 
the roles of crystal 1 and 2, to maintain a positive 
rotation angle within the disorientation region, leads 
to a rotation matrix formed from different column 
vector solutions for equations ( 1 )  and (2). In order 
that the geometry of any particular interface can be 
described without confusion and with a minimum 
possibility of observer error it cannot be too 
strongly emphasised that the disorientation descrip- 
tion is to be preferred, just as it is in the case of the 
cubic system. (A recent error in the hexagonal 
structure, fortunately not having serious conse- 
quences at this stage, is to  be found in an incorrect 
solution to the DSC vectors in the 2 = 13 [001] 
case in reference [7]). 

The values of 2 given are for the hexagonal 
lattice. Structures of lower symmetry (i. e.  hexago- 
nal close packed structure) will give rise to the 
same disorientations for the same 2 values pro- 
vided that the relative displacement vector [2/3 113 
1/21 is allowed in addition to  a rotation. We believe 
this is the better approach rather than concentrating 
attention on atomic sites. An interface which would 
contain no dislocations in a case of ideal cla ratio 
will contain, in the non ideal case, a network of 
DSC to restore coincidence between crystal sites 
and naturally lead to a facetted boundary. The 
approach of Bruggeman, Bishop and Hartt [16] in 
terms of structural units mixed from different CSL 
structures is nearly equivalent to  the presence of 
DSC vectors in a CSL interface. Where it is 

S-I ' CARTESIAN 
Crystal 1 



incomplete is in that the planes to  either side of a 
tilt boundary contain additional distortions not 
allowed for in the simple structural unit model. 

What proportion of boundaries of random rota- 
tion might be expected to fall within energy cusps 
corresponding to the formation of boundary struc- 
tures of given CSL ? To answer this question, we 
need to specify the deviation from a true CSL to be 
allowed and the number of equivalent rotations to 
the disorientation that may be generated by opera- 
tion of the full symmetry of both cyrstals. In order 
to  make a comparison with the cubic case [17], a 
simple deviation of 114 radian will be allowed for 
2 = 1 and that for other values of 2 be allowed to 
vary as 2-'I2. (It is noted that this is a simplification 
and will depend upon criteria which may be 
uncertain, but it is likely to  give an upper limit to 

the proportions allowed.) The coverage of a 
given 2:, i. e.  the probability that a random rotation 
will lie within an allowed deviation from an exact 
CSL rotation, is given by the product of the number 
of equivalent CSL rotations and the probability that 
a random rotation lies within a given deviation from 
one CSL rotation. Using the same method as 
described by Warrington [17], table I1 gives the 
data for coverage of the CSL regions for 2 25 
and cla = V% and 1/J7Z. Table 111 shows as  an 
example, the derivation of equivalent rotations 
(axes and angles) to the disorientation values for 
2 = 13, cla = m 2 .  An important difference from 
the cubic case is that the numbers of equivalent 
rotations do  not increase so rapidly with 2: value. 
Thus for c/a = V% only one tenth the number of 
random rotations satisfy a comparable criterion to 

No. equivalent 
rotations 
- 
24 
72 
72 
24 
72 
72 
72 
24 
72 
72 

Totals for hexagonal lattices 
2 = 7 - 2 5  = 

Total for cubic structure 
2 = 3 - 25 = 9.0 x lo-' 1171 

Angle 
- 

57.42 
81.15 

122.57 
127.97 
130.83 
152.20 
180 
180 

13a 
Axis 
- 

<,loo > 
< 211 > 
< 100 > 
< 101 > 

< 20.10.3 > 
< 10.03 > 

(211 > 
< i0.53*> 

criterion 

probability 
(x 10-2) 
- 

.I08 

.I91 

.I57 

.042 

.I12 

.08S 

.078 

.024 

.054 

.048 

No. equivalent 
rotations 
- 

24 
72 
72 
72 
72 
72 
72 

132 
72 

1 so 
72 
72 

132 

TABLE 111 

Equivalent rotations 2: = 13 c/a = 

13b 
Number Angle Axis 
- - - 

6 76.65 < 210 > 
12 94.41 < 502 > 
6 103.34 < 210 > 
12 115.02 < 401 > 
12 133.81 < 10.56 > 
12 143.87 < 843 > 
12 180 < 201 > 
12 180 < 504 > 

criterion 

probability 
( x  lo-') 
- 
.I08 
.324 
.IS7 
.I57 
.I26 
.I26 
.085 
.I56 
.072 
.I50 
.054 
.054 
.099 

Number 
- 

6 
12 
6 
12 
12 
12 
12 
12 
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the cubic case and hence on a random basis it is 
much less likely that CSL boundaries will be 
observed for a hexagonal than for a cubic case. No 
attempt will be made here to assess the probability 
of two dimensional or one dimensional (plane 
matching) CSL boundaries as has been done for 
cubic materials [la]. 

The above argument is probably an oversimplifi- 
cation of a practical situation as no account is taken 
of the effect of boundary plane as distinct from 
boundary rdtation. Balluffi and coworkers [I91 . 
have indicated that for given boundary planes, a 
structure, corresponding to the maintenance of a 
CSL interface, may be observed well beyond the 
deviation limit chosen for the above calculations. 
Nevertheless observations on randomly oriented 
boundary planes in cubic materials appear to 
support the approach used here [IS]. 

5 .  Conclusions. - A numerical method for the 
determination of all rotations leading to any given Z: 
value for hexagonal crystals of a rational (cia)*. 
Determination of the corresponding CSL for the 
reciprocal crystal lattice (achieved easily via the 0 
lattice technique) leads to the determination of the 
DSC vectors (vectors of grain boundary disloca- 

tions maintaining the structure of a CSL interface). 
The use of the disorientation description of a 
rotation leads to a simple, unambigous correlation 
between boundary structure and DSC dislocation 
burgers vectors. 

Although the number of possible values of 2 for 
a hexagonal lattice is similar to that for a cubic 
lattice, the lower symmetry of hexagonal lattice 
leads to a lower number of equivalent descriptions 
of a given .rotation. It is predicted, on a simple 
criterion, that the number of random boundaries 
possessing structure corresponding to a slight 
deviation from CSL structure is smaller by an order 
of magnitude than it is for a cubic lattice. 
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DISCUSSION 

R. BONNET : Pour trouver une base du 
reseau DSC, le Dr Warrington utilise la relation de 
rCciprocitC dCmontr6e dans le cas g6nCral par 
Grimmer. I1 faut pour cela connaitre une base du 
reseau de coincidence pour les rtseaux rkcipro- 
ques. En fait, la simple considCration de la matrice 
rotation R permet de connaitre directement une 
base du rCseau DSC. En choisissant correctement 
un vecteur colonne de R, la simple rCsolution de 
deux Cquations IinCaires rationnelles fournit la base 

cherchCe, comme nous le montrons dans un travail 
proposC pour publication. 

D. H. WARRINGTON : The information required 
on the DSC lattice, and on the various coincidence 
site lattices, is of course contained in the rotation 
matrix R. The technique of M. Bonnet is similar to 
that presented in the Acta. Crystall. paper of 
Grimmer, Bollmann and Warrington and naturally I 
congratulate M. Bonnet in his similar approach. I 
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wished to emphasize the method in my present 
paper simply because it emphasises the physical 
relationship between the DSC lattice and the 
reciprocal lattice. In this way we may demonstrate 
more clearly that the DSC vectors are (generally) 
related to plane normal vectors, and the undue 
preoccupation of the importance of coinciding 
lattice site atoms in grain boundaries can be 
avoited. Thus the 0 lattice approach can be 
divorced from the structural unit approach and as 
M. Sainfrot has shown in this colloquium may 
predict studies very close to that computed from 
energy considerations. In addition it demonstrates 
that we way surely expect to find ordered bounda- 
ries in crystals of lower symmetry or when axial 
ratios are not rational. 

K. LUCKE : Since you are concerned with 
boundaries in hexagonal metals I like to drag your 
attention to some boundaries showing very high 

mobility. They have been found in bicrystal experi- 
ments [I]  of Zn and Cd and also by the analysis of 
recrystallisation textures [2] of Ti, Zn and Hf. 

They are given in zero approximation by a 
30" rotation around the hexagonal axis and by a 
90" rotation around a two-fold axis. A closer 
inspection, however, shows that the rotation axis 
leave a distance of about 10" from these low index 
directions. Since the boundaries are similarly 
important for the recrystallisation of hexagonal 
metals as the 40" < 1 1 1  > boundary for the recrys- 
tallisation of aluminium, it might be interesting to 
look into the nature of these boundaries. 

[ I ]  KLAR R. and LWCKE K., Z. Metallkunde. 
121 LUCKE K. and RIXEN R. 

D. H. WARRINGTON : Thank you for draining my 
attention to these two interesting papers. 


