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EXPERIMENTAL METHODS FOR STACKING FAUL T 
OBSER VA TIONS AND ENERGY MEASUREMENTS. 

OBSERVATION OF' STACKING FAULTS BY X-RAY TOPOGRAPHY 

A. AUTHIER 

Laboratoire de Min6ralogie Cristallographie (*), 
UniversitC P.-et-M.-Curie, 4, place Jussieu, 75230 Paris Cedex 05, France. 

RBsum6. - Apres avoir brievement rappel6 les principes de la propagation des rayons X dans 
un cristal parfait et des techniques de topographies aux rayons X, on explique la formation de 
l'image d'une faute d'empilement et on montre comment ce dkfaut peut &re completement caractB 
risk. A titre d'exemple, on montre des fautes d'empilement dans un cristal de silicium contenant 
de l'oxyghne et recuit h 1200 OC. 

Abstract. - After briefly recalling the main principles of X-ray propagation in perfect crystal 
and of X-ray topographic techniques, one describes the formation of stacking fault images and 
shows how these faults can be fully characterized. An example is shown of stacking faults in silicon 
crystals annealed at 1 200 OC and which contained 5 x 1017 at/cm3 oxygen. 

1. Introduction. - X-ray topography dates back 
to 1958-1959 [l, 21 (see the reviews [3] to [6]) and has 
proved to be a most useful tool for the characterization 
of localized defects in large nearly perfect crystals. In 
particular, a number of papers have been devoted to 
the observation of stacking faults in silicon [7] to [lo], 
quartz [I l l  to [13], beryllium oxide [14], etc ... and to 
the theory of their image formation [15] to [17], 
[131, PI. 

The principles of X-ray propagation in perfect 
crystals and X-ray topography will be briefly recalled. 
It will then be showed how a stacking fault may be 
fully characterized on X-ray topographs. 

2. Principles of X-ray propagation in a perfect crystal. 
- The principles of dynamic diffraction of waves by 
matter are described in the paper by R. Gevers (this 
volume). The particular case of X-rays is discussed at 
length in the book by M. von Laue [IS] (see also 
ref. [19] and [20]). 

The propagation equation of waves in matter is 
derived from Maxwell's equation in the case of electro- 
magnetic waves and Schrodinger's equation in the case 
of electron or neutron waves. Its simplest solution when 
the medium is triply periodic is a Bloch wave 

(h is a reciprocal lattice vector), which has the same 
periodicity as the crystal. In a perfect crystal KO and 
Yh are constant. This Bloch wave can also be written : 

Y = C Yh exp - 2 niK,.r (2) 

(*) AssociB au C.N.R.S. 

with 

Eq. (2) shows that the solution is a wave-jield 
constituted by a sum of waves having Yh and K, as 
amplitude and wave-vector respectively. It can be 
shown that the waves constituting a wave-field are 
strongly coupled and propagate simultaneously 
through the crystal, with the same path and the same 
absorption. This absorption is highly anomalous when 
the Bragg condition is satisfied. 

According to the geometrical theory of diffraction, 
Bragg's condition is satisfied when two reciprocal 
lattice points at least lie on the Ewald sphere (Fig. 1). 
In the X-ray case, there are two points only in general. 
The wave-lengths La 0 and La H of the incident and 
reflected waves are in the geometrical theory equal to 
111. Actually, one has to take into account the index of 
refraction of the medium for X-rays and the wave- 
vectors of waves propagating either in the incident or 
reflected direction are equal to n/A far from the reflec- 
tion domain : their extremity lies on spheres centered 
in 0 and H and having rill as radii (Fig. 2). When this 
point is close to the intersection of both spheres, that is 
when Bragg's condition is nearly satisfied, its locus is a 
surface asymptotic to the two sphere which is called 
the dispersion surface (Fig. 2). This surface plays a 
similar role to the surface of indices in the case of 
visible light. The intersection of this surface by the 
plane containing the two wave-vectors, KO and K,, is a 
hyperbola asymptotic to the two spheres assimilated to 
their tangential planes on figure 3. The propagation 
direction of a wave-field characterized by its two waves 
of wave-vectors OP and HP lies along the normal to 

9 

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1974713

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphyscol:1974713


C7-122 A. AUTHIER 

FIG. 1. - Ewald construction. La0  : incident direction ; 
LaH reflected direction ; OH reciprocal lattice vector. In 

1 1  
triangle La OM : - = - sin 6'. 

2 d  A 

FIG. 2. - Dispersion surface. 

the dispersion surface at P, called the tie-point. The 
absorption of the wave-field is smaller than the normal 
when P lies on branch 1 and higher when P lies on 
branch 2 (Borrmann effect). 

Let us consider an incident plane wave with wave- 
vector OM of length 111. The wave-vectors of the 
waves it creates inside the crystal must have the same 
tangential component as OM on the crystal surface. 
Their extremity should therefore lie on the intersection 
of the normal to the crystal surface drawn from M with 
the dispersion surface. Figure 3 shows that an incident 
plane wave thus excites two wave-jields inside the 
crystal in the transmission case. Any point of the exit 
surface thus receives two wave-fields which are cohe- 
rent and interfere. When each wave-field reaches the 
exist surface, it decouples into its two components, the 
refracted and the reflected waves. 

In the case of X-rays however, the incident wave is 
always a spherical wave and all the points of the disper- 
sion surface are simultaneously excited. The incident 

FIG. 3. - X-ray propagation in the plane wave case. a) Disper- 
sion surface in the reciprocal space ; Mz : normal to the entrance 
surface. The arrows at PI and Pz show the propagation direction 

of the wave-fields. b) Direct space. 

wave generates within the crystal a whole array of wave- 
fields whose propagation directions inside the crystal 
fill out the so-called Borrmann triangle limited by the 
incident and reflected directions (Fig. 4). Along any 

FIG. 4. -X-ray propagation in the spherical wave case. 
a) Reciprocal space. b) Direct space PI and P'z are the tie points 

of the wave-fields propagating along Ap. 

direction Ap within the triangle propagate two wave- 
fields characterized by points P, and P', of the disper- 
sion surface. These two wave-fields interfere giving rise 
to interference fringes in the reflected and refracted 
beams (the so-called Kato Pendellosung fringes). Since 
wave-fields belonging to branch 2 are more absorbed 
than normal, these fringes disappear when the product 
pt of the linear absorption coefficient p by the crystal 
thickness t is larger than 4 or 5. 

3. Principles of X-ray topography.- We shall limit 
ourselves here to the Lang setting (Fig. 5). The beam of 
X-rays emitted by a point focus (100 x 100pm2 - opti- 
cal) is limited by a fine slit parallel to the reflecting 
planes and such that the crystal can be adjusted for 
Bragg reflection independently for Ka, and Ka, 
radiations. The direct beam has usually a divergence 
of 40 to 6 0  which is much larger than the width of the 
reflection domain of the perfect crystal. After it has 
entered the crystal, it only contains rays which do not 
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FIG. 5. - Principle of X-ray topography. F : focus ; FI, F2 : 
first and second slits ; P : photographic plate ; i l  : direct image 

of the defect. 

fulfill Bragg's condition for the perfect crystal. The 
other have given rise to the wave-fields propagating 
within the Borrmann triangle ABC. If the direct beam 
hits a defect, part of it may satisfy Bragg's condition 
on the distorted lattice planes around the defect and 
give rise to a reflected beam and an image, i,, called the 
direct image on the photographic plate [21]. From the 
distance of i, from the edges of the trace of the reflected 
beam, it is easy to deduce the depth of the defect which 
gave rise to the images. One has thus obtained a section 
of the crystal by the incident beam of X-rays ; it is 
called a section topograplz. The presence of a defect 
within the Borrmann triangle also perturbates the 
propagation of the wave-fields, giving rise to other 
types of images which are more complicated to 
explain [21] but can be simulated on a computer [22]. 

In order to obtain a projection of all the defects 
contained in the crystal, A. R. Lang had the idea [l, 21 
to traverse simultaneously the crystal and the photo- 
graphic plate ; the resulting topograph is called a 
traverse, or projection topograph. The intensity receiv- 
ed by any point of the photographic plate is equal to 
the integral of the intensity distribution along the base 
of the Borrmann triangle, integral performed as the 
reflected beam goes across this point ; it is called the 
integrated intensity. 

4. Comparison between electron microscopy and 
X-ray topography. - Although there are of course 
similarities of principle in the diffraction of electro- 
magnetic waves and electrons by triply periodic matter, 
there are also some practical differences which it is 
important to point out. 

The interaction of electrons which are charged with 
matter is much stronger than that of X-rays. This has , 

two consequences. The first is that the inde.x of refrac- 
tion of matter for X-rays is very close to one, with the 
result that it is impossible to make lenses for X-rays. 
On the other hand it is possible to make lenses for 
electrons which are electrically charged and to build up 

an electron optics. The second consequence is that the 
electrons are'only sensitive to strong deformations : an 
electron beam must pass very close to the dislocation 
core for the strains to be felt ; the dislocation images 
are therefore very narrow, but can be magnified thanks 
to the electron optics. The X-rays on the other hand are 
very sensitive to small strains and dislocation images 
are very wide but of the right size to be observed with 
the one to one magnification entailed by the absence of 
any lenses. 

Electrons are therefore best fitted to study very thin 
regions containing a high density of defects while 
X-rays are used to study large nearly perfect crystals 
(up to lo4 or lo5 dislocations/cmZ for instance) with no 
other preparation than careful polishing of the surfaces. 

There are three other important differences : 

a)  Electrons used in microscopy are accelerated to 
100 keV or more and have therefore quite short wave- 
lengths. The corresponding Bragg angles are of the 
order of less than a degree and the so-called column 
approximation can be used. Bragg angles are much 
larger in the case of X-rays and this approximation is 
not valid. For the same reason, there are two reciprocal 
lattice points only on the Ewald sphere for X-rays, 
except in particular cases, while there are usually many 
more in the case of electrons. 

b) The electrons waves used in an electron micro- 
scope are usually to a good approximation plane waves 
and electron micrographs are usually taken for a given 
departure from Bragg's law - a given value of the 
deviation parameter - and the observed, or simulated, 
contrast depends on this value. In the case of X-rays, 
the incident wave is a spherical wave. The contrast on 
traverse topographs, although it may have some simi- 
larity of appearance with that observed on an electron 
mici-ograph, is the result of an integration. 

c) The index of refraction of matter for X-rays is 
slightly smaller than one. This brings about some 
differences with electron diffraction. One of them is 
that the anomalously low absorption branch of the 
dispersion surface is in general branch 1 for X-rays 
and branch 2 for electrons. 

5. Image formation of stacking faults on X-ray topo- 
graphs. - Let us consider a Borrmann triangle and a 
stacking fault intersecting the arms of this triangle at 
B, and C ,  (Fig. 6). When a wave-field reaches the 
stacking fault at a point such as q, the boundary condi- 
tions for the continuity of the tangential component of 
the wave-vectors must be applied along the surface of 
the stacking fault, just as in the case of a wave incident 
on a new crystal. A wave-field propagating along Aq in 
the first part of the crystal, and characterized by a tie- 
point lying on a given branch of the dispersion surface 
will excite in the second part of the crystal two wave- 
fields, one having the same tie-point, the other one with 
a tie-point on the other branch of the dispersion sur- 
face. We shall call the latter a new wave-field. The paths 
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FIG. 6. - Wave-field propagation in a crystal containing a 
stacking fault. B1 C1 : stacking fault plane ; A' : focusing 

point of new wave-fields. 

of the new wave-fields thus created along B, C, focalize 
at a point A', intersection of the parallels to the reflected 
and incident directions drawn from B, and C, respec- 
tively (Fig. 6). If A' lies outside the crystal it is a 
virtual focal point, the wave-fields breaking up into 
their component waves as they reach the exit surface of 
the crystal. 

If one looks at the intensity distribution along the 
exit surface, there is a depletion along CC, and B2 B 
and an enhancement along C, B,. It  can be shown [I71 
that the corresponding intensities are of the form : 

along CC, and B, B : I = I, 
along B2 C, I = I, + I, + I, 

with 

I, = ?,,,(I - I A 1 sin2 6/2)  
I, = B sin2 612 
I, = C sin2 612 + D sin 6 

where I,,, is the intensity for the perfect crystal, 6 the 
phase shift introduced by the stacking fault : 

u is the displacement vector, h the reciprocal lattice 
vector associated. 

I, is the result of the interference between wave-fields 
which suffered no interbranch scattering when crossing 
the fault, that is wave-fields which have propagated 
along paths such as Ap. It is smaller than the cor- 
responding intensity for the perfect crystal, I,,,, since 
part of this intensity has been used for the creation of 
the new wave-fields. When pt is not too large, I, gives 
rise to fringes. Equal intensity fringes are hyperbolae 
asymptotic to AB and AC just as in the case of the 
perfect crystal. 

I, is the result of the interference between wave- 
fields which have all suffered interbranch scattering, 
that it wave-fields which have propagated along paths 

such as Aqp. It also gives rise to fringes when pt is small 
and equal intensity fringes are hyperbolae asymptotic 
to A' B, and A' B, (see Fig. 7). 

FIG. 7. - Fringes due to the interference of normal (without 
jumping from one branch to the other) and new (with jumping) 

wave-fields in the incidence plane. 

I3 is the result of the interference between wave-fields 
of the two latter types. That is wave-fields with paths 
along Aqp and Ap. It gives rise to fringes which exist 
even in the case of large values of pt. Figure 7 shows the 
shape of these interference fringes ; their period is 
double of the fringes due to the I, term. 

Figure 8 shows the shape of the I, and I, inter- 
ference fringes observed on the photographic plate 
when the stacking fault is inclined with respect to the 
crystal surfaces. What is observed in practice is a super- 
position of the two types of fringes, the I, fringes 
becoming progressively predominant when ptincreases. 

It will be noticed that only the second term in I, 
depends on the sign of the phase shift and will enable, 
for instance, to distinguish between intrinsic and 
extrinsic faults in silicon-type structures. 

Figure 9 shows the result of a computer simulation 
for 6 = 2 7113 in the case of a stacking fault in a 
400 pm thick silicon crystal, CuKa and a 11 1 reflection. 
It will be noticed that the first and last fringe have 
opposite contrasts and that these contrasts are 
exchanged, enabling the unambiguous determination 
of 6.  
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FIG. 8. - Fringes observed on a section pattern. a) Interfe- 
rences between new fields alone ( 1 2  in the expression of the 
intensity). b) Interferences between normal and new fields ( 1 3  

in the expression of the intensity). 

FIG. 9. - Computer simulations of the fringes observed on a 
section pattern in the case of 0.4 mm thick silicon crystal of (111) 
orientation, i l l  reflection ; CuKcc. a) Fault vector 113 a i l ]  ; 

b) Fault vector 113 [lli].  

On a traverse pattern, however, the observed inten- 
sity is the result of an integration. The I, and I, terms 
give rise to equal thickness fringes. Since their periods 
are different, their superposition is fuzzy except for 
larger values of ,ut for which I, is predominant. 
Figure 10 shows the intensity distribution on traverse 
patterns corresponding to the same conditions as the 
section patterns of figure 9. Two things are to be 
noticed : the complex structure of the fringes and the 
fact that the first fringe has the same contrast for both 
6 = + 2 7113. These effects are mainly due to the fact 
that we are dealing here with an asymmetric reflection. 
In the general case it is therefore not possible to deter- 
mine the sign of 6 from traverse patterns only and it is 
necessary to use section patterns. 

6. Example of a topographic study of stacking faults 
in silicon. - Czochralski grown silicon always contains 
a certain amount of oxygen, 5 x loi7 at/cm3 in the 
case of the experiments described here. This amount is 

FIG. 10. - Intensity distribution across the image of a stacking 
fault on a traverse topograph. Same conditions on figure 9. 

a) Fault vector 113 [i'il] ; b) Fault vector 113 [llf]. 

usually larger than the solubility limit of oxygen a t  
temperatures up to 1 350° (or 1400 OC). As grown 
crystals therefore contain at room temperature some 
oxygen in supersaturation since the diffusion coeffi- 
cients are too small. When these crystals are annealed 
at 1 000 OC precipitation of oxide occurs. Associated 

FIG. 11. - Traverse topograph of a 1 mm silicon crystal contain- 
ing stacking faults and prismatic loops. (111) orientation - 

- 
111 reflection, MoKcc. Courtesy J. R. Patel. 



C7-126 A. AUTHIER 

with this precipitation is the formation of prismatic 
loops and stacking faults. These defects are too small 
to be resolved on X-ray topographs but lead to a 
decrease of the visibility of Pendellosung fringes and 
of the anomalous transmission or Borrmann effect 
[23-241 ; they can of course be observed and identified 
by electron microscopy [25]. If the crystal however is 
annealed at 1 200 OC, the stacking faults and prismatic 
loops are large enough to be observed and studied 
on X-ray topographs [9-101. 

Figure 11 gives an example of these defects on a i l i  
topograph of a 1 mm thick silicon slice of (1 11) orien- 
tation ; the wave-length used is MoKa. The faults are 
practically circular loops lying on all four (1 11) planes. 
By taking topographs with various reflections and 
observing the contrast at the faults and the partial 
dislocation surrounding them, it is easy to show that 
they are of Frank type with 113 < 111 > Burgers 
vectors. By careful study of the images observed on 
section patterns, it is possible to tell the exact depth of 
the loop in the crystal. In this 1 mm thick crystal, no 
loop was intersecting the surface and it was impossible 
to determine the nature, intrinsic or extrinsic, of the 
fault. 

The crystal was therefore thinned down to 0.400 mm. 
Figure 12 shows the traverse topograph of a fault 
intersecting both surfaces and the corresponding sec- 
tion pattern which is found to be very similar to the 
simulated ones shown on figure 9. From the first fringe 
contrast it could be established that the fault is extrinsic 
and due to the presence of atoms of silicon coming 
from the volumes occupied by the oxide precipitates. 

7. Conclusion. - X-ray topography is a powerful 
tool for the study of defec'ts in crystals several square 
centimeters in cross section and a few tenths to a few 
millimeters in cross section, and containing a relati- 
vely small density of defects. It is therefore a comple- 
mentary technique to electron microscopy. Although 
with differences mainly due to the spherical nature of 
X-ray waves and to the value of the wave-length, 
defects such as dislocations and stacking faults can be 
fullv characterized as in the case of electron microscopy. 
In the case of stacking faults it is shown that the value of 

FIG. 12. - Topographs of a 0.4 mm silicon crystal showing a 
stacking fault. (111) orientation. 111 orientation. 111 reflection: 

the phase shift can only be determined on section 

CuKoc. a) Traverse topograph. b) Section topograph. Courtesy patterns in the general case and On traverse 
J. R. Pate1 patterns. 
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