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Résumé. - On considère les propriétés électrostatiques de micelles cylindriques chargées ayant
des extrémités de forme sphérique. En régime semidilué (fraction volumique 03A6  1) et sans addition
de sel, le modèle, qui prend en considération les non-linéarités, suggère que les interactions coulom-
biennes impliquent une contribution supplémentaire à l’énergie libre d’une extrémité et modifie la
loi de croissance de la micelle. Dans quelques cas, la taille de la micelle varie à peu près comme
03A6(1/2)(1+039B) où 039B dépend de la charge coulombienne renormalisée. Ces résultats pourraient aider à
expliquer des anomalies récemment observées expérimentalement dans le comportement dynamique
de micelles quand il y a de petites concentrations de sel.

Abstract. 2014 We consider the electrostatics of charged, cylindrical micelles with spherical end-caps.
In the semidilute regime (volume fraction 03A6  1), and with no added salt, a model calculation which
includes nonlinearities suggests that Coulomb interactions result in an additional contribution to the
free energy of an end-cap that modifies the growth law for the average micelle size. In some cases,
the micelle size varies approximately as 03A6(1/2)(1+039B), where 039B &#x3E; 0 depends on the renormalized
coulomb charge of an end cap. These results may help explain anomalies, seen at low added salt, in
recent experiments on the dynamics of worm-like micelles.
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Recent studies of elongated micelles of ionic surfactant in water show that in some systems
flexible, worm-like cylinders are formed whose properties resemble those of polymer solutions
[1 - 6]. While the osmotic compressibility and cooperative diffusion constant scale as power laws
with the volume fraction of surfactant, 0, in accord with the predictions of polymer theory [7], the
dynamical properties of these systems are more complex [6,8, ]. There are two reasons for this:
firstly, the average degree of polymerization, N, is itself a function of 0 in these sel-assembling
systems, with N l"tJ 4&#x3E;1/2 expected for long semi-flexi’ble cylinders with spherical endcaps [10].
Secondly, the process of micellar disentanglement is enhanced by the presence of breaking and
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recombination reactions. A recent theory [11], which takes into account both effects, predicts a
dependence on 0 of the viscosity, stress relaxation time [8] and the self-diffusion constant [9] that
is in reasonable agreement with experiments on CTAB/K6r when the concentration of added
salt is high. In particular, the theory predicts [11] for the viscosity q - N§3 - t/JOt where a =
3.5.The experimental results are close to this prediction at high salt ([KBr] &#x3E; 0.25 M) but the
measured exponent increases smoothly to about a - 5.0 at [KBr]  0.1 M. One way to reconcile
this deviation with the analysis of reference [11], is to suggest that the usual N - 01/2 behavior
may be modified in charged systems. This provides the motivation for the present study of the
effects of electrostatics on the growth of locally cylindrical micelles [12].

In this note, we show that the electrostatic interactions increase the rate of growth of N
with 0. In some cases, these effects can still lead to a power-law growth, but with a new effective
exponent relating N and 0. This result arises because the average degree of polymerization, N,
of the wormlike micelles is controlled by the excess free energy, 039403BC, of a pair of end-caps relative
to the cylindrical interior regions, according to [li,13]

Below, we derive an approximate expression for 039403BC for charged, elongated micelles in the limit
of no added salt. For practical purposes, in which data is collected over a relatively narrow range
of 0 (about one decade [8, 9]) our result may resemble an effective power law N - ~(1/2)(1+A), @
where the usual exponent of 1/2 is corrected by a term A, which is weakly 0-dependent and is
related to the fraction of "unbound" counterions in solution.

The physical origin of the increased growth exponent is that the electrostatic free energy
contributions favor the end-caps over the cylindrical regions. This effect leads to smaller micelles;
however, we find that the bias towards end cap formation is a decreasing function of 0, resulting in
an increased micellar growth exponent. This statement is valid when the surface charge density on
the micelles is high ; we focus on this limit here. In this régime, the end-cap energy is dependent
on the renormalized (effective) charge Z* on a cap, whose value depends logarithmically on the
ambient charge density and hence the micellar volume fraction. The correction term A should
tend to zero at high added salt, when the effective charge is controlled by the ambient salt level
rather than the surfactant concentration.

One contribution to the end-cap energy is the difference in the energy per unit length be-
tween an infinite and finite cylinder, even with no rearrangement of the charge at the ends. This
contribution was discussed in reference [12] by Odijk in the context of micelle growth with in-
creasing salt concentration. Carrying over his results to the case of zero added salt [14] implies
that Ap - t/J-l/2. Equation (1) then predicts an exponentially strong increase in the growth as 0
is decreased. This effect will dominate at very small values of 0 and will be the major contribu-
tion to the initial growth from a state of small micelles. For larger values of 0, this term tends to
zero, and the effects of charge rearrangement at the ends of the micelles, which are assumed to
be terminated by spherical end-caps, will be important.

In this régime we find Ap, for the limit of zero added salt, by estimating the free energy
difference between (i) Nec surfaclants molécules in a semidilute array of infinite cylinders at vol-
ume fraction 0 and (ü) Nec surfactants, constituting one half of a spherical micelle, immersed in
a medium with an ambient counterion charge density appropriate to the same cylindrical array.
The semidilute limit is defined formally by 4&#x3E; --+ 0, N - oo with ON2 » 1; Nec denotes the
number of surfactants in a hemispherical end-cap.

This estimate is motivated by the idea that for long micelles, the end-caps are extremely
dilute "species" in a semi- dilute environment of locally cylindrical objects ; a reasonable guess
for the energy of a highly curved end cap can presumably be obtained by considering the simpler
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geometry of a spherical micelle in the same environment. All short-ranged, local effects will then
contribute to a 0-independent part, 039403BC0, where we write

Our calculations, outlined below, indicate that for semi-dilute cylinders there are contribution to
~03BC1 which vary as log 0 and cannot be neglected even as 0 ~ 0. All higher virial contributions
(terms in 0, ~2...), which may have both electrostatic and short-ranged components, are negligible
in the semi-dilute regime discussed here.

We now consider the mean-field free energy of a system of fixed charges on a set of immobile
colloidal particles (i.e. the micelles) with mobile counterions in a solution of dielectric constant
c. For example, in the case of a single spherical particle of radius R, the free energy in units of
kT, F, is given by

1 e2
where V(r) _ - and l = is the Bjerrum length. The first term in equation (3) representsr 03B5kT
the Coulomb interactions of the counterions whose density is given by n(r). The second term
accounts for the interactions of the counterions with the fixed number of surface charges per unit
area, uo, located on the sphere described by r = R. The total charge is Z = 41roOR2. The last term
in equation (3) is the entropy of the counterions (in the dilute limit) where vo is the molecular
volume of a counterion. The usual Poisson-Boltzmann equation may be derived by functionally
minimizing F with respect to the charge distribution n(r), with the constraint of charge neutrality.

While exact solutions exist [15] for the charge density and potential for an aray of infinite,
charged cylinders whose counterions are solubilized in the intervening solvent, no such treatment
exists for spheres [16]. Most studies [17] have focused on the case of high salt concentration salt
and hence short-screening lengths, k-1= [8wl n.,,It] -1/2 In that regime, an expansion in (écR) -1
where R is the sphere radius, can be performed. However, it is precisely the limit of long screening
lengths that is of interest here.

’Ib obtain a consistent, analytic estimate for the 0 dependence of the free energy in both
spherical and cylindrical geometries, we have calculated the charge density and free energy in ei-
ther case using a unified variational approximation. Charge neutrality is enforced within a cylin-
drical or spherical Wigner-Seitz cell as appropriate. The variational ansatz for the counterion
density is motivated by the form of the charge distribution around an infinite sheet [16] : most of
the charge is localized in a small region near the sheet (the inner region, of order (O’ol)-l), with
the remainder spread nearly uniformly in the remainder of the Wigner-Seitz cell (outer region)
[18].

We first consider an array of spheres, for which we take as our variational charge density
profile within each cell a charge (Z - Z* ) uniformly distributed in an inner region R  r 

R(1 + à) , with charge Z* uniformly distributed in the outer region R  r  Rb, as shown in
figure 1.
(Here Rb denotes the radius of the Wigner-Seitz cell.) The form of n(r) is thus written :
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Fig. 1. - The Wigner-Seitz cell of radius Rb contains the micelle of radius R. The inner region of high
charge density occupies a shell of thickness 03B4R. The geometry shown applies, in two and three dimensions,
to cylindrical and spherical cases respectively.

4,... R3 3 4m- 3where 15 = 3- [(1+6) -11 and V = 3 (R,3 - R ) are the volumes of the inner région and3 3
the entire Wigner-Seitz cell respectively. The variational parameters are thus Z* and 03B4 Note that
equation (4) automatically satisfies the conservation condition fv dr n(r) = Z.

For the case of psherical symmetry and a spherical Wigner-Seitz cell, the integrals in equation
(3) are readily performed (e.g., by use of Gauss’ theorem). The results are best expressed in terms

of the free energy per unit charge, f = 2013, which dépends on 03BB = 203C003C3lR a dimensionlessgY Pe g f Z P a (
measure of the surface charge density) and on the volume fraction of the spheres, Ps = (R/Rb)3.

We first discuss the high charge limit where the region of enhanced charge density is a small
fraction of R, i.e. fJ « 1. In the dilute limit, where we neglect terms of 0 (~s) , one can then write
to 0(b)

where (3 = Z*/Z. The terms proportional to À are the electrostatic energies, fo is a constant
that depends only on Z and R, and the remaining terms are the entropies of the "unbound" and
"bound" counterions respectively. In the limit ~s ---+ 0, minimizing with respect to 6 yields

so that for high charge (a » 1), fJ K 1 as was assumed in writing equation (5).
Minimization of equation (5) with respect to Q yields :

We now consider the case of small Z*/Z (,8 « 1) although we continue to assume a high bare
charge density (a » 1). In this case, most of the charge is localized near the surface and the
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fraction of delocalized charge, P = Z*/Z is given from équation (7) as,6 -- - 1 In 3b .g / g 9  ) 2À Sp)
This result is in qualitative agreement with an heuristic argument presented in référence [16]. The
fraction of delocalized charge increases as the system becomes more dilute, since the entropy of
unbound counterions becomes more important The ~s dépendent part of the free energy per
charge, 0394fs, is then

In the case of a cylindrical array, a similar calculation can be performed ; the electrostatic integral,
performed using Gauss’ theorem with cylindrical symmetry, results in a term Y of équation (3) that
is logarithmic in the radial distance. For cylinders of radius R, we find that in the high charge limit,
...

the inner région has an extent given by 6c = 3 , for small values of {3. As above, À = 2x£Ruo
and the parameter 03B4c approaches the same value as for sphères. However, in contrast to theand the parameter 03B4, approaches the same ue as for spheres. However, in contrast to the

spherical case, there is for cylinders no limit in which both a » 1 and the charge is also delocalized
[19]. Instead, B = Qc is always « 1 for the case of high charge. This can be seen from the following
variational result for the fraction of delocalized charge Qc as a function of the volume fraction of
cylinders, l/Je = (RIRb)2 : i

where the second form holds at low volume fractions 0, [20]. For the high charge limit considered
here, the free energy dependence on 0, is given in the cylindrical case by

at the level of our variational approximation [20].
We now use these results to estimate the end-cap energy, Ap of equation (2), due to the

charge rearrangement at the ends of the spherical endcaps. We consider a single sphere in a
background of charge density, ne, arising from the unbound charge (Zc = BZ N Z/À) of the
semidilute array of cylinders (We assume the high charge limit is the one of expérimental rele-
vance). The background charge density, ne, is calculated by distributing the cylinders’ effective
(unbound) countercharges uniformly in space (consistent with our variational description of the
outer zone). This gives 

-1

where R is the cylinder radius and 0 the volume fraction of cylinders.
The calculation of electrostatic energy of the added sphere proceeds as above, with two mod-

ifications, as follows : (i) the Wigner-Seitz cell radius Rb, within which charge neutrality holds, is
taken as K-1 = [403C0lnc,] -1/2 the screening length appropriate to the ambient charge density ne;
(ü) the entropy of counterions at density n(r) in the outer region must be corrected for the pres-
ence of the extra countercharges at density ne. Thus the last term in equation (3) must be replaced
by 

In the inner region, R  r  R(1 + b), nc « n(r) and the value of 6 - 1/À is unaffected
by this modification. In the outer region, ne » n(r) and the resulting contribution to equation
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(12) is well approximated as f n(r) In [ncvo] dr. In equation (5), this corresponds to replacing
the factor In [Po,] on the right by ln[(0/36] where 0 = §c is the volume fraction of micelles and
( = 4Rb/l. In physical terms, the entropy per charge of the unbound counterions arising from a
spherical micelle, in a semi-dilute array of cylinders, is fixed by the ambient counterion density n,
within the Wigner-Seitz cell, arising from the cylinders, rather than by the density of the micellar
counterions themselves.

We now estimate the free energy of a pair of hemispherical end caps as that of sphere of
radius R as described above. By minimizing the free energy, the effective charge Z* /2 on an end

cap is found to obey Z* = Z,8, Z 1 ln«O). For the 0-dependent part of the free energy 2À
per charge of the pair of end-caps we find

From this we may subtract the corresponding expression for cylinders, equation (10), to obtain
the free energy difference per charge between the end-cap and cylindrical environments:

where (1 = 2De/ À. According to our identification of the sphere as a pair of end-caps, this expres-
sion is simply AIÀII(2ZkT) with Z = N,.

For the leading behaviour at low 0 we obtain from (14)

Inserting this in equation (1) yields

As discussed in the introduction, for practical purposes, this form may resemble an effective power
law

where the usual exponent of 2 is corrected by a term in A = Z*. (This value for effective ex-
ponent may be checked by taking the logarithmic derivative of equation (16) with respect to § .)
ljrpical values of Ne = 20 and {3 = 0.05 [1,12,1b] suggest an increase of order one in the growth
law exponent. Again, we note that the effective power law discussed here is only relevant when
the term in Ap proportional to t/J -1/2, arising from the energy of finite cylinders with no charge
rearrangement, becomes small.

It would be premature to attempt a quantitative explanation of the viscosity data of refer-
ence [8] on the basis of this result. Qualitatively, however, it is significant in demonstrating how
electrostatic interactions can change the micellar growth law at low salt, giving an efective ex-

ponent for the volume fraction dependence that is greater then 1. 2 More work (both theory and
experiment) will be necessary to determine whether this can indeed explain the discrepancy be-
tween the viscosity and self diffusion data on wormlike micelles [8, 9] and the theory of reference
[11]. In addition, the crossover from the effects due to charge rearrangement (which give the
effective power law growth) to the contribution of the finite cylinder electrostatics (which gives
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N - exp (-1/4&#x3E;1/2) at very small values of 0) has yet to be delineated [14]. Another contributing
factor could be the dependence of the persistence length on salt, as arises in ordinary polyelec-
trolytes. However, the characteristic growth law exponent, the focus of the present work, is an
effect unique to self-assembling micellar systems.

In summary, we have demonstrated that for charged sphero-cylindrical micelles, in the ab-
sence of added salt, the end-cap free energy has a term which depends logarithmically on the
volume fraction of surfactant, 0. In an intermediate régime of ~, this free energy contribution
modifies the growth law for the degree of polymerization of these micelles, with an effective power
law exponent that depends on the effective charge Z* of the end-cap. This effect may be relevant
in understanding the strong dependence of the viscosity and self-diffusion constant on 0 in the
case of worm-like micelles with low added salt [8, 9,14]. At high salt, the Coulomb interactions
are screened and there is no 0-dependent contribution to the end-cap free energy ; the standard
growth law, N _ 01/2 is then expected to hold .
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