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JOURNAL DE PHYSIQUE 

SYSTEMATICS OF ATOMIC CORRELATION ENERGIES 

F. E. HARRIS 

Department of Physics, University of Utah Salt Lake City, U tah  841 12 (U. S. A) 

RCsume. - Les energies de correlations des niveaux les plus bas des atomes de la premihe 
rangee et de leurs ions sont classees de faqon commode suivant les diverses approximations qui 
permettent de depasser le modele Hartree-Fock. On examine plus particulierement la fonctio~z 
de polarisation definie par l'interaction de configuration incluant la fonction Hartree-Fock et 
toutes les configurations obtenues B partir de cette derniere par I'excitation d'une seule orbitale, 
et la forlctiorl d'ollde dl/ premier o~.cli.e, qui en tient compte des effets dus a la presence d'orbitales 
de valence non occupees. Ces fonctions d'onde sont dkfinies en termes d'excitation d'orbitales 
(plut6t que de spin-orbitales) et font intervenir des configurations dont chacune est une fonction 
propre a plusieurs electrons d'un ~iioment angulaire. La fonction d'onde de polarisation est parti- 
culierement utile dans l'estimation des parametres de struct~lre hyperfine. Les fonctions d'onde 
du premier ordre decrivent I'energie de correlation associke au mode d'occupation des orbitales. 
Nous appelons celle-ci Cnergie de correlation orbitale. Le reste, ou energie de correlation IZOIZ 

orbitale, peut etre esti~ne e~ilpiriqi~erlient pour donner une bonne estiriiation des affinites electro- 
niques. Une evaluation directe de la PILE grande part de I'energie de correlation non orbitale peut 
etre obtenue a partir d'1111e fol~ctioll cl'ollde rlri seco~lcl orclre OLI des energies de correlation de paires 
calculees, coninie le fait Nesbet, a partir des Cquations de Bethe-Goldstone. Les Cnergies de paires 
obtenues sont pratique~iient colierentes avec les Cnergies des fonctions d'onde du second ordre si 
on utilise des paires de syrtlitrie nrlnptke c'est-8-dire, si les paires sont decrites par des fonctions 
propres du moment angulaire contenant deux orbitales excitees. Les Cnergies de paires de symetrie 
adaptee peuvent &re aussi deco~iiposees en incre~nents associes aux valeurs successives des 
nonibres quantiques de nioment angulairc orbital et ces increments peuvent Ctre utilises pour 
etudier si la base des orbitales est angulairement complete. 

Abstract. - The correlation energies of tlie low-lying states of first-row atoins and their ions 
are conveniently systematized in ternis of various approximations beyond the restricted Hartree- 
Fock model. Of particular interest are the poln~.i=atio~~ ~ t ~ ~ ~ ~ c f i r ~ ~ c t i o ~ r ,  defuied by the configuration 
interaction including the Hartree-Fock function and all configurations which are orbitally singly- 
excited therefrom, and tlie ,first-order ~ t ~ ~ ~ ~ e f i r ~ l c t i o ~ ~ ,  which in addition includes effects due to the 
presence of unocc~~pied valence orbitals. These wavefunctions are defined in ternis of orbital 
(rather than spinorbital) excitation, and involve configurations each of which is an appropriate 
many-electron ang~~la r  ~ i iomen t~~m eigenfi~nction. The polarization wavefi~nction is particularly 
useful in estimating hyperfine st~uctiire paraliieters. First order wavefi~nctions describe the corre- 
lation energy associated with orbital-occu~~ancy patterns ; we call this the or6irnl correlation energy. 
The remaining, or ~~o~ror.Ditc~l correlation energy may be estimated empirically to give close esti- 
mates of electron afinities. Direct evaluation of most of tlie nonorbital correlation energy may be 
obtained fro111 a sero~l~l-o~.rler ~ t ~ a ~ ~ ? j i r ~ r c t i o ~ ~  or from pair correlation energies calculated, following 
Nesbet, from Betlic-Goldstone cq~lations. The pair energies are very nearly consistent with the 
energies of second-order wavefunctions if s ~ ~ ~ ? ~ ~ ? l e t r ~ ~ - n r / c i ~ t c , d  pairs are ~ised, i. e. if the pairs are 
described by angular-momentcrm eigenfunctions containing two excited orbitals. Symmetry- 
adapted pair energies can also be decomposed into increments associated with successive orbital 
ang~llar moment~~rn q~iantum n~~mbcrs,  and these increments can be ~ ~ s e d  to study the angular 
completeness of orbital basis sets. 

Introduction. - A l t h o ~ ~ g h  tlie conventional res- 
tricted Hartree-Fock (RHF) nlodel can be very 
successful in providing a nearly quantitative descrip- 
tion of atomic charge distributions, it is necessary 
to consider electron-correlation effects to obtain 
consistently good values for the energies of atomic 
states. Electron correlation has been treated both 
by perturbation - theoretic and direct configura- 
tion - interaction (CI) methods, and at  least for 
light atoms both approaches seem capable of 
yielding satisfactory results. A part of the correlation 

energy can be obtained by removing some of the res- 
trictions of the usual R H F  model [I]. Calculations 
indicate, l~owever, that  near-quantitative accuracy 
is not reached in this way 121. 

This communication will be primarily concerned 
with both direct and perturbative methods based 
on configuration-interaction calculations. It will 
seek to indicate the relationships and accuracy of 
various procedures, and to  survey the current situ t '  a ion. 
In  particular, it will examine the approaches of  
Sinanoglu [3] and of  Nesbet [4] and the calculations 
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of tliese investigators, the author's group, and others. 
The discussion will omit one area of considerable 
current interest, namely the use of Brueckner-Gold- 
stone perturbation-tlieoretic methods which has been 
pioneered by Kelly [5] and extensively utilized by 
his group and that of Das [6]. 

A main conclusion of this paper is that tlie best 
results are obtained from procedures which are 
systematic and which exhibit a well-defined degree of 
approximation. I t  is sliown to be of particular value 
to maintain the symmetry of states t l~roughout a 
calculation. It is also illustrated how the results of 
ab initio calculations can be supplemented by the 
judicious incorporation of relevant experimental 
results. 

CI wavefunctions. - As indicated in tlie intro- 
duction, all the work referred to in this paper is based 
on various configuration-interaction calculations. Tlie 
C I  wavefunctions used in these calculations all 
contain as a dominant part tlie R H F  function, which 
for most atomic states can be represented as a n  
antisymmetrized product of spinorbitals, i. e. as a 
single Slater determinant. There are two main possi- 
bilities for the further definition of a CL wavefunction, 
of wliicli tlie older and more used is to identify its 
remaining terms as tlie determinants formed by spin- 
orbital excitations from tlie R H F  determinant. 
This identification requires for each term a specifi- 
cation as to which R H F  spinorbitals liave become 
~~noccup ied  and as to tlie additional spinorbitals 
which are occupied in their stead. 

The determinants forming a CI wavefunction are 
not all individually eigenfunctions of the orbital and 
spin angular momenta L~ and S2,  and in some of tlie 
more recent work CI wavefunctions liave been cons- 
tructed using angular-momentum eigenfunctions pro- 
duced by LS-projection of determinants. The projec- 
tion causes all possible m,  and I H ,  values to be asso- 
ciated with each spatial orbital, so tliat it no longer 
makes sense to identify CI  terms by their spinorbital 
excitations, and the angular symmetry describing 
excitations must be limited to tlie / quantum numbers. 
Tlie LS-projected determinants ai-e referred to as 
c~ol!fig~lratiolis [7], and tlie excited configurations will 
i l l  general consist of linear combinations of deter- 
minants. The use of configurations guarantees that 
a CI wavefi~nction will maintain tlie necessary angular 
symmetry. 

It is of course possible to construct C1 wavefunctions 
starting from independent-electron functions which 
are better than the R H F  function. In particular, 
one might start from projected Hartree-Fock calcula- 
tions in which maximum double occupancy of spatial 
orbitals is no longer required. The wavefunctions 
resulting from such calculations are not built from 
ortliogonal orbitals and this introduces practical 
ditliculties wliicli make the R H F  function a more 
attractive starting point. Tlie main improvements 

obtainable by improved independent-electron metliod, 
are easily recovered in CI,  so  no serious drawback 
is associated with starting from tlie R H F  function 

The accuracy of a CI wavefunction depends LIPOI 

tlie kinds of configurations wliicli are included an( 
upon tlie choice of tlie orbital basis set. Tlie choic, 
of configurations is one of tlie main topics of tli, 
present discussion and will be treated later a t  length 
For CI calculations to  yield definitive results, it i 
necessary tliat the orbital basis set be in a practica 
sense complete. This is achieved by starting wit1 
tlie R H F  orbitals (obtained by direct calculation o 
from published results), and adding to tlie basis se 
additional Slater-type orbitals of a comparable scal, 
but with increasing numbers of nodes, both radia 
and angular. The orbitals added in this way bear littl, 
resemblance to excited-state orbitals, as tlieir f i~nc t io~  
is to enable correlation of electrons wliicli are spa 
tially well described by the R H F  orbitals. Orbital 
with additional radial nodes automatically result fron 
01-tliogonalization of the added basis functions to eacl 
other and to the R H F  orbitals. I t  is not of particula 
importance to increase the principal quantum number 
but is more vital to avoid near linear dependence 
One good way to obtain appropriate orbitals is tt 
choose tlieir exponential screening parameters [< ir 
 ex^(- j r ) ]  so that tlieir maximum radial densitic 
are equally spaced and in tlie region of significan 
density for the orbital whose correlation they arc 
expected to help describe. Experience indicates tha 
orbitals containing u p  to four additional radial node 
suffice for a nearly quantitative description of tht 
largest correlation effects ; smaller correlation effect 
are adequately handled with about two extra radia 
nodes. About three extra angular nodes are needec 
for high accuracy : this point is illustrated by resulb 
to be quoted later. Thus, for a11 atom whose RHI 
function contains s electrons tlie basis set S I ~ O L I I ~  
contain s, p, d and f orbitals ; if p orbitals are presen: 
in tlie R H F  function tlie basis should really contain : 
orbitals as well. 

Tlie simplest well-defined CI wavefunction of propel 
symmetry consists of the R H F  function and al 
c~oujigrtrations wliicli are singly-excited tlierefrorii 
According to Brillouin's theorem, singly-excilcci 
configurations whicl~ maintain the orbital symrnetrie~ 
will not mix with tlie R H F  function, so that tlie conli- 
gurations of iliiportance here are those in which a11 
orbital symmetry changes. Such configul-ations will 
only exist for open-shell atomic states. For sucli states. 
tliese configurations enable the description of spill 
polarization and other effects associated with the 
removal of orbital symmetry restrictions, and for thai 
reason this CI  function has been called the polarizatio~i 
wavefunction [7]. Just as for the R H F  function, it is 
implicit in the disc~~ssioti  that tlie basis set will be 
complete enough tliat further additions will no1 
produce significant changes. The extent to whicli this 
completeness is acliieved determines the closeness to 
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which the polarization wavefunction is approximated. 
The polarization wavefunction will in general contain 
determinants in which more than one spinorbital is 
occupied differently than in the R H F  function, as sucli 
spinorbital assignments can result from the action 
of the LS projector. In fact, such determinants are 
essential to the effectiveness of tlie polarization 
wavefunction. For  example, in the ground state of 
boron, whose RHF corlfigi~ration can be described 
as Is2 2s2 2p 'P, the polarization wavefunction 
contains configurations such as Is' 2s 2pd 'P, wl~ich 
consists of several determinants differing among otlier 
things in the 111[ value of the 2p orbital. Tlie s -+ d 
promotion in boron makes an important contribution 
to tlie correlation energy, as it removes tlie inappro- 
priate restriction of the individual orbitals to pure 
angular symmetry. .- 

More complete CI functions than the polarization 
wavefunction may be obtained by including configu- 
rations involving those multiple excitations which 
may be expected t o  be most important. The smallest 
group of sucli configurations are those in which the 
ntultiple excitations are among nearly degenerate 
orbitals, as illustrated by the excitation from the 
Is2 2s' 'S ground state of berylliunt to tlie configu- 
ration Is2 2p2 'S. Such effects are provided for by 
defining a first-order u.a~.e/;flnlc/ioll [8] consisting of  
the RHF functio~i, all configurations involving exci- 
tations to unocc~~p ied  orbitals within the atom's 
valence shell, and all configurations singly-excited 
from those previously enumerated. 

The first-order wavefunction contains all tlie confi- 
gurations whose existence depends directly on tlie 
atomic shell structirre and orbital symmetry assign- 
ments, and therefore presun~ably would yield results 
of comparable accuracy for both open and closed- 
shell atomic states. The correlation energy associated 
with the first-order wavefunction has accordingly 
been called the orbital correlation energy, with tlie 
remainder of the correlation energy rekrred to as  
~lonorbital. 

The logical extension of the first-order wavel.i~nction 
is to include all configurations in\/olving double exci- 
tations beyond an  atom's valence shell. The wave- 
function thereby procluced is called the s~ctonrl-o~~ilc. i~ 
wavefi~nction. Second-order wavef~~nct io~is  should 
describe tlie bulk of thc electron correlation. including 
hot11 structure-depende~~t and otlier- contributions. 

In the actual execution ol'second-order calculations. 
it is found that tlie number of possible configurations 
can easily outstrip the capacities of even the largest 
computers. I t  is therefore necessary in practice to 
limit the number of configurations by truncation 
of the orbital basis set. This can be done witltout 
compromising the quality of the ca lc~~la t ions  by using 
Pseudo-natural orbitals (PNO' s) [9]. Such techniques 
have been pioneered by Bunge and Bunge [lo]. 
The PNO' s are found by transforming the orbital 

basis to the most efficient form for describing the 
correlation of ;I p;~rtici~lar pair of electrons, and nearly 
the entire correlation energy of that electron pair can 
be reproduced from relatively few PNO' s. By using 
PNO's appropriate to electron pairs from each 
atomic shell, a good second-order calculation can be 
niade using a relati~ely small basis. The completeness 
of the calculation is assured by having a sufficient 
basis prior to tlie PNO transformations. 

Perturbation calculations. - The perturbation 
calculations to be exanlined here are of tlie Bethe- 
Goldstone type, in wliicli tlie total correlation energy is 
partitioned into single-electron, two-electron, ... contri- 
butions which are assumed to be additive. Following 
in a general way the approach of Nesbet [4], there 
results a hierarchy of Bethe-Goldstone calculations 
of which the last, in\.olving the contribution of all 
electrons together to the correlation energy, is exact. 
In  practice the hierarchy is almost always carried 
only through the two-electron contribution, and it then 
describes a situation in which electron-pair correlations 
are assumed to be additive. 

A single-electron or electron-pair Betlie-Goldstone 
calculation can be carried out by making a CI in 
which only the electron (s) under consideration are 
excited out of tlie R H F  orbitals. As in ordinary CI 
calculations there are two ways in which these CI' s 
have been defined. In the original work of Nesbet, 
tlie excitations were of  specific spinorbitals to form 
singly or  d o ~ ~ b l y  excited determinants, and this leads 
to what will be called here srandar(/ Betlie-Goldstone 
calculations. The alternative is to use singly or doubly 
excited configurations, leading to what will be called 
here sj~~~~i~~rti~j~-oilu/~fri/ Bethe-Goldstone calcula- 
tions [I I]. 

The standard and symmetry-adapted calculatior~s 
dif-fer in two significant ways. First, the number of 
standard contributions of given order is larger than 
the number of symmetry-adapted contributions of  
the same order. thereby placing more strain L I P O I ~  

the additivity assuntption. Secondly, the CI calcula- 
tions for tlie standard calculations d o  not produce 
LS eigenfunctions, in contrast to tlie symmetry- 
adapted calculations. Tlie first of these differences is 
well illustrated by the pair calcirlations for neon. 
There are 45 standard pairs (Isa Is/], Ism 2% Is% 
2s/i, Isx 2p0r. Isa 2po/l, ... ), wliile there are only six, 
sylnmetry-adapted pairs ( I s  Is, Is 2s, Is 2p, 2s 2s 
2s 2p, 2p 2p). An example of the second difference 
is provided by the Isx 2s/l pair, which cannot yield 
an LS eigenfunction without configurations coming 
from the Is/? 2sx pair. 

Results and discussion. - It is well known that  
nonsystematic CI calculations can give erratic results 
for many physical properties, with variations arising 
from the choice of  both basis set and configurations. 
A main advantage of tlic systematic CI formulations 
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described here is that, if carried out adequately, they 
are free of any dependence on basis set choice and 
represent a degree of approximation dependent only 
on the classes of configurations which are included 
or excluded. It is for this reason that even the simpler 
of tlie CI wavefunctions defined here are sufficient 
for a number of uses. Polarization wavefunctions, 
though totally incapable of describing electron- 
electron interactions, are relatively effective in correc- 
ting some defects of the RHF model. They give good 
values of hyperfine structure parameters, including 
qualitatively satisfactory spin densities [7]. For such 
uses, first-order wavefunctions do not produce ~nuch  
improvement over polarization wavefunctions, but 
the first-order functions provide a more systematic 
starting point for correlation studies. 

As already indicated, first-order wavefunctions 
yield the directly structure-dependent, or orbital 
correlation energy. The possibility of identifying this 
part of the correlation energy was also noticed by 
Sinanoglu and 0ksiiz [12], who gave the names 
ct internal )) and ct semi-external )) to determinants 
involving zero or one excitation beyond the valence 
shell. However, the numerical results obtained by 
Sinanoglu and 0ksiiz are not directly comparable 
with those to be cited here because those workers 
made no serious attempt to approach basis set comple- 
teness. 

Orbital and nonorbital correlation energies (hartrees) 
Data from Reference [I 31 

State 

- 

C(") 
N4S>  
W2P) 
o + (4s) 
0 + (2P) 
o(3p)  
Q2P> 

Orbital 
Correlation 

Energy 
- 

- 0.062 1 
- 0.055 7 
- 0.066 2 
- 0.061 1 
- 0.076 2 
- 0.049 6 
- 0.030 4 

Nonorbital 
Correlation 

Energy 
- 

- 0.091 6 
- 0.127 9 
- 0.158 7 
- 0.125 1 
- 0.156 1 
- 0.200 3 
- 0.279 6 

The original hope motivating the classification 
of correlation energy into orbital and nonorbital parts 
was that tlie latter would be relatively free of depen- 
dence on the details of the structure of the atomic 
state, but would depend sn~ootlily upon the nuclear 
charge and the number of electrons. This liypotliesis 
can be checked, as the total correlation energies 
of many first-row atoms and ions are experimentally 
known and the corresponding orbital correlations 
energies can be readily calculated. Such calculations 
have now been carried out [13], giving results of the 
sort illustrated in Table I. The data show that the 
nonorbital correlation energy does not at all conform 
to the hoped-for behavior. Instead, tlie   ion orbital 
correlation energy is seen to be strongly and irre- 

gularly dependent upon the symmetry of the sta 
and the number of electrons, and in many cases 
exhibits more dependence on these quantities t h ;  
does tlie supposedly more structure-dependent orbit 
correlation energy. However, the nonorbital correl 
tion energy does have an useful regularity, name 
its dependence (for a particular state) on the nucle 
charge. 

The fact that the nonorbital correlation energy 11 

a weak and slowly-varying nuclear-charge dependen' 
has been used as a starting point for the semi-empiric 
estimation of electron affinities [13]. The nonorbit 
correlation energy of a negative ion is estimated I 
extrapolation from the known values for the isoelc 
tronic neutral atom and positive ion, while the nep 
tive ion's orbital correlation energy is directly ca l c~~ l  
ted. This method leads to electron affinities as listc 
in Table 11. The agreement with known affinities 
quantitative, suggesting a high degree of reliabili 
for the other estimated affinities. 

Electron Afinities (eV) preclicted from calculaterl 
orbital arid estiinated nonorbital correlation energh 

Data froin Reference [I 31 

Predicted Experimental 
- --- 

F(~P)  -, F-('s) f 3.453 3.448 f_ 0.005 
o(~P)  -+ o- (~P)  + 1.461 1.465 f 0.005 
C(") -+ C-(4S) + 1.242 1.25 + 0.03 
N(4S) -+ N-(3P) - 0.213 - 

N(2D) -, N-(ID) + 0.844 - 

B(2P) -, B-(3P) f 0.187 - 

Logically better than an estimation of nonorbit , 

correlation energies would be their calculation, a1 
a large step towards so doing would be to use seconc 
order wavefunctions. The few second-order calcul, 
tions thus far carried out do yield almost all 11 
nonorbital correlation, but because of tlie size 1 

tlie calculations it makes sense to search for altern; - 
tives such as are provided by perturbation approache 
The perturbation studies which are comparable I 1 

tlie second-order wavef~~nction are tlie pair calcul;!- 
tions, and accordingly both the direct second-ordt~. 
and the pair CL' s will now be discussed togetlic~ 

As first shown by Nesbet [4], pair C1' s produis: 
energies which very nearly add to tlie filll correlatioll 
energy. This conclusion applies whether standard (11 

symmetry-adapted pairs are used. However, the difft- 
rent types of pair calculation do  yield slightly differeni 
results, and, as pointed out by Barr and Davidson [141. 
the results can also be altered by taking the pail. 
excitations from any orbitals produced by a unitas! 
transformation among tlie standard RHF orbital. 
(this does not change tlie R H F  function). The ainbi- 
guity with respect to unitary transformation ma! 
be rather important in molecules where the RHF 
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orbitals can often be transformed to far more localized 
forms, but is minimal in practice for lighter atoms, 
where symmetry considerations remove much of the 
orbital arbitrariness. 

The difference between standard and symmetry- 
adapted pair calculations can be definitively studied 
only if both calculations are done using the same basis. 
Such a study has been carried O L I ~  for neon 1151, 
where the symmetry-adapted pairs were found to give 
about 10 % less correlation energy than the standard 
pairs. The significance of these results becomes 
clearer if both are compared with the direct second- 
order calculation, whicli shows that the pair corre- 
lations deviate from additivity by about 2 % for the 
symmetry-adapted pairs and by about 12 % for the 
standard pairs. The standard pairs exhibit the larger 
deviation for reasons already cited, namely that more 
contributions must be assumed to be independent, 
including contributions wl~icli should be strongly 
coupled because of angular synllnetry. 

Comparison of pair and second-orcler calculations 
with experiment can also produce information as to 
the importance of triple and higher excitations. 
The calculations used for the discussion of the PI-e- 
ceding paragraph are not quite complete enough to 
give authoritative comparisons with experiment, and 
for this purpose it is appropriate to turn to tlie recent 
calculations of Barr and  Davidson [I41 and Bunge 
and Peixoto [16]. Both these at~tliors, after exhaustive 
comparison of pair, second-order, and more complete 
CI studies among themselves and with experiment, 
come to the conclusion that the standard pair calcula- 
tions in neon may overestimate the correlation energy 
by as much as 10 %, and that  a good second-order 
calculation should yield all but about 2 % of the 

correlation energy. This leads to the further conclusion 
that a complete symmetry-adapted pair calculation 
would give almost the exact experimental energy, 
with its deviations from pair additivity fortuitously 
cancelling almost the entire effect of triple and higher 
excitations. It is not yet known kow precisely these 
conclusions apply to open-shell atoms. 

In analyzing the various CI-based calculations, 
it is also important to be systematic in determining 
tlie effective degree of completeness of the basis set, 
particularly with respect to the angular quantum 
numbers. One way of investigating this question is to 
break down tlie barious pair energies into s, p, d,  ... 
contributions. After an initial irregularity related 
to  the angular sy~n~netr ies  of the orbitals being excited 
from, the pair energy increments from higher angular 
quantum numbers decrease regularly and it becomes 
possible to estimate truncation errors. This point is 
well illustrated by the recent neon calculations [14, 161, 
and Bunge and Peixoto have been particularly tho- 
rough in their analysis. They conclude that about 9 % 
of the neon correlation energy comes from orbitals 
of g and higher orbital angular momentum ; tlleir 
methods indicate a probable uncertainty of up  to 
about 1.5 %. 
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