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DEFECT CONFIGURATION AND ENERGY COMPUTATION 
IN SIMPLE METALS 

J. GRILHE and P. BEAUCHAMP 

Laboratoire de MCtallurgie Physique 
40, avenue du Recteur-Pineau, 86022 Poitiers, France 

RBsumB. - L'application de la mkthode de Hartree et de la thkorie des pseudo-potentiels permet 
d'kcrire l'knergie des metaux normaux sous la forme : 

rz et rj designant les positions de deux atomes. 
A volume constant, E, est constant et les variations de l'energie du cristal dipendent seulement de 

la contribution des interactions de paires. 
Ce rksultat est utilisk pour le calcul des energies de fautes d'empilement et des configurations de 

ceur des dislocations dans les metaux normaux. 

Abstract. - By using the Hartree method and the results of pseudo-potentials theory, the energy 
of simple metals can be put as follows : 

E = ~ E ~  +x W(Ir$-rr I) 
i i , j  

rt and rj characterizing the positions of two atoms. 
At constant volume, E6 is constant and variations of the crystal energy depend only on the pair 

interaction contribution. 
This result has been used to compute stacking fault energies and dislocations core configurations 

in simple metals. 

Introduction. - The dissociation of dislocations 1 .  Pair potentials. - The first attempts to express 
and their core configuration play important parts in the the energy of a metal in terms of sum of interactions 
study of mechanical properties of crystals. between pairs of ions were based on Hartree's model 

When stacking fault energies are small they can be for metals. 
determined experimentally. In the other cases, no 
direct techniques are available, and the computer 1 . 1  HARTREE'S MODEL. - At 0 K we may consider 

simulation only can give some idea of these core confi- a simple metal as a set of fixed pointlike ions 

gurations. embedded in the conduction electron gas. The total 

Many calculations were carried out in metals using energy is then the sum of the electrostatic interaction 

pair potentials. Bragg and Williams, for ordered alloys, between all the particles and of the kinetic energy of the 
electrons. were among the first authors who used such potentials. 

The study of point defects created by radiation The interaction energy between ions can be cal- 
culated in a classical way, and is written as a sum of damage has had also a great importance in the 
pair interactions. development of such techniques. - - 

~ h e i a l i d i t ~  of results obtained by that method can 
be discussed ; the use of pair interaction is not generally 
justified and the used (Morse potentials or 
polynomial potentials with parameters adjusted to some 
physical properties) is not realistic. Our purpose is first 
to  review how in simple metals and for defects which do 
not change the total crystal volume the use of pair 
potentials has been justified. 

In the second part we shall see how the potentials 

R, defines the position of the k ion. 
To get the other part of the crystal energy, we have 

to solve the Schrodinger equation for the conduction 
electrons. 

In Hartree's method one writes the Schrodinger 
equation for a single electron : 

can be used for stacking fault energy calculations and - 3 A ~ k ( r )  + (Vi + Ve) C D ~  = Ek C D ~ Y )  (1) 
for the determination of screw dislocation core confi- 
guration. in atomic units ( h  = e = m). 
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Vi is the potential created by the ions. 
The interaction between the considered k electron 

and the other conduction electrons is accounted by V,. 
Ve is related to the conduction electron charge den- 

sity p through Poisson's equation. 

and p can be expressed in terms of the single-electron 
wave functions cpk 

P = C 9.3) cpk(4 
k s o  

(3) 

The sum is over the wave functions with a wave 
number inside the Fermi sphere w.  The self-consistent 
resolution of eq. (1) and (2) gives the electron wave- 
function and energies and the potential Ve. 

In the case of simple metals we can use a nearly free 
electrons approximation and calculate the energies Ek 
using a perturbation method up to second order. 

The sum C Ek gives the electron kinetic energy, the 
k 

electron-ions interaction and the electron-electron 
interaction counted twice. The latter can be calculated 
independently since we know the electron wave func- 
tion and the potential V,. 

(The integration is on the crystal total volume.) 
The total energy of the crystal is : 

1 
E = Ejo,,.i, + Ek - - I pVe du . 

k s o  2 J v  

A calculation of these terms shows that it is possible 
t o  write the energy as 

Each of the three quantities depends on the crystal 
volume. At constant volume Eo is constant, Ei(Ri) 
depends only on the nature of the i ion, and Wij(Rij) 
is the effective interaction between the i and j atoms, 
function of their separation Rij. Only the latter term is 
affected by a modification of the crystal structure at 
constant volume. 

Thus, it is justified, if one is interested in a structure 
change (without volume change) to write the energy 
change as a sum of pair interactions. This result is due 
to the fact that the perturbation has not been carried on 
further than second order. A third order expansion 
would lead to interactions between three ions. 

The pair interaction W(r) is : 

~ ( q )  is the dielectric constant of the free-electron gas. 

with 
1 2 

g(x) = 1 + -- (1 - x ) Log --- 2 x 1;::l 
where k,  is the Fermi vector. 

For distances greater than the second or third nearest 
neighbour distance, the potential W(r) has an oscilla- 
tory asymptotic form 

These oscillations are due to the screening of the bare 
ion potential by the conduction electrons (Friedel 
oscillations). They are the manifestation in the real 
space of a Khon singularity in the dielectric function 
~ (q )  for q = 2 kF in the reciprocal space. 

For short distances a numerical calculation of the 
integral 

is necessary to obtain W(r). 
Thus, Hartree's model justifies the use of pair 

potentials for simple metals provided the volume is 
kept constant. 

The main characteristics of these potentials are to  be 
oscillatory and long-range. 

1 . 2  PSEUDO-POTENTIALS. - The use of Hartree's 
method presents some strong limitations : 

Near the ions, the potential is very strong, and i t  is 
difficult to justify the use of a perturbation method. In 
this region the conduction electron wave-function 
varies very quickly and its development in plane- 
wave requires a large number of terms. 

These difficulties can be eliminated by the use of a 
pseudo-potential method. The metal can be divided 
into two types of regions, bounded by spheres centred 
on the atomic sites and with a radius of the order of the 
ionic radius (Fig. 1). Inside a sphere the conduction 

FIG. 1. - The division of the metal into two parts by spheres 
centered on the ions. 

electrons are mainly submitted to the potential created 
by the ion situated in this sphere. Outside the spheres 
the potential is weak and comes from all the ions in the 
metal. 
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A structure modification with constant volume will 
not affect the wave functions inside the ions, thus it is 
sufficient to know the electron cloud wave function 
outside to deduce the physical properties of the metal. 

It is then possible to replace the actual potential 
inside the spheres by any potential if it gives the right 
wave functions outside the spheres. 

There are many potentials satisfying this condition 
and several ways for their determination have been 
suggested. One of the earliest method is the orthogo- 
nalized plane waves method (OPW). 

The initial purpose of this method is not to have a 
smaller potential, but to have the conduction electron 
wave functions orthogonal to the core electron wave 
functions Y,. The Y, functions are written as : 

The sum is over the bounded states. The calculation 
leads to a system of equations formally similar to the 
system obtained in Hartree's model, the only difference 
being that the potential V = Vi + V, is replaced by 

voPW = V + 2 ( E L  - EC) 1 Y C  > < YC i . 
C 

This pseudo-potential is a non-local pseudo-potential. 
This means that VoPW is not a simple multiplicative 
operator such as V(r). It can be shown that if one 
replaces, in the Schrodinger equation, V by voPW one 
gets pseudo-wave functions which differ from the 
actual wave functions inside the ion only (Fig. 2). The 

I 
FIG. 2. - Schematic representation of the wave function Y and 

the pseudo-wave function @ of a conduction electron. 

eiggen values E, remain unchanged. More generally it 
can be shown that these two properties are true for any 
potential which can be written as 

v+ Cfc(4< YCI. 
C 

Many potentials of this form have been used. 
An other type of approach is to introduce a cut-off 

radius R, and to take for r > R,, V = - Z/r and to 
determine for r < R, a potential which gives the actual 
wave function and its first derivative for r = R ,  (Fig. 2). 
This can be done theoretically using, for instance, a 
phase shift method. Another method is to assume a 
simple shape for the potential, V = Cte for instance 

and to fit this constant and the cut-off radius R, with 
some physical parameters, either calculated by an 
other technique, or measured. For instance, the poten- 
tial can be fitted to the calculated charge density created 
by an isolated ion in a neutralized electron gas [I]. 

Among the measured parameters we can mention the 
energy of the valence electrons in the isolated atom or 
ion, the determination of the Fermi surfaces, elastic 
constants, phonon spectra, liquid metals resistivity, 
etc ... It is necessary to note here that all physical pro- 
perties are not sensitive to the same parameters in the 
interatomic potential, so that a potential fitted to 
a particular property does not necessarily give good 
results for any other property. Several authors have 
reviewed and discussed these problems of the choice 
and determination of a pseudo-potential (W. A. Har- 
rison [2], M. L. Cohen and V. Heine [3], I. M. Tor- 
rens [4]). 

1 .3  EXCHANGE AND CORRELATION CORRECTIONS. - 
When using single electron wave-functions one neglects 
the exchange interactions and the use of an average 
potential V, is an approximation which does not take 
into account the correlation between electrons. 

The approximations seem to be justified as long as 
the mean volume per atom remains constant. 

The main result of the correlation and exchange 
correction is to change the dielectric function of the 
electron gas [ 5 ] .  

Reliable potentials are now available for alkali 
metals. They lead to good results for many of the 
physical properties. 

The typical shape of pair potentials is shown 
(Fig. 3) which is a potential calculated for Lithium 
by R. Pick [6].  

FIG. 3. - A pair potential for Lithium (R. Pick [6]). Hartree's 
model : - - - -. Pseudo potential : -. 

2. Application to extended structure defects. - 
2.1 STACKING FAULT ENERGIES IN COMPACT STRUC- 

TURES. - Compact structures are formed by stacking 
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no. 4. - Definition of the A, B, C planes in a compact structure. 
. A ;  x B; O C. 

of planes of three types A, B and C (Fig. 4). The 
stacking sequence of these three types of planes defines 
the structure or the fault in the structure (Table I). 

Perfect lattice A B C A B C  
Intrinsic fault A B C B C A  
Extrinsic fault A B C B A B  
Spinel twin A B C B A C  

a) F. C. C, structure. 

Perfect lattice B A B A B A B  
1 A fault B A B C B C B  
Intrinsic 2 A fault B A B C A C A 
Extrinsic 3 A fault B A B C A B A  

b) Hexagonal structure. 

In each case, the defect can be obtained by pure shear 
of the crystal along the b type vectors (Fig. 5)  contained 
in a dense plane. The energy of such a defect in the 

I 

FIG. 5. - Calculation of the interaction energy between atomic 
planes. 

difference between the faulted crystal energy and the 
perfect crystal energy. 

R; and Rij  are the distances between atoms in the 
faulted crystal and in the perfect crystal. 

The interactions being long range, the calculation in 
real space is long ; we shall present a method due to 
A. Blandin, J. Friedel and G. Saada [7] which avoids 
this difficulty. 

The interatomic distances inside a plane do not 
change, so the interactions between atoms in this plane 
are not modified ; thus it is not necessary to calculate 
these interactions. The defect energy can be written as 
sum of the interactions between the atoms in a P plane 
and the atoms in a P' plane parallel to P. 

Using the Fourier transform of the pair interaction 
and the summation properties in the reciprocal lattice 
of the P plane one can obtain the interaction energy 
between P and P', ~ ( z ,  bo). In a translation of P' by a 
vector b the change in the P-P' interaction energy is 
(per surfaces unit) : 

The asymptotic form of this function of z is gouvern- 
ed by the singularity in the dielectric constant ; for 
k = 2 k ,  one gets two different asymptotic forms : one 
for ( h  ( < 2 k,, the other one for ( h  I > 2kF (h is a 
vector of the P' plane reciprocal lattice). In terms of 
average number of electrons per atom Z there is a cri- 
tical Z,  = 1.14 ; one of the asymptotic forms is valid 
for Z < Z,, the other one Z > 2,. 

Z < Z, (alkali metals) : 
,-Zkiz 

3 -  

with2k, = q 1 2  - 4 k 2  F + 

Z > Z, (it is the case for di and tri-valent metals) : 

sin (2 k ,  z )  
@(z, b, bo) " - A@, b,) 

(2 k,  zIZ 

where 2 k, = J 4  k i  - 12. 

The fault energy reduces then to a summation of the 
@(z, bo, b) over the different values of z, distance 
between planes. 

For alkali metals, the interaction decreases exponen- 
tially ; for Z > Z,  the interaction is much longer 
range : it decreases as 1/z2. We must note that for short 
distances the asymptotic form is not valid and we have 
to calculate Q, numerically. 

For alkali and divalent metals and for aluminium, 
the results are of the same order of magnitude as the 
experimental results, often unaccurate. 

For instance, for alkali metals one finds a negligeable 
stacking fault energy in FCC structure and a positive 
but small energy for HCP structure, which is in agree- 
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ment with the stability of this phase at low temperature 
for Li and Na, and with the large number of observed 
stacking faults. In the case of aluminium the calculated 
values vary between 150 and 250 erg/cm2 for intrinsic 
stacking faults. The experimental values are around 
200 ergs/cm2. 

In the case of noble metals, the pseudo-potentials are 
not known well enough to give satisfactory results. 

Among the numerous stacking fault energy calcula- 
tions made using pair potentials from the pseudo- 
potential theory, we can extract V. Vitek [8] who does 
the calculation in real space and allows a relaxation of 
the planes near the fault, and C. H. Hodges [9] who 
does the calculation in reciprocal space, calculating the 
structure factor of a faulted lattice. 

2 .2  CORE CONFIGURATIONS OF SCREW DISLOCATIONS 

IN BCC STRUCTURES. - This fundamental problem 
for the comprehension of the plastic behaviour of 
b. c. c. metals has been studied by the use of pseudo- 
potentials, in the cases of lithium [ll-121 and 
sodium [13-141. 

To calculate the core configuration, one divides the 
crystal into two parts by a cylinder of radius R, 
centred on the dislocation. For r > R,, the atoms are 
fixed in the position given by the elasticity. For r < R,, 
the atoms are relaxed so that the crystal energy is 
minimised. In the same way, it was done for the 
interactions between planes, it is possible to calculate 
the interaction between atomic rows W(p, z), p is the 
distance between the two rows and z the relative displa- 
cement parallel to the rows (Fig. 6).  

The expression of Fn(p, In) depends on the relative 
values of In and 2 k,. 
A, < 2 k,  

J ( 4  k: - A') .p + 
- 

P5/2 

The form of the quantities Fo(p, A) and F,(p, A) is 
shown of figure 7 for Pick's potential for Lithium. The 
exponential decrease of the higher order coefficient 
makes W(p, z )  converge towards an asymptotic form. 
This asymptotic form depends on the value of 2 k, 
with respect to A = 2 nld, so that there is a critical 
average number of conduction electrons per atom 2, 
(2, = 0.81 for a < 11 1 > row in a b. c. c. structure). 

FIQ. 6. - Calculation of the interaction energy between atomic (b) 
rows. 

FIG. 7. - Functions Fo(p) et &(p, A) in the interaction between 
atomic rows. 

W(p, z) can be written as a Fourier expansion over 
the vectors 3, of the reciprocal lattice of the atomic > Z~ the form writes 

row I - n - ( - 'd") s i n (k .p+T)  
a W(P, 2) = A P5/2 COSAZ + A. p s~z  

W(P, z) = F,(P, A,) cos (% z) . 
I& = o with k, = 4 ki - 12. 
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The core configurations of screw dislocations with or 
without stress being the subject of an other communica- 
tion, we shall not discuss the results found for Liand Na. 

3. ConcIusion. - In simple metals the pseudo- 
potential theory justifies the use of pair-potential 
for the study of defects, under the condition that there 
is no volume change. The potentials are oscillatory 
and long range. 

However, except for alkali metals, the potentials are 
yet uncertain. They give generally the right order of 

magnitude for the stacking fault energy calculations, 
but there is an uncertitude in the results they give for 
the defect configuration which require the determina- 
tion of a minimum in the crystal energy. Considering 
the amount of research going on in this field, one can 
expect very reliable potentials to be available within 
some years. 

Several authors are now interested in the influence of 
exchange and correlation effects ; this should lead to 
the possibility of calculation of defects with volume 
changes. 
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