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Abstract. 2014 The performance of a Hopfield network in learning an extensive number of concepts
having access only to a finite supply of typical data which exemplify the concepts is studied. The
minimal number of examples which must be taught to the network in order it starts to create
representations for the concepts is calculated analitically. It is shown that the mixture states play a
crucial role in the creation of these representations.
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1. Introduction

Learning and generalization in neural networks has been the subject of intensive research in
the past few years [1-7]. The most recent studies have been carried out in the context of
supervised learning in single-layer feedforward neural networks [5-7], following the theoreti-
cal framework presented in Gardner’s seminal paper [8]. Comparatively, little attention has
been devoted to the ability of simple feedback neural networks, e.g. Hopfield’s model [9], to
perform computational tasks beyond the simple storage of a set of activity patterns.
The learning process in Hopfield’s model consists of setting the value of the coupling

.l¡j between neurons i and j for all pairs of neurons such that a given set of activity patterns is
memorized by the network. In this model the states of the neurons are represented by Ising
spins, Si + 1 (firing) or Si= - 1 (rest). Storage of an activity pattern {ç r = ± 1,
i = 1, ..., N } into the memory of the network is achieved by modifying the couplings
according to the generalized Hebb rule

After being exposed to p activity patterns the couplings are set to

where we have assumed Jii = 0 initially (tabula rasa).
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Once the couplings are fixed, the dynamical retrieval process is governed by the
Hamiltonian [9]

The network can potentially retrieve a given activity pattern if it is a minimum or if it is very
near a minimum of H. The natural parameters for measuring the performance of the network
in retrieving the stored patterns are the overlaps

where the state {Si, i = 1, ..., N } is a minimum of H. The properties of these minima have
been fully studied by Amit et al. [10, 11 ] using statistical mechanics tools developed in the
analysis of infinite range spin-glasses [12]. It has been shown that besides the retrieval states
which have macroscopic overlaps, 0(1), with only one stored pattern there exist mixture
states which have macroscopic overlaps with several stored patterns [10]. Since the interest in
Hopfield’s model is mainly due to its prospective use as an associative memory, the attention
has been focused on the retrieval states, the mixtures states being regarded as a nuisance
which can be eliminated either by adding external noise to the system [10] or by modifying the
learning rule [13]. On the other hand, these spurious states have been seen as proof of the
ability of the network to create new representations to handle the information contained in
the stored patterns [14]. In this paper we show that the mixture states play a crucial role when
the task posed to the network is to extract meaningful information from the activity patterns it
is exposed to during the learning stage.
We consider the following problem. Let us suppose that during the learning stage the

network is exposed to s examples of a given concept. The examples are embedded in the
memory of the network by the Hebbian learning process, equation (1.2). The question we
address is whether the network can create a representation for the concept to which it had
been exposed only through examples. We say that the network has a representation for a
concept if the concept is a minimum or if it is very near a minimum of H. More specifically, we
consider p = a N concepts represented by the activity patterns {T}. = 1, ..., p. For each

concept, a finite number of examples {ç jJl}, V = 1, ..., s is generated. Their components are
statistically independent random variables drawn from the distribution

with O:s; b :s; 1. The examples can be thought of as noisy versions of the concepts they
exemplify. The parameter b measures the difficulty of the task posed to the network : Small
values of b result in low correlations between examples and concepts, making the grasping of
the concepts more difficult. For simplicity, the components of the concepts are randomly
chosen as ± 1 with equal probability.
As an alternative viewpoint, one may consider the concepts as defining p classes each one

containing s individuals (examples). Thus, the task of the network would be to group the
examples in their respective classes, i.e. the network should categorize the examples.
However, in this paper we follow the point of view expressed in Denker et al. [1] ] that

categorization is a particular case of rule extraction (generalization) in which the rule may be
roughly described by « nearby inputs should produce nearby outputs ». We return to this issue
in the conclusion of the paper.
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Finished the learning stage, the couplings are set to

The quantities we focus on are the generalization errors eJL defined by

where m e, the generalization overlaps, are the overlaps between the concepts and a certain
minimum of H which will be specified later.
The aim of this paper is to calculate the dependence of the generalization error

(el-") on the number of examples taught to the network (s) for a given task characterized by
the parameter b. To achieve this we study the thermodynamics of Hopfield’s Hamiltonian,
equation (1.3), with the couplings set as in equation (1.6). Our analysis is restricted to the
noiseless (zero temperature) limit. A first attempt to tackle this problem has been published
recently [15]. This paper presents a simpler and more general approach.
The paper is organized as follows. In section 2 we study the thermodynamics of the model

in the limit a = p /N - 0. The simplicity of this limit, which dispenses the use of the replica
trick in the computation of the averaged free energy density, allows us to find analytical
expressions relating ee with s and b. The analysis of the nonzero a limit is performed within
the replica symmetric framework in section 3. We summarize our results and present some
concluding remarks in section 4.

2. Finite number of concepts.

The Hamiltonian of Hopfield’s model with the couplings given by equation (1.6) can be
written as

where we have omitted a constant term and included an additional term in order to compute
M,". In fact, writing the averaged free energy density as

where Z = Trs e- pH one has

The parameter 8 =- T-1 in the expression for the partition function Z is a measure of the
amount of noise acting on the system. The noiseless limit is obtained by taking
/3 - oo. The notation ... &#x3E; stands for the averages over the examples and over the concept
taken in this order. The calculation of f is straightforward in the limit a = 0 [10] so we present
only the final result
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The order parameters,

with (... ) T standing for the thermal average, are given by the saddle-point equations

with hu = 0. Using equation (2.3) we can write the generalization overlaps me in terms of the
retrieval overlaps m p, JI

We restrict our analysis to a particular class of solutions for m J.L 11, i.e. to a particular class of
minima of f (or H for T = 0). Since there are no macroscopic correlations between different
concepts we consider solutions of the form m J.L 11 = m 1 11 8 J.L 1. Moreover, we choose

m1v to be of the form

The motivation for choosing this solution is that it gives a bias to the network to behave as an
associative memory : each example is singled out (the solution is s degenerate since we can
select any of the examples to be ml 1) and treated as an independent piece of information to be
stored. If any other behaviour emerges, it will be a spontaneous property of the network and
not an artifice due to the particular choice expressed by equation (2.8). At T = 0,
m11 and ms - 1 satisfy the equations

where Xs - 1 = ¿ ç 1 JI. For s &#x3E; 10 the binomial distribution of Xs - 1 can be replaced by a
v &#x3E; i

Gaussian with mean (s - 1 ) bç 1 and variance 4) = (s - 1 ) ( 1 - b 2). Performing the averages
over ç Il, Xs - 1 i and ç 1 in this order, we find

where

Following the same procedure we can compute m from equation (2.7). The result is
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Next we discuss the solutions of equations (2.10). For small s the network retrieves the
examples almost perfectly, i.e. m11 ~ 1 and ms - 1 = b2. Hence the generalization error

E = E , equation (1.7), is

Strictly, the retrieval is perfect for (s - 1 ) -- b-2 as can be easily seen from equations (2.9)
since 1 xs - 1 1 -- s - 1. This result is not recovered by equations (2.10) because the replacement
of the discrete distribution of xs _ 1 by a Gaussian makes 1 Xs - 11 [ unbounded. As s increases,
m 11 decreases slightly until s reaches a critical value Sc, above which m11 jumps to a much
smaller value, almost equating with ms - 1. This behaviour is reflected in the generalization
error which we show in figure 1 as a function of s for several values of b. For

s - Sc the network just memorizes the patterns it is exposed to. This behaviour is referred to
as the retrieval phase (R). For S:&#x3E; sc the network no longer treats the examples as

independent pieces of information and starts to mix them, creating the representation for the
concept. This is the generalization phase (G). The phase diagram in the (s, b ) plane
indicating the regions where each regime occurs is shown in figure 2.
Although mIl = m s - i is solution of equations (2.10) only in the limit s -+0 oo, in the

generalization regime one has m ms ms where ms is the symmetric solution of
equation (2.6), 

In fact, m 11 never equals ms _ 1 because when averaging over the examples we have explicitly
ruled out this possibility by retaining the discrete nature of e 11 while making the Gaussian
approximation for the distribution of Xs - 1. Nevertheless, since the differences between

m 11, ms - and m, are negligible in the G phase we can approximately characterize this regime
by the symmetric solution ms. Following similar steps to the ones leading to equations (2.10)
one finds

Fig. 1. - The generalization error as function of the number of examples for b = 0.18, 0.20, 0.25, 0.40 
and a = 0.
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where

Thus, the generalization error in the G phase can be approximate to

The values of 8 computed through this equation are indistinguishable from the exact
generalization error, computed through equations (1.7) and (2.13), in the scale of figure 1.

3. Infinité number of concepts.

In this section we consider the case where the network has to create representations for an
extensive number of concepts, a = p /N + 0, being exposed to a finite number of examples s
of each concept. In this case we have to take into account the fact that the combined overlap
of a concept with all the other concepts is of 0 (-,/à ). To handle this situation we follow Amit
et al. [11] and assume that only the overlaps m JI condense, i.e. are of 0(1) while the others
are of O(N- 1/2). The averaged free energy density is calculated through the replica trick

where Z’ is the partition function replicated n times,

Averaging over rJl(J.L &#x3E; 1) explicitly and using the self-averaging property of ei ’ yields

where we have omitted multiplicative factors which vanish in the thermodynamic limit and

withBJlÀ = b2 + (1 - b2) 8J1À and Qpu = qpu + (1 - qpu) 8pu. The integrals in equation (3.3)
can be readily effected by saddle-point integration while the integrals in equation (3.4), the
trace over SP and the limit n --+ 0 can be performed in the replica symmetric framework
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resulting in the following expression for the averaged free energy density

where

with C = 6 (1 - q ) and Dz = dz / J2; e - z 2/2 Thé order parameters are given by the saddle-
point equations which, in the limits f3 -+ oo and hl..... 0, are written as

The equations for the standard Hopfield model [11] are recovered in the cases s = 1 and
b = 1 with an appropriate rescaling of C and r. For b = 0 the network is effectively storing sp
uncorrelated patterns and Hopfield’s equations are obtained by rescaling a ’ - sa. Once
m " and C are known we can compute m through the equation

Next we discuss the solutions of the saddle-point equations (3.10)-(3.12). In addition to the
solutions considered in the a = 0 limit, there exist a spin-glass solution m 1 JI = 0
‘d v which is stabilized by the Gaussian noise due to the overlaps of O(N- 1/2) between
e " and el’ ’, » &#x3E; 1. However, adding noise to the system has a destabilizing effect for the
retrieval phase [ 13, 16, 17], reducing its domain to a region much smaller than the one shown
in figure 2. Therefore the phase diagram in the (s, b ) plane will be dominated by the
generalization phase characterized by the symmetric solution, equation (2.15), and the spin-
glass phase. In the following we will focus only on the interplay between these two phases.
For the symmetric solutions equations (3.10) and (3.11) reduce to

and
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Fig. 2. Fig. 3.

Fig. 2. - Phase diagram showing the generalization phase (G) and the retrieval phase (R) for
a = 0. The transition at s = SC is discontinuous. The retrieval of the examples is perfect below the
dashed curve, b = 1 / Bls - 1.

Fig. 3. - The generalization error as function of the number of examples for a/a 0 = 0.05, 0.2, 0.4, 0.5
and b = 0.4.

respectively, where Xs = L çl JI. For s &#x3E; 1 0 one can replace Xs by a Gaussian variable of mean
v

sbe 1 and variance s( 1 - b 2). Performing the averages as in section 2 yields

where 4) = a r + m.; s (1 - b 2). Equations (3.12), (3.16) and (3.17) must be solved numeri-
cally in order to compute the generalization overlap,

and, consequently, the generalization error e = ( 1- m 1)/2.
In the limit s - oo the noise in the examples is averaged out, i.e. Xs - sbe 1 and the standard

Hopfield model with the concepts replacing the examples in equation (1.6) is recovered. This
result can be easily obtained by rescaling C’ = sb 2 C and r’ = r / S2 b 4 which implies that
ms = bm 1 with m satisfying the standard Hopfield’s equations. Next we discuss the behaviour
of the generalization error as a function of s, b and a. In figure 3 we show e as a function of s
for b = 0.4 and several values of a / a o, where ao = 0.138 gives the storage capacity of the
standard Hopfield model. As in the a = 0 case, there is a minimal number of examples which
must be taught to the network in order it starts to generalize. The transition between the SG
phase, where E = 0.5 since the spin-glass states have no macroscopic correlations with the
concepts, and the G phase is always discontinuous. The values of a lao for which the
transition occurs are shown in figure 4 for several values of b. As b --+ 1 or s --&#x3E; 00,

ac tends to Hopfield’s storage capacity afro. Generalization occurs for « : ac and the
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Fig. 4. Fig. 5.

Fig. 4. - The critical values of a / a 0 below which the network starts to generalize as function of the
number of examples for b = 0.2, 0.4, 0.6, 0.8.

Fig. 5. - The generalization error at criticality as function of the number of examples.

generalization error at the transition (Be) is shown in figure 5. As b --+ 1 or s --+ oo,

ec tends to 0.0165, the critical retrieval error for the standard Hopfield model [11].

4. Conclusion.

In this paper we have s*hown that a simple feedback neural network using a local Hebbian
learning rule is able to learn a set of concepts having access only to a finite supply of typical
data which exemplify the concepts. The network acomplishes that by creating representations,
i.e. minima of the energy function governing the retrieval process, which capture the

underlying statistical structure of the examples, allowing the extraction of meaningful
information from the data supply. For the specific problem we have considered in this paper,
the symmetric mixture states provide for the representations which allow the network to grasp
the concepts. Since the research on Hopfield’s model has focused mainly on the retrieval
states, very little is known about the relation between the statistical structure of the patterns
presented to the network during the learning stage and the structure of the representations
created by the network [13, 17]. This seems to be a crucial issue if one intends to lead the
study of Hopfield’s model beyond its memorizing capabilities.
Next we summarize our main results. For finite p we have found that there is a regime

where the network simply memorizes the examples ignoring their statistical structure

(retrieval phase). However, as the number of examples increases passing a certain critical
number Sc the behaviour of the network undergoes an abrupt change entering a new regime
where the representations of the concepts are created (generalization phase). For

p = a N (a &#x3E;0) the retrieval phase is confined to a very small region of the (s, b ) plane.
However, a spin-glass regime, where the network ignores both the examples and the
concepts, appears to compete with the generalization regime. The interplay between these
two regimes is qualitatively similar to the one discussed in the finite p limit with the spin-glass
replacing the retrieval regime.

It is interesting to compare our results with the ones presented in the literature for

feedforward neural networks [1, 3, 6]. As mentioned above, the most remarkable outcome of
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the present work is the existence of a critical number of examples (sc) beyond which the
network generalizes well (Figs. 1 and 3). Whether a similar behaviour occurs in the case of
feedforward networks is an unsettled issue. On the one hand, simulations of multilayer
networks for the contiguity problem and some general theoretical arguments point out for the
existence of a critical size of the training set above which the generalization error

(E) falls of exponentially fast [1, 3]. On the other hand, an analytical study of the performance
of a single-layer perceptron in classifying examples according to their Hamming distance from
a set of prototypes indicates that such a critical number does not exist [6]. However, since the
behaviour of E seems to depend strongly on the architecture of the network considered [3]
there may be no simple answer for this issue. A similar controversy could very well arise in the
context of feedback neural networks if we use other leaming rules than the one considered in
this paper.

Finally, we should mention the relevance of our results to the problem of categorization in
neural networks. As pointed out in the Introduction, the generalization regime may be
interpreted as a categorization of the examples into the classes defined by the concepts. We
have found that categorization emerges spontaneously when a critical number of examples is
presented to the network during the learning stage. This result corroborates the viewpoint
that categorization is related with the limitation of an associative memory. This point was
beautifully expressed by Virasoro : « we categorize not because we want to but because we
cannot do otherwise » [18].
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