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CANCELLATION EFFECTS IN COMPUTED
ATOMIC TRANSITION PROBABILITIES (*)

R. D. COWAN

University of California
Los Alamos Scientific Laboratory
Los Alamos, New Mexico, U. S. A.

Résumé. — La méthode habituelle de détermination des probabilités de transitions atomiques
comporte le développement de fonctions d’ondes atomiques suivant des fonctions de base mono-
configurationnelles en couplage LS. Tl arrive fréquemment que 1’on ne puisse avoir confiance
dans les valeurs obtenues car il se produit des effets d’annulation provenant du mélange des fonc-
tions de base par couplage intermédiaire et par interaction de configuration. Des exemples, dans
les spectres de Ar I, Al I, et Si [, sont discutés. On fait la revue des circonstances générales dans
lesquelles les probabilités de transition calculées peuvent étre considérées comme les plus siires.

Abstract. — The common method of computing atomic transition probabilities involves the
expansion of atomic wavefunctions in terms of single-configuration, LS-coupled basis functions.
Calculated values are frequently rendered very unreliable by cancellation effects resulting from
intermediate-coupling and configuration-interaction mixing of basis functions. Examples are dis-
cussed in the spectra of Ar I, Al [, and Si I. The general circumstances under which computed
transition probabilities may be expected to be most reliable are reviewed.

1. Qualitative discussion. — Theoretically compu-
ted atomic transition probabilities are of a notoriously
low general level of accuracy. Although the reasons
for this are fairly well known, we wish here to review
the subject, with particular emphasis on configuration-
mixing effects, and using certain transitions in the
spectra of Ar I, Al'L, and Si | as illustrations.

Weighted transition probabilities or oscillator
strengths for electric dipole transitions are computed
in terms of the line strength S according to the equa-
tions [1].

gA = (64 n* e* ap/3 ) So>
=2.026 x 107°°Sg*s™!
= 0.6670gfo*s™ ", (H

where ¢ is the wavenumber of the spectrum line in
cm™ !, The line strength for a transition between two
states i and ¢’ is in turn usually computed as the
reduced dipole matrix element

P 3]

(*) Work performed under the auspices of the U. S. Atomic
Energy Commission.

where the sum is over all N electrons of the atom and
r; is the radial position of the i electron in Bohr
units. Evaluation of this matrix element is accomplis-
hed by expanding the functions  and ¢’ in terms of
basis functions, corresponding (in the method which
we wish to discuss in this paper) to pure LS-coupling

states of specific configurations ; then

S =5 Y lozLSJ)(ocLSJ”}:ri

o LS’ J') x

alLS a’'L’S’ '

x{oa' LS J|§')
SN WialSh) (nl | r i n’ 1) (ww')*x
alS o’'L’S’
x (LS CY o« LS I Yo' LS I [¢y). (2)
The first reduced matrix element in this final expression
is a radial integral

Lowr=(nl | r 0l )=(=1) [QI+DQI'+1)]*x

I ry[®
X (0 0 0) jo rPy P, dr  (3)

I

involving the radial one-electron functions P,(r)
and P,..(r) for the jumping electron in the two basis

configurations
G (C1) R (1 1

4)

and
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The second matrix element in (2) is an angular integral
whose value [I, 2] is precisely determined by the angu-
lar quantum numbers of the basis states, but which
need not concern us here.

The difficulty in computing an accurate value of S
is in considerable degree due to the fact that the
various terms of the double sum in (2), though all
real, are in general partly positive and partly negative.
The cancellation effects which may result (and which
may be viewed as a sort of destructive interference
among the various pairs of basis wavefunctions)
are compounded by the fact that this sum must be
squared to give a transition probability.

A convenient measure of this significant-figure
loss is the ratio of S properly computed from (2) to
the value of « S » which would be obtained by arbi-
trarily using the absolute value of ecach term in (2)
[3]. Such a cancellation factor (CF) must be viewed
with a certain amount of care —- its value may be
fictitiously small as a result of making the calculation
in an LS basis. whereas its value might have been
nearly unity if the calculation had been made in a
basis more appropriate to the coupling conditions
actually present. However, most arrays of interest
cither lic close to LS coupling conditions or do not
hie too close to any pure coupling scheme. and results
computed in a pure LS basis give a reasonably accu-
rate picture. Calculations made for a large number
of transition arrays indicate that cancellation factors
of 0.1 are quite common, and that factors of 10°+
are not at all uncommeon ; indeed. on a purely statis-
tical basis onc would expect factors of 10™ % or less
for ten percent of all lines. A line in the spectrum of
Pb I has even been found cxperimentally [4] to show
a cancellation factor of something like 107° or
10710,

Whether or not effects are accentuated by sertous
significant-figure loss, the uncertainties in computed
transition probabilities are seen from (2) to arise from
two sources. The first of these is an uncertainty in the
computed value of the radial dipole integral I (which
we assume to have a single value for transitions
between all basis states belonging to a given pair of
configurations). To the extent that configuration
mixing can be neglected. the dipole integral can be
factored out of the double summation in (2) ; it thus
provides only a common scale lactor for all lines of a
transition array, and has no effect on relative line
strengths. However, absolure line strengths are still
uniformly affected by various types of uncer-
tainty :

(a) It is well known [5] that results are particularly
unreliable when there is a large degree of cancellation
between positive and negative contributions to the
radial integral in (3). A good example appears in the
3p°-3p*d4dand 3p°®3p°5d transitions of the Ar |
isoeleetronic sequence, where 100 ¢, cancellation is
computed to occur in the vicinity of Ca [IT or Sc 1V
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[6), whereas lines of these arrays are actually found to
be missing in Ti V [7].

(6) Even when there is not a great deal of mathe-
matical cancellation, the radial integral is unreliable
when the two functions P,, and P, are concentrated
at much different values of r, since contributions to
the integral then arise mainly from the outer tail of
one function and the inner portion of the other, both
of which arc uncertain.

(¢) Particularly poor also are cases (such as
3p®3p*®3din Ar 1) which involve a wavefunction
(in this case, 3 d) which is on the verge of collapsing
to form the beginning of a transition or rarc earth
scries, so that the computed radial function is unu-
sually sensitive to the detailed form of the assumed
central-field potential [6, 8].

The second basic source of uncertainty in (2) lies
in the values of the wavefunction expansion coefli-
cients (eigenvector components). For pure LS coupling
in the single-configuration approximation, thesc
coefficients arc perfectly definite (being either unity
or zero). But usually the departures from LS coupling
are appreciable, and the coefficients then depend
sizeably on the dectailed nature of the computed
coupling conditions. Uncertainties in configuration-
mixing effects add further to the uncertainties of the
coefficients.

When configuration mixing is important. then the
various terms in (2) involve scparate radial dipole
integrals for the different pairs of configurations :
when the cancellation factor involved in the summa-
tion (2) is small, the relative valucs of these integrals
may be very important, as will be seen in the examples
to be discussed.

Contrary to the assumptions made above, calcu-
lations are frequently made which employ different
radial wavefunctions tor cach term of a configuration.
There are then several different radial dipole integrals
even for a single pair of configurations ; the relative
values of the different integrals arc then critical if
there is appreciable mixing of basis states and the
cancellation factor is small. It is not logically consistent
to use such variable dipole integrals il the cigenvector
components are obtained by dingonalizing encrgy
matrices which are sct up on the assumption of a
common set of radial wavefunctions for all basts
states of a configuration. We consider it preferable
to use the simpler, morc-consistent approach except
for very simple spectra showing a very close approx-
imation to pure LS coupling conditions in all the
configurations involved.

The examples which follow were calculated using
a computer program described clsewhere {2]. extended
to include arbitrary types of configuration mixing.
This program has been modificd to automatically
scale, by successively increasing factors. the various
parameters involved in the calculation of energy
levels and transition probabilities, and to plot the
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results of each calculation on microfilm. The resulting
computer-produced movies illustrate very vividly
the sorts of destructive and constructive interference
which occur in typical cases. Several of the figures
in this paper consist of hand-tracings of selected
frames from such movies.

2. Ar I isoelectronic sequence. — As a first example
of various aspects discussed qualitatively above, we
consider the transitions 3 p®-3 p> 3 d in the Ar I
isoelectronic sequence. These have been discussed
previously [6] in the single-configuration approxima-
tion ; here we wish to discuss important configuration-
interaction corrections.

TasLE [

Term energies in p° d configurations

p . E, —0200F +1267G' —0.043G>
'F . E, —0057F* —0067G' + 0.325G>
D : E,, +0200F* —0067G' — 0.043G?
ID:E, +0200F —0067G" —0.043G>
SF 1 E,,  —0057F* —0067G' —0.043G?
3p 1 E, —0200F> —0067G' —0.043G?

In Table I we give the Coulomb-interaction contri-
butions to the energies of the terms of p° d. Because
of the large coefficient of G', the 'P level tends to
lie at an energy appreciably above those of the other
eleven levels — particularly in the ions K II, Ca III, ...
where G! is larger than either F? or G* [6]. Since the
configuration-interaction matrix elements between
two p° d configurations are identical in form to the
single-configuration expressions (with E,,, F?%, G',
and G® replaced by zero, R%, R!, and R®, respec-
tively), the largest configuration-interaction effects
tend to be shown by these same 'P; levels. Both

300 ENERGIES OF 3p° nd LEVELS Se== |
! —
250l LEVELS OTHER THAN 'P, J— 4= N
---- 'R {NO CONF. INT.)
_ ! PR
P, (WITH CONF INT.) =
< 200
=
S
~N
w
1501
ca
s B
IEEN
c o
I
00 Ar 1 K O CoII Sc I Ti ¥

FiG. 1. — Computed (c) and observed (o) energies of the 3 p5 3 d,

4 d, 5 d configurations in the Ar I sequence. Shaded block :

the eleven levels of a configuration other than 1P;. Dashed line :

computed !P; level neglecting configuration interaction. Solid
line : 'P; level including configuration interaction.
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of these properties of the 'P, levels are illustrated in
figure 1 [9] ; note particularly that in K II the 3 d 'P,
level is actually computed to liec above the 4 d 'P,
level unless configuration mixing of the various ad
configurations is taken into account [10].

Although the energy perturbations are most pro-
nounced in K II, configuration-mixing effects on
oscillator strengths are equally great in Ar I. These
effects are shown in figure 2, where the three possible
lines (one of negligible strength) 3 p® !S¢-3 p® nd are
shown forn = 3,4, 5, and 6. In section (a) of the figure

Ar 1 3p°-3p°3d,4d,5d,6d

{a) (c}
08 1T b

08|

) ) N YT

ol d 1 1 .'Illl
(b) (d)

o8r 1r

OSCILLATOR STRENGTH {(gf)
o

oal 4t

1T bl
1 [ Y| I ” b i
860 = 820 780 900 860 820 780

WAVELENGTH ()

0.2r

900

FiG. 2. — Computer-plotted theoretical spectra, showing the

three lines Ar I 3 p6 1S¢-3 p3 nd 3Py, 3D, 1P; for (left to right)

1n=3,4, 5 and 6. Sec. (a), zero configuration interaction ; (b)

50 % configuration interaction ; (¢) full configuration interac-

tion ; (d) same as (c) except with (3 pllrl4 d) = 0. The tic

marks on the spectrum lines indicate the configuration purity of
the associated nd quantum states.

(zero configuration interaction), oscillator strengths
decrease with increasing n in the manner to be expected
from the monotonic decrease in value of the radial
dipole integrals [11] shown in Table II. With inter-
actions among all four configurations included (sec-
tions b and ¢), the phase relations for the 'Sy-3 d 'P,
line are such (the eigenvector component for the
3 d 'P, basis state having opposite sign to the compo-
nents for all higher nd 'P, basis states) that all nd
(n > 3) contributions to the oscillator strength tend
to cancel the 3 d contribution. For the highest 'P,
state, on the other hand, phase relations (a common
sign for eigenvector components of all 'P, basis
states) are such that all contributions to oscillator
strength add together. Thus the net result of configu-
ration mixing is a shift in oscillator strength from the
3d (and 4 d and 5 d) to the 6 d line — or more gene-
rally, if additional configurations are included, from
low-d to high-d lines [12].

The computed strengths of the highest-d lines
included in the calculation are of course fictitious :
the excess oscillator strength would be passed on
to still higher-d lines (and probably into the contin-
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TaBLE 11

HX reduced dipole elements (3 p || r | nd) and cancellation factors for 3 p®-3 p* nd transitions

3p-3d 3 p-4d 3p-5d 3p-6d
Ar 1 0.878(— 0.999) 0.736(— 0.997) 0.561(— 0.995) 0.429(— 0.991"
K I 2.063(— 0.996) 0.429(— 0.600) 0.207(— 0.457) 0.129(— 0.396:
Ca Il 1.848(— 0.993) 0.081(— 0.117) 0.002(— 0.005) — 0.012(0.035)
Sc 1V 1.631(— 0.991) — 0.090(0.127) — 0.092(0.202) — 0.074(0.224)
TiV 1.457(— 0.989) — 0.188(0.264) — 0.140(0.311) — 0.103(0.320)
Cr VII 1.201(— 0.986) — 0.281(0.412) — 0.175(0.418) — 0.121(0.408)
Fe 1X 1.023(— 0.983) — 0.314(0.491) — 0.180(0.466) — 0.121(0.442)
Ni XI 0.892(— 0.980) — 0.322(0.540) — 0.174(0.491) — 0.115(0.457)

uum) if these states were included in the calculation.
However, the strengths of the 3 d lines are realistic,
as shown by the good agreement with experiment
in Table 1IL. It is important to notc that if one uses
cigenvectors obtained by a single-configuration least
squares fitting of the experimental 3 d energy levels,
then the computed strengths of the 'S,-*D, and
'S,-'P, lines are about equal, as observed, but are
too large by a factor of about 3 ; one could interpret

TABLE 111

Oscillator strengths gf (< 1 000)
for Ar 13p®1S,-3p*3d,4s

°’, D, 'P,  °P, 'P,

Least square ] 274 260 57 226
ab initio (HX)

3donly 3 96 438 — —
3d-4d 3 91 144  — —
3d-5d 3 88 113 — —
3d-6d 3 86 101 — —
4 s only — — — 63 220
4s5-65 — — — 63 208
Experiment ® — 87 101 59 228

— +6 +14 +3 +21

(®) LAWRENCE (G. M.), Phys. Rev., 1968, 175, 40 ; WIESe (W.
L.), BrinGes (J. M.), KornsLiTH (R. L.), and KELLEHER (D. E.),
J. Opt. Soc. Am., 1969, 59, 1206.

this as meaning simply that the value used for
3 pllri3d) was very poor (too large by a factor
\'3). However, the fact of the matter is that the 3 d
levels can be fit accurately cither in the single-confi-
guration or in the multi-configuration approximation
(the fit of the 3d 'P, level being accomplished through
G' in the first case and the R' in the second), and
in either case the inferred coupling conditions are
such as to give about equal strengths for the two lines :
however, only in the second case does a transfer ol
oscillator strength to higher nd configurations occur.
so that the absolute strengths of thz 3 d lines are as
low as observed. Note also that if a multi-configuration
least-squares energy level fit is attempted, the mathe-
matical equations to be solved are very ill-conditioned.
and there is no accurate way of ascertaining to what
degree the fitting of the 'P, levels is to be accomplished
through the paramecters G' and to what degree via
the R' ; theoretical parameter values are indispensable
as a guide.

By comparison, configuration-interaction cffects
among the (low) 3 p° ns configurations are small.
and it makes little difference whether one employs
a single- or multi-configuration, theoretical or
least-squares calculation (see Table TII).

Table IV gives computed wavelengths, oscillator
strengths, and transition probabilities for the 3 d
resonance lines of Ar [ to Ni XI, computed including
interactions among 3 d to 6 d. The table supersedes

TABLE 1V
Wavelengths (A), oscillator strengths, and transition probabilities (s™') of
the resonance lines 3 p® 'Sy-3 p* 3 d
in the Ar 1 isoelectronic series, computed including configuration interactions among 3 d-6 d.

Transition : 1S4-1Py

(a) (a)

Aexp Acale gf gA Aexp
Ar |l 866.80 875.79 0.10 8.83*s 876.06
K IT — 483.08 1.51 4.3]1-10 550.30
Ca IIL 357.97 34601 474 2.64-11 439.69
Sclv 289.85 285.03 5.61 4.6]-11 —
TiV 25296 247.82 532 578+ 323.37
Cr Vi 202.78 200.98 4.45 7.35+11 259.18
Fe IX 171.06 17043 3.76 8.65-1! 217.10
Ni XI 148.37 148.30 3.27 990-1 —

twr Ref. [9].

1S0-3D, 1S4-3P)
(a)

Acale gf gA Aexp Aeate ‘L’f gA
886.46 0.086 7.37-% 894.31 897.03 0.0026 2.13
551.98 0.002 4.647 607.92 609.20 0.0002 3.87¢
437.62 0.002 5.65-7 490.55 489.32 0.0002 493
369.60 0.002 9.01-7 — 413.87 00002 7.25 ¢
322.01 0.002 1.50+# 363.15 360.48 0.0002 1.13-
259.04 0.004 3.83:# — 289.87 0.0003 2.35:7
217.27 0.006 8.99-s — 243.27 0.000 4 435
187.16 0.010 195+ — 20990 00005 7.14 7
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an earlier one [6] in which configuration interaction
was neglected . comparison of the two shows the
expected decrease in magnitude of the effects as
jonization stage increases beyond K II.

All of the results discussed above for the Ar 1
sequence were computed ab initio. using /X [11]
radial wavefunctions. with the electrostatic and spin-
orbit radial integrals scaled down by factors of 0.85
and 0.95, respectively [6]. The results are not greatly
different from //F values in the case of K Il and
higher members of the sequence, where the 3 d wave-
function is tightly bound, close to the core electrons.
In Ar I, however, the 3 d function is teetering on the
verge of collapsing into the core. and is consequently
quite scnsitive to the assumed central-field potential.
The HF potential is sufficiently different from the HX
one that the HF values of the integrals R* are consi-
derably smaller than the HX values : interactions
among the 3 d-6 d configurations are thus too small
to produce nearly cqual strengths for the 3 d *D and
'Plines, though this equality would perhaps be achicved
if many higher configurations were included. The
points we wish to make here are simply that p°> d 'P,
(and, analogously, p® p 'Se. d° d, 'S,. etc.) states
tend to show strong Rydberg-series type interactions
with accompanying interference effccts in transition
probabilities, and that oscillator strengths are parti-
cularly difficult to compute accurately for the relatively
unstable d and f electrons near the beginnings of the
transition and rare-earth scries. respectively.

3. Al 1- group elements. — 1t is well known
that configuration interactions of the type sp™* 2-s? p™d
are usually quite strong. A particularly interesting
example (with m = 0) occurs in Al I : the series of
observed *D terms is sufliciently regular that it is
difficult to say which of the *D terms should be assigned
to 3 s 3 p? and so the observed terms are usually
simply labeled as the Rydberg series 3 s? nd 2D
(n > 3) as though 3 s 3 p?°D did not even exist
[13-15]. It has been variously suggested that the
353 p? 2D term should be identified with the lowest
[13] observed 2D, with the second or third such term
[16-19] (because theory locates it at about this point,
and because there are fine-structure, quantum-defect,
and oscillator-strength anomalies at this point), and
with an observed absorption feature a short distance
above the series limit [20, 21]. Recently it has been
shown theoretically by Weiss [22] and semi-empirically
by Eriksson [23] that thc unperturbed position of
the sp? 2D term indeed lies low in the s? d Rydberg
series (accounting for the above-mentioned anomalies
in this region). but that configuration interactions arc
s0 strong as to push the sp? 2D term to its observed
position above the series limit. Weiss showed also
that configuration-mixing effects accounted for the
abnormally-low observed oscillator strength for the
3523 p ?PY%3s*4d 2D transition [24].

For higher elements of the Al I group Ga L
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In I. and T1 I - the observed anomalies are rather
different © in partcular. the abnormally weak lines
lic higher up the series — at 9d or 10d in In 1, for
example [25]. These ditferences arise from the fact
that the unperturbed position of the sp? D term
lies much higher for the three heavy elements than
for Al as is shown both by Hartree-Fock calculations
and by semi-empirical fitting of the observed unper-
turbed sp? terms. In ions, on the other hand, the
sp? 2D term lies much lower — usually below the
fowest member of the Rydberg series.

It is thus instructive to examine the qualitative
changes which are computed to occur as the unper-
turbed energy of the sp? *D term in varied from a
position below the lowest s* d *D to a position above
the serics limit. keeping all other quantities fixed.
Figure 3 shows such computed changes in oscillator
strengths, all fixed quantities (radial dipole integrals

Al T 352 3p — 3s3p°,3s" 30-10d

25- - o e —
(aﬂ . (d)
20- T :
i
1.5- 4 - -
1.0- 4 -
4 | il L
| 1
= 01 Ls . _J j n h [
25—
T (b) (e)J
5 20- 4t |
& i
E I,Sl— -1 F -
S 1ok 1F 3
S | |
ekl | it l y
§ o X Ii 4 i{k —J
A } T T ke
{c) ()
2.0- - % -
1.5~ 1F g
1.0 4 r .
i
c.5 l s _
4500 3000 2000 4000 3000 2000
WLVELENSTH (&)
FiG. 3. - Computed spectra for Al T 3 §2 3 p 2Py2-3 s 3 p-.

3 52 3 d-10 d Ds;2. Sec. (a), no configuration interaction |
secs. (b)-(f), full configuration interaction, but variable unper-
turbed position of the sp? 2D term, as indicated by the arrow
below cach frame. In secs. (a)-(¢) the sp2 line is the longest-
wavelength one ; in secs. (d)-(f), the sp? line is the shortest-
wavelength one, with computed gf - 2.9, 4.0, and 5.0, and
computed purity 27 45 Y, and 79 ¥, respectively.

and encrgy parameters) being HX values for Al L
except with the spin-orbit and configuration-interaction
parameters scaled by factors of 0.95 and 0.85. as
was done for Ar I ; in cach section of the figure, an
arrow indicates the unperturbed position of the sp? 2D
term. Sections (b) and (¢) of the figure. with the sp? 2D
term below thz lowest s2 d 2. show strong cancella-
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tion in the s2 p ?P%sp? 2D transition and enhancement
of all s? p-s? d lines, and are similar to the situations
in most ions [26]. Section (d). with the unperturbed
sp? 2D near the second s? d term, is analogous to the
first few ions of the T1 1serics, except that interactions
in these ions are smaller and the sp? 2D remains ncar
its unperturbed position. Scction (¢), with the unper-
turbed sp? ?D term at about the (unperturbed) position
of the third member of the s? d serics but with the
perturbed position above the series limit, and with
an abnormally low oscillator strength for the second
2D. corresponds to the actual conditions in Al L
Section (f). with the unperturbed sp? D and the
oscillator-strength minimum both lying much higher,
are analogous to conditions in Ga I, In 1, and TI L.
(HX and [{F calculations have been made for all
four elements. HX and HF energices and radial integrals
are approximately equal, and values for the three
heavy clements are semi-quantitatively the same as
for Al I, except for the higher sp® *D. Detailed results
for oscillator strengths and D term splittings are
in fairly good agreement with experiment, but are too
extensive to include here.)

[n the Al I case (Fig 3¢), the computed cancellation
factors for the 3 d and 4 d lines (which are much weaker
than when configuration interaction is neglected)
are 0.20 and 0.04, respectively. Values of the CF
for the 5 d to 10 d lines range from 0.13 to 0.22 ; in
spite of this. the computed oscillator strengths are
larger with than without configuration interaction.
For the three heavier elements, values of the CF
beyond the second or third series members arc of the
order 0.1 to 0.01, with strong destructive interference,
making ab initio computed oscillator strengths for
thesc lines very unreliable.

Similarly to the high-d lines in the ArT case, the
oscillator strengths computed for the sp® ?D lines
[Fig. 3. Secs. (d)-(f)] are much too high. observed
values being of the order 0.1 or less [27-29]. As before,
the discrepancy is probably due to neglect of configu-
ration interaction with continuum states, most of the
oscillator strength from the low s*d lines actually
going into the continuum rather than into the semi-
discrete sp? 2D lines.

4, Sil13s*3p4f-3s3p’, 3s°3pnd. — Recently,
several experimental and theoretical papers have
appeared which are concerned with oscillator strengths
ot visible and near infrared lines of Si I, of interest for
the determination of the abundance of silicon in the
sun [30-34]. The disagreement between cxperiment
and calculation was mostly quite large (factors of 3
to 5). and is mainly the result of the same type of
cancellation effects appearing in the examples already
discussed.

One set of lines investigated experimentally by
Schulz-Gulde [30] consists of transitions between
3 p 4 levels and the lowest odd *D term. The latter
term is referred to in the literature as both 3s 3 p? *D°
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and 3523 p3d 3D As will be seen later. the second
designation is probably better [35], but in any case we

again have strong configuration mixing of the
type sp™*3s? p" d considered in Al I, this time
with m = |. However, there is no tendency for

the sp* *D® term to be perturbed above the serics
Jimit, in the manner of the sp? 2D in All partly
because the *D° lies lower (between the first two
members of the nd scries) and partly because the
interactions are somewhat smaller. Indeed, it is
reasonably accurate to inciude in calculations only
the three configurations 3 d. sp?, and 4 d which were
considered by Warner [32] and by Armstrong and
Licbermann [34].

The principal calculations described below were
madc using the same least-squares eigenvectors [35]
employed by Warner [32], but with radial dipole
integrals computed from configuration-average HF
wavefunctions (Table V) rather than from scaled
Thomas-Fermi-Dirac functions for individual terms.
The difficulty in computing accurate oscillator strengths
arises partly from the nature of the 4 eigenvectors,
which are more closely jK(jI) than LS coupled, but
mainly from the fact that the 3 d eigenvectors, though
closc to LS coupling, show strong mixing with sp’
and 4d states.

The computed odd energy levels are shown in
figure 4, both excluding and including the configura-
tion-interaction terms. Note that the 3d 'D° level

TABLE V

Reduced dipole elements (I'| r || I') for Si I

[ ’ [ ;
: i
i Warner (ave), A-L (ave) -

Array HF(CF)
|

- ) . |
l 3pid-3pdf — 15.14(1.00) — 192600 | -~ 19,6
L spi-3pdf 0.00 0.0 0.0

3p4d-3pdf | 28.40(—0.94) 27.600 ! 284t |
| Ratio (4 d/3d) |— 1.838 — 1.44 -1.45 !
 3p4s3pdp 7.41(— 1.00)] 6.71
' 3p4s3psp 0.70(— 0.19) 0.78 085

3pSs3ipdp |-- 6.67(0.80) — 617
1 3pSs3pSp 14.65(- - 0.98)

13.8 ‘

o Weighted average for nd 3DV only. (It has been assumed
that the value 12.7 in Armstrong and Liebermann’s Table 11
should read 127, and the signs have been assumed to be the
same as for our and Warner's values.)

is cssentially unperturbed, becausc the sp® 'D? level
lies far away ; the 3 d *D° term, on the other hand, is
pushed by the close-lying sp® *D® from a position
above the 3d 'D° to a position well below the 'D°.

Computed oscillator strengths for the set of lines

3d13po4af
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TOP . Si 1 (NO CONFIGURATION INTERACTION)
BOTTOM: Sil (WITH CONFIGURATION INTERACTION}

1
!
|
I 3p 4d —_— —_— —_—— feo—
i 3s 3p° E—
f 3p 3d
I
i
L _
C-G J=0 | 2 3 4
3 - p— R
3 20 —_— ==
p
c-G6 J=0 ! 2 3 4

FiG. 4. — Computer-plotted energy levels of Si 1 3s23 p 3 d
(longest lines), 3 s 3 p3 (intermediate-length lines), and 3s23 p4d
(shortest lines) for least-squares parameter values : lower figure,
including configuration interaction ; upper figure, same as lower
except with all configuration-interaction parameters set to zero.
The center-of-gravity of cach configuration is shown at the left,
Tic marks on the levels indicate the configuration purity of the
states (high purity for tic marks at the left) when the purity is
less than 90 9. The lowest level is sp3 SSQ, the next four levels
are the 3 d ng, 3D(1)23 of interest here, and the highest J = 2
level is sp3 1DY.

are shown in figure 5, with the configuration-interac-
tion parameters multiplied successively by 0, 2/3,
and 1. Note that the interactions not only perturb
the positions of the 3d *D° lines, but also greatly
reduce the line strengths. This loss of strength is a
result of destructive interference between the 3 d
and 4 d contributions to the 3d3D° states, as is
indicated by the fact that most of the lines have
cancellation factors greater than 0.5 when either the
configuration interaction or the 4d — 4f dipole
integral is set to zero (Fig. 5a and 5d, respectively),
but that all lines have CF’s less than 0.06 when all
quantities are given their « correct » values (Fig. Sc¢).
By contrast, all but one of the eight 3 d 'D° lines
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always have CF’s greater than 0.8, and all show very
little change in strength.

Sil 3p4f-3p3d,3s3p3,3pad

w
]

(a) (c)

(d)

¢
T

0 v v —
5

(b)

OSCILLATOR STRENGTH (gf)

0 . o
10000 9000 8000 7000 10000 9000 8000 7?0‘0

WAVELENGTH (A)

Fi1G. 5. — Computed spectra for transitions between 3 p 4 f and
the lowest odd 1.3D terms of Si I, using least-squares energy
parameter values and HF radial dipole integrals. In sections
(a)-(c), the configuration-interaction parameters have been scaled
by factors of 0, 2/3, and 1, respectively ; the lines with relatively

fixed wavelength and oscillator strength involve the 1D level,

the others involve the 3D0 levels. Tic marks indicate the confi-

guration purity (when less than 90 %) of the 1.3D?0 states. Section

(d) is the same as (c) except that the 4 {-4 d radial dipole integral

has been set to zero, and shows that the small oscillator strengths

in (c) are the result of destructive interference between the 3 d
and 4 d contributions to the low 3D0 states.

The computed 3d *D°4 f oscillator strengths
(corresponding to Fig. 5¢) are given in column
«LS-HF»of Table VI; the agreement with experiment
is fairly good considering the small cancellation factors
involved in the calculation and the experimental
uncertainties of about a factor two [30]. 1t is interesting
to note that the three weakest computed lines (with
wavelengths in parentheses in Table VI) have never
been observed experimentally [35]. The third line
(2 = 7239.1) has a computed CF of 0.05 like most
of the other lines, and is weak primarily because
of operation of LS selection rules — the 3 d level
being fairly pure *D° and the 4 f level fairly pure
K = 9/2 which necessarily is pure '*G. The other
two lines show CF < 107*; of this, a factor of
about 0.05 is again due to 3 d-4 d mixing in the 3 D°
state, and the remaining factor of < 0.002 is
accidentally small because of the detailed intermediate-
coupling nature of the 4 f wavefunctions (this factor
being ~ 0.07 for pure jK-coupling functions).

In contrast to the above results, the values given
by Armstrong and Liebermann and by Warner are
mostly much poorer. Since least-squares eigen-
vectors were used in these calculations also, the much
larger oscillator strengths are presumably due to the
different values which they used for the radial dipole
integrals. A partial verification of this is given by
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TABLE VI
Oscillator strengths for Si13 p 3 d(+ sp> + 3p4d)3D°3p4f
10° gf

3d 4f@ il Exp'® LS-HF@ A-L©® Cwo W,,.®

DY 3/2{5/21, 7226.2 39.2 55.0 60 285 170
3/2[3/21; 7184.9 } 0. { 37.8 40 62.9 114
3/2[3/2]. 7184.6 : 7.0 9.1 11.6 23.3
1/205/21, 7405.8 } 484 { 373 414 1 480 1133

*D? 1/2[7/21, 7 409.1 183 568 748 554
1/2[5/21; 74159 ) 365 { 319 — 1130 965
1/2[5/21, 7415.3 | 28.3 92 155 87.3
3/2[7/2]5 7275.3 99.2 104 383 509 335
3/2[5/21, 72358 | 68.7 { 33.0 96 228 95.4
3/2[5/2], 72353 | ' 63.8 215 201 198
3/2[3/2], 7193.9 } 20, { 12.5 40 22.8 38.1
3/2[3/2], 7193.6 ‘ 38.9 117 69.3 115

’DY 1/2[5/2]5 (7 431.6) : B { 0.01 — 18.9 0.10
1/2[5/21, (7 430.9) 0.01 0.07 1.3 0.05
1/2[7/2]5 7 424.6 } 485 { 17.9 56 79 54.5
1/2[7/2]e 7423.5 498 1517 1990 1 500
3)2[7)21; 7290.3 } 635 { 12.6 46 60.3 40.6
3/2[7/2]. 7289.2 392 1313 1770 1223
3/2[5/21, 7250.6 | 90.8 [ 150 485 345 461
3/2(5/21, 7250.1 | ' | 7.0 23 16.3 21.8
3/2[9/2]. (7 239.1) — 1.1 — 2.6 2.4
3/2[3/2], 7208.2 — 8.1 27 14.4 25.0

(3 Levels designated in jK-coupling notation, ji{K];.

) Radziemski and Andrew [35]. Wavelengths in parentheses are computed values for unobserved lines.

(3 Schulz-Gulde {30].

) This investigation ; least-squares eigenvectors, with Hartree-Fock radial dipole integrals.
i) Armstrong and Liebermann [34] ; least-squares eigenvectors, with dipole integrals from scaled Hartree-Fock-Slater wave-

functions.

M Warner [32] ; least-squares eigenvectors, with dipole integrals from scaled Thomas-Fermi-Dirac wavefunctions.
(& This investigation ; least-squares eigenvectors, using the averages of Warner’s dipole integrals given in Table V.

column « W,_ . » in Table VI. which we computed
using the weighted averages of Warner's radial inte-
grals given in Table V ; compared with our values
obtained with A F integrals, use of the « W  » values
decreases the degree of cancellation sufficiently to
increase all line strengths by a factor of about three,
giving oscillator strengths comparable with Warner’s
and Armstrong’s. The importance of using accurate
dipole integrals is evident.

Completely ab initio HF calculations (for eigen-
vectors as well as dipole integrals) give oscillator

strengths of an accuracy comparable to the LS-HF

values. provided interactions with several additional
3 pnd configurations are included. However, this
fact must be considered largely accidental since the
computed sp® energy levels agree comparatively

poorly with experiment, and in particular the sp® *D°
is computed to lie below the 3d°D° term.

5.8i 13 p4s3p5p.— Most of the remaining
lines measured by Schulz-Gulde [30] belong to
the 4 s-5 p array. Mixing of 4 s and 5 p with other
configurations is very small, and single-configuration
oscillator strengths computed from least-squares
eigenvectors and a I/ F dipole integral are given in
column « LS-HF » of Table VII . agreement with
experiment is rcasonably good for all except the
45 3P°5p 3D lines. Note that though we have
fairly good LS coupling (the average puritics being
99 “; and 87 °; for the 4 s and 5 p configurations,
respectively), there arec nonetheless numerous lines
with small computed cancellation factors, resulting
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TABLE VII
Oscillator strengths for Si13p4s-3pSp
10% gf

Exp(® LS-HF® A-L9 w
— 1.7(0.38) — 0.89 2.1
— 5.8(1.00) — 4.27 5.0
— 0.0(0.03) — 0.00 0.0
S 16.7(0.83) — 0.00 16.8
3.09 17.4(1.00) 17.5 16.9 14.6
— 3.1(0.20) 2.9 1.67 4.8
6.19 38.6(1.00) 38.6 34.5 35.5
— 0.2(0.05) 0.1 0.15 0.6
— 4.4(0.25) 4.2 2.08 7.5
9.45 60.5(1.00) 60.3 47.9 6.03
— 4.9(0.86) — 0.07 5.4
— 0.1(0.05) — 1.18 0.0
6.50 7.0(0.44) 13.9 15.5 4.3
6.28 8.8(1.00) 17.9 15.1 9.0
9.60 15.8(0.89) 32.8 30.2 12.2
5.72 4.4(0.21) 8.6 10.6 7.9
0.89 1.3(0.06) 2.3 0.79 8.8

26.50 39.0(1.00) 80.0 61.0 36.7
— 0.0(0.02) — 0.21 0.0
— 2.1(1.00) — 0.39 1.0
— 0.6(0.29) — 1.75 0.3
— 0.0(0.00) 0.1 0.44 5.3
0.88 1.4(0.09) 3.1 5.86 4.3
16.8 24.9(1.00) 64.0 56.0 17.2
— 0.1(0.33) — 0.07 0.1
-- 0.4(0.10) — 0.05 0.1
— 0.4(0.19) — 0.95 0.2

51.2 41.4(1.00) 124 118 42.1
— 0.0(0.02) — 0.02 0.0

12.1 8.7(1.00) 40.8 399 8.8
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HFD  HF(ciy®

0.2
0.8
0.0
18.6
4.5
0.1
8.4
0.0
0.0
8.9
7.9
1.0
6.0
40.4
12.5
46.7
32
152
0.1
0.4
0.4
333
24.4
57.7
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1) Radziemski and Andrew [35] ; wavelengths in parentheses are solar or computed values for lines not observed in the laboratory.

M Schulz-Gulde [30], except that the value for 'P¢-1P is a rough estimate from intensities observed in Ref. [35].

(e Numbers in parentheses are computed cancellation factors.
) Armstrong and Licbermann [34].
) Warner [32].

- 4h inirio Hartree-Fock, single-configuration results.

() A4h initio Hartree-Fock results, including 4 s-5 s and 4 p-5 p configuration interactions.
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from the intermediate-coupling mixing of the

LS-coupled basis states.

The calculations by Warner [32] and by Armstrong
and Liebermann [34] were also made with least-
squares eigenvectors. However, they used different
dipole integrals for different pairs of LS basis func-
tions, and the effect is clearly evident in Table VII :
their *P-*D integrals were about the same as ours, and
all other integrals were considerably larger except for
Warner's 'P%-!P integral, which was extremely small.
The 'P°-'P result, particularly, illustrates our remarks
at the end of Sec. 1 concerning the use of one vs. many
dipole integrals.

Completely ab initio single-configuration HF results
are approximately the same as our least-squares values,
except for three weak lines which have small cancella-
tion factors. The factor-of-six error is still present for
the *P°-*D lines (which have a CF of unity), and this
prompted us to look for an explanation through
configuration interaction effects. An obvious candi-
date is mixing of 3 p 5 p with 3 p 4 f because the only
terms common to these configurations are 3D,
However, the computed mixing is very small, and
effects on computed oscillator strengths are negligible.

Series-type mixing is also very small (for 4 s-5 s, less
than 0.2 9 ; and for 4 p-5 p, less than 1 %, except 4 %
for 'D and 13 % for 'S). However, Table VII shows
that inclusion of 4 s-5 s and 4 p-5 p interactions has
very large effects on computed oscillator strengths —
the *P%-*D values are greatly improved, but most
other values are ruined. The reason for these large
(and generally meaningless) effects may be seen from
Table V to lie in the fact that the value of (4s || r | 5 p)
is an order of magnitude smaller than the other three
dipole elements involved. Thus, for example, a 1 %
admixture of 4 p into a 5 p state means eigenvector
components of about (4 0.1, 0.995), which together
with the 4 s-4 p and 4 s-5 p dipole elements give (if the
angular factors are equal) a value of S proportio-
nal to + 0.1 x7 + 0995 x 0.7 = + 0.7 + 0.7 and
therefore an oscillator strength equal to either zero
or four times the single-configuration value, depending
on the phase relations.

A large number of different calculations have been
made, using different configuration-interaction para-
meter values and dipole-element values, and including
various additional configurations. In no case was a
good overall set of oscillator strengths obtained. The
conclusion — not surprisingly — is that in a case of
this type it is not safe to attempt a calculation in
anything more than the single-configuration approxi-
mation, even though configuration-interaction effects
may in fact be important so far as oscillator strengths
are concerned. (Nor are cancellation factors computed
as defined in Sec. 1 any guide to the reliability of
computed configuration-interaction effects in such
cases ; in the present example, the apparently-improved
3P%-3D values are small as the result of CF’s < 0.008,
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whereas the very poor values for other lines are large
because of CF's > 0.3.)

6. Summary. — The discussion and examples given
above may be summarized by listing the following set
of conditions which are conducive to maximum relia-
bility of computed transition probabilities.

A. Conditions involving the entire transition array.

1. Highly stable radial wavefunctions ; e. g., high
jonization stages, and no d function near the start of
a transition series nor f function near the start of a
rare earth series.

2. No interactions with arrays having much larger
magnitudes of radial dipole element (nl | r|ln l’).

3. Large overlap of radial wavefunctions (e. g.,
nearly equal values of < r >,, and < r >,,), and
little cancellation between positive and negative
contributions to the radial dipole element (n/ || r | n' I')

4. Small configuration mixing.
5. Pure coupling in each configuration.

6. Lowest configuration of a Rydberg series
(maximum separation from other configurations, and
minimum phase uncertainties in eigenvector compo-
nents of perturbing configurations).

B. Conditions on individual lines.

1. Little cancellation in the double sum over
eigenvector components (large value of the CF).

2. Extreme values of J and J’ (small-sized energy
matrices, and hence few eigenvector components).

3. Lines involving levels each of which has an
energy, relative to other levels of the same parity and J
value, that is insensitive to modest variation in relative
values of the energy parameters F*, G* (, and R
(This criterion is pertinent particularly to ab initio
calculations, as opposed to least-squares fitting of
experimental levels.)

C. Calculational procedure.

l. Use both theory and experiment (i. e., make
judicious compromise between theoretical energy
parameter values, and parameter values which give
the best agreement with experimental energy levels
and g-values — particularly noting discrepancies which
may indicate neglected configuration-interaction
effects, etc.).

2. In complex transition arrays, or when there are
appreciable departures from LS-coupling conditions,
calculate radial dipole integrals from configuration-
average wavefunctions rather than from wavefunc-
tions for specific LS terms.

For practical applications of computed oscillator
strengths, many of the above criteria are automatically
met. For example, in astrophysical applications one
tends to employ only the strongest lines, and this
implies lines without serious cancellation effects, and
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lines of large (J. J) from low-lving configurations,
Still, when wavelength or similar restraints limit
the choice. one needs to beware of cases such as
SiI3 d *D%4 1t where an entire set of lines suffers
strong cancellation effects. and good agreement between
computed and observed relative line strengths is no
indication whatever of the accuracy of the computed
absolute values.
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