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Résumé. 2014 Les concepts de la cristallographie sont étendus aux structures quasicristallines et appliqués aux
quasicristaux icosaédriques. On montre que les symétries de rotation d’ordre N bidimensionnelles sont
compatibles avec les réseaux de Bravais en dimension ~ (N ) (au moins), où ~ (N) est le nombre d’Euler, alors
que pour la symétrie de l’icosaèdre tridimensionnelle, la dimension minimale est 6. La cristallographie de
l’icosaèdre est traitée en detail. Une classification complète des structures périodiques en six dimensions avec
symétrie icosaédrique est dérivée. 11 est surprenant de voir qu’il n’y a que quelques types d’« objets
cristallographiques » en 6 dimensions avec la symétrie de l’icosaèdre, en fait trois structures type réseaux de
Bravais, deux groupes ponctuels et onze groupes d’espace inequivalents. Le probleme de l’équivalence des
groupes d’espace icosaédriques est étudié en détail. Comme dans le cas des cristaux ordinaires à trois

dimensions, les symétries de groupes d’espace non « symmorphes » conduisent à l’extinction des pics de Bragg.
Ces extinctions sont calculées systématiquement.

Abstract. 2014 Crystallographic concepts are extended to quasicrystalline structures and applied to icosahedral
quasicrystals. 2-dimensional N fold rotational symmetries are shown to be compatible with Bravais lattices in
(at least) ~ (N) dimensions, where ~ (N) is the Euler number, while for 3-dimensional icosahedral symmetry
the minimal dimension is 6. The case of icosahedral crystallography is worked out in detail. A complete
classification of six-dimensional periodic structures with icosahedral symmetry is derived. There are

surprisingly few types of 6-dimensional « crystallographic objects » with icosahedral symmetry, namely 3
Bravais lattice types, 2 point groups, and 11 inequivalent space groups. The problem of equivalence of
icosahedral space groups is studied in detail. Similar to the case of ordinary 3-dimensional crystals, non-
symmorphic space group symmetries lead to extinction of Bragg peaks. These extinctions are calculated
systematically.
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1. Introduction.

Quasicrystals are well known to have crystallographi-
cally forbidden symmetries, i. e. they have no under-
lying Bravais lattice. However, these noncrystallog-
raphic symmetries are compatible with Bravais lat-
tices in higher-dimensional spaces (by some authors
called superlattices and superspaces, respectively).
This connection between a quasicrystal and a higher-
dimensional crystal is the basis of the projection
method which has been widely used for the construc-
tion and description of quasicrystalline structures

(see [1] and Refs. therein). The concept of

superspace and superlattices is older than quasicrys-
tals. It has been used to describe incommensurate

structures, such as TTF-TCNQ [2, 3, 4].
The association of quasicrystals to higher-dimen-

sional crystals opens a way to the application of
crystallographic concepts to quasicrystals. In this
work we describe the principles of the extension of
crystallographic methods to quasicrystals (« quasi-
crystallography »). We first illustrate these ideas
with the discussion of N fold rotational symmetries
in 2 dimensions, and then give a detailed application
to icosahedral quasicrystals which have been discov-
ered in 1984 by Schechtman et al. [5]. Icosahedral
quasicrystals can be associated with a Bravais lattice
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whose dimension is at least 6 (a group theoretical
proof is given in Sect. 3). In this article we derive a
complete classification of all 6-dimensional periodic
structures with icosahedral symmetry, i.e. we calcu-
late all 6-dimensional icosahedrally symmetric
Bravais lattice types, point groups, and space groups.
Such a classification is useful for the interpretation
of experimental data (diffraction experiments), but
also valuable in itself. Some of the main results can
be found in [6].
The paper is organized as follows. In the next

section we describe the general principles for the
extension of crystallography to quasicrystals and
apply them to 2-dimensional N-fold rotational sym-
metries. The application to icosahedral symmetry
follows in section 3 where we also describe the two
icosahedral point groups. In section 4 the icosahedral
Bravais lattices in 6 dimensions are classified. It is

shown that there are only 3 inequivalent Bravais
lattices types. Section 5 contains some general re-
marks about space groups and a detailed discussion
of the problem of space group equivalence, followed
by the calculation of the space groups. Like in

ordinary 3-dimensional crystallography nonsymmor-
phic space group symmetries lead to extinctions of
Bragg peaks. These extinctions are calculated sys-
tematically in section 6.
Some of the problems treated in this article have

been addressed before by other authors. While there
are some incorrect statements about the number of

possible Bravais lattices [7, 8], Janssen [9] gives the
correct lattices but offers no proof that no more
exist. Recently several proofs have been given [10-
12] which are somewhat different from the one

presented in section 4. It should be mentioned that
Plesken and Hanrath [13] earlier presented a com-
plete classification of all six-dimensional Bravais
lattice types, finding a total number of 826. How-
ever, their analysis, based on integral representation
theory of finite groups, relies on extensive computer
calculations, whereas our treatment, which is re-

stricted to the icosahedral point groups, needs only
elementary group theory and can be done analyti-
cally. _

A classification of space groups has been given by
Janssen [9]. His results do not completely agree with
ours : He finds 16 space groups instead of our 11.
This discrepancy requires a careful discussion of the
question of space group equivalence. If, besides
coordinate shifts and point group elements, only the
inversion is taken as an equivalence transformation
(as in 3-dimensional crystallography), we end up
with exactly the 16 space groups of Janssen. How-
ever, we will show that some of these space groups
are equivalent via the so-called quasidilatations
(« inflation-deflation transformations »). In contrast
to the involved algorithm used by Janssen [9] our
calculation uses only simple linear algebra.

2. Extension of crystallography to quasicrystals ; 2-
dimensional quasicrystalline symmetries.

In this section we describe the general ideas for
extending crystallographic methods to quasicrystals
and apply them to the simple case of plane noncrys-
tallographic symmetries, i.e. N-fold symmetries with
N = 5 or N::- 7.

2.1 GENERAL PRINCIPLES. - The basic step is the
connection of a quasicrystal to a higher-dimensional
crystal. This is the key idea of the projection method
which has been widely used for the description of
quasicrystals (see [1] and references therein). In
order to allow for a rigorous mathematical treatment
let us specify this idea in terms of group theory : A d-
dimensional (d = 1, 2 or 3) quasicrystal is said to
have point symmetry group G, if its Fourier trans-
form has point symmetry group G. However, G is
not compatible with a d-dimensional Bravais lattice,
at it would be for ordinary crystals. We therefore
look for a D-dimensional (D &#x3E; d ) representation
5)D of G which can be viewed as the point group of
some D-dimensional Bravais lattice C (here and in
the following the lower index of a representation
always denotes its dimension). Such a representation
has to satisfy two important conditions :

(i) The characters of I)D are integers.
(ii) DD contains the standard representation

Ds of G, which is given by all d x d-matrices of

orthogonal transformations leaving the quasicrystal
diffraction pattern invariant (hence Ð D is reducible).
The first restriction follows from the requirement

that ÐD is the point group of a Bravais lattice C.

Consider the matrices of DD written in a basis of C.
Since C is invariant under all elements of 9)D, all
lattice vectors are transformed into lattice vectors.

Consequently, all entries of the OD-matrices are
integers and hence the characters of DD as well. The
meaning of the second condition becomes clear by
formulating the projection method in the above

group theoretical terms. If ÐD satisfies condition (ii),
then this representation has a d-dimensional in-

variant subspace Ef corresponding to the standard
representation 3)j. It is this subspace onto which a
« strip » of C is projected [7, 14]. Ef is called the
physical subspace. The structure factor of the result-
ing d-dimensional quasiperiodic structure has exactly
point group symmetry G or 5)s respectively. This is
easily seen by considering the method for the

Fourier transformation of quasiperiodic structures
by means of the projection formalism [14].

In the following a representation of a point group
G that satisfies the condition (i) and (ii) will be

called a crystallographic representation of G. In most
cases we are interested in dimensions as low as

possible, just for the sake of mathematical simplicity.
The crystallographic representation of G with mini-
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mal dimension will be called the minimal crystal-
lographic representation of G. For a d-dimensional
crystal with point group G, the minimal crystallogra-
phic representation has dimension d, for a d-dimen-
sional quasicrystal this dimension is larger than d.
Given a (noncrystallographic) point group G, the

« construction of the crystallography of G » can now
simply be described as follows: Find the minimal
crystallographic representation Ð D of G and then
classify all D-dimensional periodic structures with
point group OD- In the following sections we will
carry out this program for the icosahedral point
groups. Before doing so we briefly sketch the

application of the above theory to another important
class of quasicrystalline symmetries, namely to

2.2 2-DIMENSIONAL NONCRYSTALLOGRAPHIC SYM-

METRIES.- In 2 dimensions the noncrystallographic
point groups are just the symmetry groups GN of the
regular N-gons with N = 5 and N a 7. In the rest of
this section we outline the construction of the
minimal crystallographic representations of the

groups GN. We first restrict our attention to the

cyclic groups CN C GN. CN is the group of all proper
rotations that leave the regular N-gon invariant :

Here E is the identity and R (N) the 2; -rotationN
around the origin. The standard representation of
CN is

Since CN is an Abelian group, all its irreducible

representations are 1-dimensional. They are given
by

The standard representation 02 s N) has the decom-
position

The characters of all irreducible representations
. 0 1 (N ) of CN are. given by the following matrix :

where X i j is the character of the group element

R’ (N) in the representation Oll (N) and

The character table (2.5) together with (2.4)
allows us at once to write down a crystallographic
representation of CN :

However, DN is not the minimal crystallographic

representation ; with the help of (2.5) it is not

difficult to construct the latter. It is given by

where 8 N is the set of all integers between 1 and
N -1, with which N has no common divisor. The
dimension of Ðmin(N) is equal to. the number of
elements of the set 5 N - It is the so-called Euler
number or Euler function ’P (N ) [15]. If N is prime
then cp (N ) = N -1.

Without proof we note that the minimal crystal-
lographic representation of the whole symmetry
group GN ZD CN of the regular N-gon has also
dimension cp (N ). We thus arrive at the result that

The minimal dimension, in which 2-dimensional

N-fold rotational symmetries are compatible with
Bravais lattices, is cp (N) dimensions.

There are methods for the construction of quasi-
periodic structures with arbitrary N-fold symmetry
[16]. Several quasicrystals with 2-dimensional non-
crystallographic symmetries have been observed to
date (they are periodic in the direction perpendicular
to the quasiperiodic plane) namely octagonal
(N = 8 ) [17], decagonal (N =10 ) [18, 19] and

dodecagonal (N =12 ) [20] quasicrystals. For all
these point group symmetries the minimal dimension
in which a Bravais lattice exists, is 4:

lp (8) = cp (10) = cp (12) = 4.
We do not go further into details of the crystal-

lography of the point groups CN and GN. For
N = 5, 8, 10, and 12 this has recently been done by
Gahler [21] and a more extensive treatment for N up
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to 23 has been presented by Rokhsar et al. [22]. The
latter analysis is based on a different approach and
does not refer to higher-dimensional periodic struc-
tures.

3. Icosahedral symmetry : point groups and crystal-
lographic representations.

We first discuss the point groups. There are exactly
two icosahedral point groups, namely the group Y of
all proper rotations leaving the icosahedron invariant
(with 60 elements) and the group Y, = Y x I
(I = inversion) of all symmetry transformations of
the icosahedron (120 elements). A proof that no
more icosahedral point groups exist can be found in
[11]. In Hermann-Mauguin notation the two point
groups Y and Y I are 532 and 53 2 , respectively.I 

m

Symmetry groups of polyhedra can be represented
nicely by painting these in various ways, thereby
reducing the point group of the unpainted poly-
hedron (see [23], chap. 7). Figures la and 1b show a
way of painting the icosahedron in a way that

reduces the point group from Y1 1 to Y.
We first discuss the point group Y. It is generated

by two elements, namely by the 72°-rotation A5
around the 5-fold symmetry axis ê1 and the 120°-
rotation A3 around the 3-fold symmetry axis

el + e2 + ê3 (see Fig. 2). The group Y has fine

conjugacy classes which are represented by {E,
As, A 5 2, A3, A 5 A2 } , respectively. The transformation
As A3 is the 180°-rotation around the 2-fold symmetry
axis el + e2. Since Y has five conjugacy classes, it has
five irreducible representations, namely a 1-dimen-
sional, two 3-dimensional, a 4-dimensional, and a 5-
dimensional representation. We denote them by
Ð1, Ð3, 03, Ð4, and 05. A detailed construction of
these representations can be found in [24]. The
standard representation is Ð3. From the character

Fig. 1. - (a) A painted icosahedron with point group
symmetry Y (532). (b) The transparent picture elucidates
the absence of an inversion centre.

table (Tab. I) it can be seen that any representation
of Y satisfying condition (i) is of the form

nl ’ Ðl 3 n3 - (Ð3 ae U)3 ) 0 n4 - Ð4 O n5 - 5)5
nl, n3, n4, n5 -=’t 0 - (3.1)

The representation of minimal dimension obeying
condition (ii) (i.e. the minimal crystallographic rep-
resentation) is the one corresponding to nl = n4 =
ns = 0, n3 = 1, i.e. 2)3 0 9)3- Its dimension is 6 and
we will denote it by Ð6.
The explicit form of the representation Ð6 can be

obtained as follows. Consider an icosahedron in

Table I. - The characters of the representations of the two icosahedral point groups Y and YI. The numbers in
parantheses in the top row are the numbers of elements of the corresponding conjugacy class. The table has to
be read as follows : The label i {=1, 3, 3, 4 or 5 ) in the leftmost column stands for Di in the case of the point
group Y (elements E, A5 A3, A3, A5, A5), and for Ði, I in the case of YI. For the representations
Ð[, I’ the characters in the rightmost column have to be replaced by their negatives.
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Fig. 2. - The 6 5-fold symmetry axes of the icosahedron.

R3 with its six five-fold symmetry axes (Fig. 2). Let
the six unit vectors {êi} i =1, ",,6 be directed along
these axes. The transformations of Y then act as

permutations of the vectors ei (sometimes with a
change of sign). These permutations can be written
as 6 x 6-matrices ; they constitute the 06-represent-
tation. We write down the explicit form of the
generating set {As, A31 of Y :

and

Furthermore we will need the matrix representing
the 180"-rotation AZ = AS A3 As 1 around the two-
fold symmetry axis ê1 + £4 (see Fig. 2) :

Since in the following we will use only the

9)6-representation of Y we use the same labels

As and A3 for both the elements of Y and those of
06-
For the point group Y, we follow the same

procedure. A generating set of Y, is (As, A3, I} .
The group Yj has ten conjugacy classes and hence
ten irreducible representations. On the subgroup
Y c YI they are identical to the representations of Y
while the inversion is once represented by the

6 x 6-unit matrix and once by its negative. We
denote the representations by U)i, I and 0!, I respect-
ively, where i = 1, 3, 3, 4 or 5 (see Tab. I). The
standard representation is 03, 1. The lowest-dimen-
sional representation satisfying conditions (i) and (ii)
is 6, I = Ð3, I 5)3, I-

This completes the construction of the minimal
crystallographic representations of the icosahedral
point groups Y and YI. It is the purpose of the

following sections to classify all 6-dimensional

periodic structures whose point group is either

3)6 or Ð6, I.
Before proceeding let us mention two technical

points which will be important in the following.
Scaling trans formations : Let us denote by IJ and

Pl = E - P" the orthogonal projectors onto the 3-
dimensional invariant subspaces E (the « physical
subspace ») and E3 of Ð6 corresponding to 3)3 and
3)3 respectively ; 9 is given by

We introduce the scaling transformations

(R denotes the real numbers) which obviously
commute with every single element of Ð6 :

The name « scaling transformation » should express
the fact that T p, v just changes the length scales in
E and El. Of particular importance will be the
transformation with &#x3E; = - v = .J5 :
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In terms of E and M the scaling transformation (3.4)
can be written as

Defining relations : For the calculation of space
groups the following properties of Y, or Ð6 respect-
ively, will be useful. Let a group G be generated by
two elements a and b and the three identities

where e is the unit element of G. Then G is

isomorphic to the icosahedral group Y and the

isomorphism can be chosen in such a way that it
transforms a into As and b into A3 [25]. We call the
relations (3.8) the defining relations of the group Y.
The group Y, can be described in the same way : If a
group G is generated by three elements a, b and c
that satisfy the five identities

then G is isomorphic to Y, and the isomorphism can
be chosen such that a transforms into A5, b into
A3, and c into I.

4. Icosahedral Bravais lattices.

In this section we derive the complete list of all 6-
dimensional Bravais lattices which are invariant
under the group 06- We call them 5)6-invariant or
icosahedral Bravais lattices. Since Bravais lattices are

always inversion symmetric, the considerations in
this section are independent of whether the point
group is Y or YI.
The definition of the equivalence o f Bravais lattices

is the standard definition used in ordinary crystal-
lography :

Definition : Let C and C’ be two Bravais lattices with
point group G. C is called equivalent to C’, if a linear
transformation exists which transforms C into C’ and
commutes (not necessarily element wise) with the
point group G.

In our cases all elements of 5)6 are equivalence
transformations. Since Ð6 is reducible there is an

important additional class of equivalence transfor-
mations, namely the scaling transformations T,.,,
defined in (3.4). [Due to (3.4), the latter do not only
commute with the transformation group J)6 as a
whole, but even with every single element of

5)61- If we have found some D6-invariant Bravais
lattice C then the whole equivalence class

of Bravais lattices is 06-invariant. T (C) is called a

Bravais lattice type. We now state the main assertion
of this section :

Theorem : In 6-dimensions there are three D6-in-
variant Bravais lattice types (4.1). Each of them
contains exactly one of the following three Bravais
lattices :

In (4.2a) Z denotes the set of integers. (Esc,
Cpcc? and EBcc are the 6-dimensional simple cubic,
face-centered cubic, and body-centered cubic lattice,
respectively.)

It is clear that the three lattice types (4.2a)-(4.2c)
are D6-invariant since they are invariant even under
the much larger cubic group. What is less trivial is
(a) that no further inequivalent D6-invariant lattice
types exist and (b) that the three lattices themselves
are inequivalent.

In order to prove the theorem, we first prove an

auxiliary lemma on 2-dimensional lattices:

Lemma 1: Consider the 2-dimensional space (R2 of
pairs (x, y ) and the linear transformation

If a 2-dimensional lattice C is invariant under the

transformation Q then a basis ftl, e} of C exists

such that e2 = Q (ei ).
Proof of Lemma 1: Consider the pseudonorm

One checks easily that ( ) is an invariant of

Q: (Q(x) = (x) B:Ix E R2. Using this invariance
one gets the identity

An obvious property of the operators
UJJ.v = 4 E + v Q is the following one : If a lattice C is
invariant under the action of Q, then this is true as
well for the lattice U JL v C.

Consider some fixed 2-dimensional lattice C and
choose a nonzero lattice vector a with minimal

pseudonorm ( ). Such a vector is not uniquely
specified but exists since C is a lattice which is

invariant under Q. Furthermore consider the vector
b = Q (a ) and the lattice C’ generated by a and b. We
shall prove now that C coincides with C’. Suppose this
is not the case and choose a vector c belonging to C
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but not to C’ (C’ is a sublattice of C). Change the
vector c by adding and subtracting a and b so that it
takes the form

Now c lies inside the parallelogram with edges a and
b. There exists a transformation U,v = 4E + vQ
transforming a into (0, 1) and b into (1, 0). The
other objects are transformed as

The vector (s, t ) belongs to W but not to Z2 . Let us
consider the set of points in the unit square having
pseudonorm not less unity (this set is depicted in
Fig. 3). The identity (3.4) implies that all nonzero
vectors of ’to, including (s, t), have pseudonorm not
less than unity. This means that (s, t ) lies inside the
dashed region of the unit square (Fig. 3). Since this

Fig. 3. - The dashed region in the unit square is the set of
points (s, t ) with pseudonorm not less than 1:

(s, t) &#x3E; ::- 1. The point with minimal y-coordinate is

1 , 1 . (,/21 - - 1 ) °

region occupies less than one half of the unit square,
the vector (1- s,1- t ) has pseudonorm less than
unity. But this vector belongs to ’W since both (1,1)
and (s, t ) do. Because all nonzero vectors of V have
pseudonorm larger than 1, this implies that

(1 - s, 1 - t ) = (0, 0 ), i.e. s =1, t =1. This con-
tradiction to the previous assumption (that c 0 C)
proves Lemma 1. QED.

Proof of the theorem : Consider the transformation
A2 representing the 180°-rotation around the two-
fold symmetry axis e1 + ê4 (see Eq. (3.2c) and

Fig. 2). A2 has two invariant subspaces : A 2-
dimensional one with eigenvalue + 1 and a 4-dimen-
sional one with eigenvalue - 1. We denote the 2-
dimensional eigenspace by V.

Y (or Ð6 respectively) has a subgroup generated
by A3 and A2 ; it is the group of all rotational

symmetries of the tetrahedron. It includes three

elements of order two : A2, A2’ = A31 A2 A3, and
A2,, = AJ" 2 A2 A3. These three transformations corre-
spond to rotations of the tetrahedron around its 2-
fold axis and form a conjugacy class of the tetra-
hedral group. By V’ and V" we denote the 2-

dimensional eigenspaces of A2 and A2 with eigen-
value 1. The three subspaces V, V’ and V" of
R6 are pairwise orthogonal, as can easily be checked.
Hence R6 is the orthogonal sum of these subspaces :

The transformation A3 acts as a cyclic permutation
on the three subspaces :

Let C = R 6 be a Bravais lattice which is invariant
under all 06-transformations (an icosahedral Bravais
lattice). Consider the lattice A c: V which is the

intersection of C with V. This intersection is not

empty since V is a rational subspace in R6. Analog-
ously we define jK/ c V’ and A" c V ". The lattice
’W == Jt + A’ + A " is also a sublattice of C.

Now we note that the operator P (E + A2) is a
projector onto the subspace V. P projects C onto

A. [The lattice a.A(" a E R is defined as the lattice
..At" scaled by a factor of a : aA

{xE6Ia-lxE..At,}]. In the same way

pt (E + AD and P" (E + An project C onto
A’ and A", respectively. Since A, A’, and .A(,"
are pairwise orthogonal the operators P, P’, and P’
form an orthogonal decomposition of the unit

operator E :

The l. h. s. of (4.10) multiplies lattice vectors of C by a
factor of 2 while the r.h.s. projects them onto lattice
vectors of W. Conseqently, if x E C then 2 x E "U) ;
we write 2 C c W. Combined with the relations

obtained above this gives

Now we construct a simple basis of ’W using
equivalence transformations of the type (4.3). The
vectors of the subspace V, written in the standard
basis described in section 3, take the form

Consider the operator R = 2 PA5 = (E + A) A5,
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which transforms the subspace V onto itself. R

preserves the lattice A. If we write the vectors

(4.12) as pairs (x, y ) then the action of R is given by

We are now in a position to apply Lemma 1 : There
exists a vector s E C such that the two vectors s and
Rs form a basis of C. By applying the operator
A3 to the basis {s, Rs} we obtain a basis

{Ag s, A3 Rs? of the lattice Y’. The same procedure
is applied to obtain a basis of C". Finally the set

forms a basis of "U). Now consider the scaling
transformation = JLE + vM (defined in (3.7))
with

TJLV transforms s into (1, 0, 0, 0, 0, 0). We let

T JL v act on the lattices C, "U), A, A’, and A" to

obtain the new set of lattices C, 4l, k, k’, and
,k ". The new « tilde set » is equivalent to the old set
in the sense of (4.1). In all the following consider-
ations we shall use the new lattices and for con-
venience we will drop the tilde.
The transformed basis (4.14) looks very simple :

Since the equivalence transformation T JL v does not
affect the relation (4.11) between ’W and t we have
to consider only a finite set of lattices which include

"U) and are included in 1 U.
2

In the next part of the proof we show how to
simplify the analysis using the symmetry properties
of the lattice C. C is invariant under the whole

groupe Y whereas "U) is invariant only under the
tetrahedral subgroup of Y. We symmetrize W with
respect to Y :

The lattice U’ includes "U) and is included in C since C
is 06-symmetric : 

-1 

.

A simple calculation shows that "U)’ is identical to the
face-centered cubic lattice EFcc defined in (4.2b). By
applying the symmetrization procedure (4.17) to the
lattices reciprocal to those in (4.18) the « upper
limit » in (4.18) can be lowered :

Calculation shows that ’W" is identical to the body-
centered cubic lattice 1 EBCC defined in (4.2c).2 cc ( )

For the following analysis we introduce the defi-
nition the index (C : C’ ) of a sublattice C’ = C in the
lattice C. Every lattice is an additive Abelian group.
The index (C E’) is defined as the number of
different cosets of the subgroup C’ c C [15].

The index ( - CB : CFCC) is equal to 4. Together ’
with (4.19) this means that one has to take into
account only three different nonzero vectors of the
factor group U"I’W’ as possible vectors of L These
candidates are

Let us discuss the possible cases. We have to

consider the D6-invariant lattices L:::&#x3E; EFCC which
contain at least one of the vectors p, q, or r of (4.20).
For the sake of brevity we write use the abbreviation

We have to consider the following three cases :

(i) C = EFcc + p : In this case C is the simple cubic
lattice Esc defined in (4.2a).

(ii) C = EFcc + q : This lattice is transformed into
Esc by the equivalence transformation of type (3.7),
namely T = 2 (M-E). 

,

Since the vector p + q + r is an CFCC lattice vector
all other possibilities are reduced to the above three.
This completes the proof of the theorem. QED.

In order to complete the analysis of icosahedral
Bravais lattices we prove

Lemma 2 : The three Bravais lattices LSC’ LFCC and
EBcc are pairwise inequivalent.
Proof of Lemma 2 : The lattices EFcc and EBcc are
invariant under the action of the transformation

1 (E + M) while the lattice Esc is not. Hence neither
2

EFCC nor EBcc are equivalent to Esc.
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Suppose EFcc and EBcc are equivalent. Since the
indices (Csc : CFCd and 1 CBCC : Csc) are both(2 
equal to 2, equivalence of CFCC and CBCC would imply
the possibility of embedding Csc into itself with
index 4. This in turn would mean that an equivalence
transformation Tp,v = 4E + vM exists which (i)
transforms Csc-lattice vectors into Csc-lattice vectors
and (ii) changes the 6-dimensional volume by a
factor of 4 : det(Tp,v) = 4. We show that conditions
(i) and (ii) are in contradiction. First we note that,
since

both J.L and v have to be integers. On the other hand

implies 4 2 -5 V 2 = B/4. This contradiction proves
Lemma 2. QED.

Before turning to the calculation of space groups
we have to discuss some important symmetry proper-
ties of the three lattice types C, CFCc and CBcc. Of
course these lattices are invariant under all elements
of Ð6. In addition, however, there is a class of lattice
symmetries which is due to the reducibility of

Ð6: EFCC and CBcc are both invariant under the
scaling transformation (see (3.4))

where T = 1 (1 + B/5) is the golden mean, E is the2
unit matrix and M has been defined in (3.6). The
lattice Csc is invariant under

(but not under Ql). We call Q, and Q2 quasidila-
tations. They have already been described by Elser
[26]. They will be important for the question of
space group equivalence.

5. Icosahedral space groups.

5.1 DEFINITIONS. - The detailed theory of space
groups can be found in [27] ; in the following we give
some definitions and remarks as far as they are of
importance for the calculation of icosahedral space
groups. The space group S of a d-dimensional

periodic structure with Bravais lattice C is defined as
the group of all inhomogeneous transformations

which leave the structure invariant. The shift
h E R dwill be called the translational part or non-
primitive translation of the space group element

(H [ h). The homogeneous part H is an orthogonal
linear transformation, He0(d). The transform-
ations H alone constitute the point group of the
structure. If it is (not) possible to transform all
translations h to O(modC) simultaneously for all
elements of S, then S is called a (non-)symmorphic
space group.
The group structure of S is constituted by the unit

element (EIO), the multiplication rule

and the inverse

The effect of an inhomogeneous coordinate trans-
formation (T I t) on a space group element (H I h) is
described by

Here T : R d.-+ Rd is a nonsingular transformation
(i.e. det T =1:= 0) and t an arbitrary parallel shift. Of
course the translation h E R3 depends on the choice
of the coordinate origin. Let EH denote the

eigenspace of the transformation H with eigen-
value A:

From (5.3) it follows that the component hl of h

orthogonal to EA = 1 can be transformed to zero by
an appropriate coordinate shift (E I t ), whereas the
component h1 of h parallel to Ek = 1 is not affected by
any coordinate shift and thus has an invariant

meaning. In 3-dimensional crystallography, y de-
fines a screw axis. The latter term has a meaning
only if Ek is 1-dimensional. This is not the case in
6-dimensional icosahedral crystallography where we
have dim (E= i) = dim (E A3 dim(E A2 i) = 2.
This means that the term screw axis loses its meaning
in 6-dimensional icosahedral crystallography.

5.2 SPACE GROUP EQUIVALENCE. - The problem
of space group equivalence deserves special atten-
tion. Space groups are equivalent if they transform
into each other by a shift of the origin and/or a
change of the Bravais lattice basis [27]. In formal
terms :

Definition : Let S hf’)), ..., (H(s’) I hk))l ,
i = 1, 2, be two space groups belonging to the same
point group and Bravais lattice. S (1) and S (2) are
called equivalent if there exists an inhomogeneous
transformation (Z I z), Z E GL(N, Z) (not necess-
arily a space group element), such that
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GL(N,Z) is the group of non-singular N x N-
matrices with integer entries.
(P ( 1 ), P (2 ), ... , P (N ) ) is some permutation of

(1,2,...,N).
Let us compare ordinary 3-dimensional crystallogra-
phy with 6-dimensional icosahedral crystallography.
If a 3-dimensional space group contains the inversion
I then the only equivalence transformations (Z [ z)
are the space group elements themselves. If the space
group does not contain I, then I itself can be
considered as an equivalence transformation. It is
well known that the number of inequivalent space
groups in 3 dimensions is either 219 or 230, depend-
ing on whether I is considered as an equivalence
transformation or not. (Two space groups that are
equivalent via inversion are called an enantiomorphic
pair).

For 6-dimensional icosahedral symmetry things
, are different. In this case there are GL (N, Z
transformations which do not belong to the point
groups 3)6 or 06,j I but commute with all elements of
these groups. These are the quasidilatations QI and
Q2 defined in (4.24) and (4.25). According to the
above definition they have to be considered as

equivalence transformations. The calculations of
sections 6 and 7 will show that if quasidilatations are
not taken into account we arrive at exactly the 16
space groups given by Janssen [9].

"5.3 DEFINING RELATIONS. - For a given Bravais
lattice C and a given point group P = {Hi,..., Hn} a
space group S = {(HI hi),..., (Hn I hn)} is charac-

terized completely by the translational parts hi on a
generating set of S. Generating sets are

9y = {(As I as), (A3 I a3 ) } for the point group Y and
,gy (As I as), (A3 a3)’ (I I i)) for the point group
YI. The translational parts of the elements of

gy and gy, are determined by the defining relations
[25] of the space groups. The defining relations for
the space groups belonging to the point group Y
follow from (3.8). They are given by

For the space groups belonging to the poing group
YI, (3.9) yields the defining relations (5.7) and in
addition

In the two following paragraphs we describe in detail
the solution of these equations.

5.4 SPACE GROUPS CORRESPONDING TO POINT

GROUP Y. - We have to calculate the non-primitive
translations for the generating elements A5 and
A3. They are completely fixed by the defining
relations (5.7). The point group elements A auto-
matically satisfy the defining relations ; we only have
to worry about the translational parts a. With respect
to the problem of equivalence, the derivation will be
divided into two parts : First, the effect of parallel
shifts is considered, and then inversion and quasidila-
tations will be taken into account.
We set x = a5 and y = a3 (in order to reduce the

number of indices). Using (5.2), (5.7) reads

C stands for either Esc, EFcc or CBCC ; we do not yet
specify it. Here and in the rest of this section, all

vector equations are to be understood modulo C.

Equivalence by parallel shifts

The direct solution of the system (5.9) presents no
principal difficulties but is somewhat tedious. It can
be greatly simplified by showing that the non-primi-
tive translation y can always be transformed to a
Bravais lattice vector by a suitable shift of the origin.
To see this, suppose we have found a solution
x = (xl, ..., x6) and y = (Yl, Y6) to (5.9). Insert-
ing y into (5.9) yields

Now consider the 2-parameter family of shifts

The parameters s and t will be fixed below. Using
(5.4) the transformed vector y’ can easily be calcu-
lated ; one finds
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This transformed vector y" is a lattice vector of while for EBCC some solutions of (5.9) exist for which
Csc as well as of EFcc and Lacc. This follows at once y can only be transformed to a non zero lattice
from (5.9b) and (5.10). Without proof we note that, vector.

for Csc and EFcc, y can always be transformed to 0 Under the shift us, t the vector x is transformed to

By fixing the free parameters s and t as

the second and sixth components of x’ become zero.
Hence we arrive at the following result : Without
loss of generality we can restrict ourselves to sol-
utions of (5.9) satisfying the 8 constraints

Equations (5.9) are then reduced to

while (5.9b) is identically satisfied. Here,
h = x3 + X4 + x5. For all of the three Bravais lattices,
equations (5.16) imply

or

This expression has to be considered for the three
Bravais lattices.

(i) Simple cubic lattice Esc : Since k, l , m, n E Z, we
are left with

(ii) Face-centered cubic lattice EFcc : Equation
(5.16a) implies m + 5 k = 0 (mod 2), which is the

case for k = (2 j + 1) m, j E Z. Equation (5.16b)
yields no additional constraints. Different choices of
1 and n correspond to shifts of x by CFcc lattice
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vectors, thus I and n are arbitrary integers. Choosing
j = 2, 1 = n = 0, we obtain

(iii) Body-centered cubic lattice CBcc : (5.16a) yields
m = k (mod 2). From (5.16b) we obtain

n = 1 = 0 (mod 2), and therefore

By making full use of the freedom of choosing the
origin we have reduced the number of inequivalent
space groups to at most 5 for every Bravais lattice.
Before we turn to quasidilatations we discuss the

Equivalence by inversion (enantiomorphic pairs)
The inversion I does not belong to the point group
Y. By (5.4), nonprimitive translations a change sign
under the inversion (I 0 ) : a H - a. For the non-
primitive translations (5.19-21) we have
- xm = X5 - m hence the space groups corresponding
to xm and Xs - mare enantiomorphic pairs. This

equivalence further reduces the maximal number of
inequivalent space groups : m takes only the three
values {0,1, 2} in (5.19-21). This is exactly the set
of space groups found by Janssen [9]. (Calculation
shows that all differences between Janssen’s results
and (5.19-21) are just due to different choices of the
origin and the generating set.)

Equivalence by quasidilatations
Of course we must not restrict attention to pure
quasidilatations Ql or Q2 but we eventually have to
consider combined transformations of the type
(Qi I u), i = 1, 2.
We start with the simple cubic lattice LSC. Under a

pure quasidilatation (Q2 10), xm is transformed to
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which is not of the form xm anymore. However, we
still are free to perform a shift by
us, t = (s, s, s, t, - t, t ) without changing y since

Us,t E Ei. We obtain

- 3 m m , m

Choosing t = - 10 and s = 10’ &#x3E; 1.e. Us,t = 10
(1,1,1, 3, - 3, 3 ), the vector on the r.h.s. of (5.23)
becomes x2 m (mod 5 ). In terms of (5.5) we can write

with õ = Qï I Us, t. This action has two orbits :

f X. = 0) and {xi, x2, x3, X4) ; the first one corre-
sponds to the symmorphic space group, he second
one to all nonsymmorphic space groups. We are left
with only 2 inequivalent space groups belonging to
the Bravais lattice Csc and the point group Y.
The calculations for CFcc and CBcc are similar and

not carried through in detail here. The quasidila-
tation Qi = 1 (E + M ) can be shown to have exactly2

the same effect (5.24) on the non-primitive trans-
lations xm given in (5.20, 21). This leads us to the
final result :

For the point group Y, there are 2 inequivalent
space groups for each of the lattices Esc, EFCC, and
Cacc- They are given by (5.19-21) with m = 0,1 and
are listed in table II.

5.5 THE SPACE GROUPS CORRESPONDING TO POING

GROUP YI. - The calculations in this paragraph are
very similar in spirit to those for the point group Y ;
we only quote the essential steps. Setting x = as,
y = a3, and z = i, the defining relations (5.7, 8)
become

After a parallel shift u satisfying z - 2 u =

0 (mod C ), equations (5.25d-f) are reduced to

Table II. - The 11 icosahedral space groups. The table contains the translational parts of the generating sets of
the point groups Y and YI, namely {(Aslas), (A3Ia3)} and {(Aslas), (A3Ia3)’ (Iii)}, respectively.
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Equivalence by parallel shifts
Concerning space group equivalence due to parallel
shifts, there is a difference to the last paragraph : In
order to preserve the validity of equations (5.26), we
can only apply coordinate shifts u satisfying
2 u = o (mod C). However, calculation shows that,
similar to (6.15), we still can restrict ourselves to the
solution of (5.25) satisfying

without loss of generality. Making full use of all
allowed parallel shifts, as in paragraph 5.4, we arrive
at a set of space groups characterized by the

following non-primitive translations :

(i) Simple cubic lattice Esc :

where m E {O, I}.
(ii) Face-centered cubic lattice CFCc :

where m E {O, I}.
(iii) Body-centered cubic lattice CBcc :

Only the symmorphic space group exists in this case.
The space groups corresponding to (5.28-30) are

exactly those found by Janssen [9].

Equivalence by quasidilatations.
Quasidilatations act as follows on the above space
groups. The non-primitive translation xm = 1 for

Csc is invariant under Q2. For the face-centered
lattice the action of (Ql 10) on xmn can be described
by the action on the pair (m, n ) as follows :

which has the two orbits

For CBCC, I things are trivial. We are left with the

following final result:
For the point group YI, there are two non-equival-

ent space groups for the Bravais lattices Csc and
EFCC’ The space groups of Esc are given by (5.28), the
space groups of Cpcc latter by (5.29) with m = 0,
n E (0, 1 ) . For the lattice CBCC, only the symmorphic
space group exists according to (5.30). The space
groups are tabulated in table II.

We close this section with a remark concerning
space group notation. The Hermann-Mauguin no-
tation which is commonly used in 3-dimensional

crystallography is inappropriate for labelling the
icosahedral space groups since it relies on space
group properties like screw axes and glide planes.
Above, the former were shown to be inexistent in
icosahedral crystallography.

6. Systematic extinctions.

We now calculate the systematic extinction of Bragg
peaks due to the nonsymmorphic space group sym-
metries. The reciprocal lattices of the three Bravais
lattices (4.2a-c) are

Table III. - Extinctions due to nonsymmorphic space group symmetries. The extinctions given in the table for
the point group Y all correspond to the point group element A5 (for the simple cubic Bravais lattice

Esc this is shown explicitely in section 5.), while the extinctions for the point group YI all correspond to the
point group elements A5 A3 and A5 A3 I. All other conjugacy classes of Y and Y, yield no extinctions. The
complete extinction pattern is obtained by acting on the tabulated extinctions with whole point group.
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Extinctions of Bragg peaks are due to zeroes of the
form factor

where p (r) is a periodic density distribution and u.c.
is a unit cell. Let p (r) be invariant under a space
group element (H I h), i. e. p (r) = p (Hr + h ). In this
case,

If, for some Bragg peak position ko,

and

then (6.3) implies Y(ko) = 0, i. e. the peak at

ko is absent. Equation (6.4a) is satisfied if ko is
invariant under the point group element H, i. e. if

ko lies in E. [see definition (5.5)]. In this way
every point group element H can be associated with
some set of extinctions (possibly the zero set). It is

easy to verify that all extinctions are obtained by
calculating those corresponding to one element of
each conjugacy class of the point group and then
acting on these extinctions by all elements of the

point group. The five conjugacy classes of the point
group Y are represented by E, As, A 5 2, A3, and
AS A3.
The eingenspaces with eigenvalue 1 of these point

group elements are :

where s, t E R. The point group Y, has ten conjugacy
classes, namely those of Y and in addition five

represented by I, As I, A52 I, A3 I, and A5 A3 I. The
eigenspaces with eigenvalue + 1 are those of (6.5a-
d) and in addition

where s, t, u, v E R -
As an example we calculate the extinctions for the

nonsymmorphic space group corresponding to the
Bravais lattice Csc and point group Y.

Conjugacy class of As : Using (6.1), the Bragg
peak positions lying in the eigenspace (6.5a) are
given by

Inserting the nonprimitive translations a5 from

table II, the phase factor in (6.3) becomes

Hence (6.4b) is satisfied if 1 =F 0(mod 5).
Conjugacy class o f A3 : Yields no additional extinc-

tions since a3 = 0.

Conjugacy class of A5 A3 : The Bragg peaks in the
eigenspace (6.5d) are at positions

The translation of A5 A3 is equal to as and the phase
factor in (6.3) becomes zero for all values of I and m.
Thus this conjugacy class yields no additional extinc-
tions.
The extinctions for the other nonsymmorphic

space groups are calculated in the same manner. The
results are given in table III.

7. Summary and conclusions.

We have shown how crystallographic methods can
be applied to quasicrystalline symmetries by relating
them to crystalline symmetries in a higher-dimen-
sional space. Periodic structures with icosahedral

symmetry exist in 6 (or more) dimensions. It turned
out that surprisingly few types of such 6-dimensional
structures exist. The question of space group equival-
ence has been shown to be important : In icosahedral
crystallography there is a class of equivalence trans-
formations which has no analogy in ordinary 3-
dimensional crystallography, namely the quasidila-
tations. The existence of this kind of equivalence
transformations is characteristic for the crystallogra-
phy of noncrystallographic symmetries.
High energy electron diffraction (HEED) data are

best fitted by the simple cubic Bravais lattice

Esc [28]. Convergent beam electron diffraction indi-
cates that the point group is Y, [29, 30]. Until

recently, diffraction experiments were limited to

HEED or powder diffraction by X-rays and neutrons
due to the small grain sizes. HEED can reveal

Bravais lattices but is known to be unreliable for the

investigation of space groups. This is because of the
importance of multiple scattering processes which
can give rise to nonzero scattering amplitude at all &#x3E;

Bragg angles. Recently, however, an X-ray diffrac-
tion study on uniformly oriented AlLiCu quasicrys-
tals (grain size around 100 Rm) has been reported
[31]. The HEED result that the Bravais lattice is

Cse, is confirmed. Nevertheless, significant devia-
tions from the calculated diffraction pattern [28] are
found. A careful space group analysis of these

experimental data would be very interesting. Non-
symmorphic space group symmetries have been

observed (by HEED) in octagonal [17] and decagon-
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al [19, 32] quasicrystals which have been addressed
in section 2.
We finally point out that a space group analysis of

quasicrystal diffraction data could be important for
the question whether quasiperiodic or icosahedral
glass models [33] are more appropriate for the

description of the icosahedral phase. This question is
still open. If a diffraction pattern could be fitted well
to one of those belonging to a non-symmorphic
space group, this would strongly favour the quasiper-
iodic models.

Note added : After submission of this paper we
became aware of an article by Rokhsar, Wright and
Mermin [34], where the same problems are treated.
These authors obtain exactly the same results ;
however, their approach is rather different from the
one presented in our article. Our method is a real
space formalism. We map the d-dimensional « quasi-
crystallography » onto ordinary crystallography in a
higherdimensional space, using the concepts of the

projection method. Rokhsar et al. treat the problem
in k-space, which has the physical dimensionality d.
In this latter approach, which has been used for
ordinary crystal symmetries as well [35], there is no
conceptual difference between crystallographic and
non-crystallographic point group symmetries.
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