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Polydisperse polymer networks : elasticity, orientational properties, and
small angle neutron scattering

P. G. Higgs and R. C. Ball

Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE, G.B.

(Requ le 11 avril 1988, accepté sous forme définitive le 20 juin 1988)

Résumé. 2014 Les propriétés des réseaux de polymères dépendent de la distribution f(S) des longueurs de
chaînes entre jonctions. Nous développons un formalisme qui décrit les réseaux fantômes en permettant
d’inclure explicitement une distribution f(S) arbitraire. Dans le cas de distributions bimodes, nous étudions
l’orientation des chaînes dans un réseau sous contrainte en calculant séparément pour les chaînes longues et
courtes les distributions P2(cos ~) et P4 (cos ~). Les réponses des deux espèces sont franchement différentes,
quoique la biréfringence globale du réseau ne dépende que de la longueur de chaîne moyenne. De même, bien
que le taux d’extension des chaînes d’un réseau sous contrainte soit très différent pour les deux expèces, le
module du réseau reste formellement indépendant de f(S). Nous étudions la diffusion de rayonnement par
une chaîne longue marquée attachée au réseau en un grand nombre de points situés au hasard, et nous traitons
explicitement la distribution de Poisson des longueurs entre jonctions. On calcule exactement la courbe de
diffusion dans le cas simplifié où la déformation du système des points de jonction est affine ; pour le cas plus
complexe où ces jonctions peuvent fluctuer librement, on peut trouver une solution approchée. Le premier de
ces modèles (polydisperse, affin au niveau des jonctions) donne un meilleur accord avec les résultats

expérimentaux que les théories existantes, aussi bien en ce qui concerne la forme de la courbe de Kratky que
pour les contours iso-intensité. Cependant il subsiste un certain nombre de données qui ne peuvent être
reproduites par aucun des modèles considérés. On montre par le calcul des courbes limites que ces différences
ne peuvent être prises en compte que par un traitement qui va au-delà de l’idée du réseau fantôme.

Abstract. 2014 The properties of polymer networks may be expected to depend upon the distribution,
f(S), of chain lengths between crosslinks. We develop a formalism for treating phantom networks which
allows the explicit inclusion of an arbitrary f(S) distribution. In bimodal networks we investigate chain
orientation in the strained network by calculating P2(cos ~)&#x3E; and P4(cos ~)&#x3E; for the long and the short
chains separately. The responses of the two species differ markedly from each other, although it is found that
the overall network birefringence is dependent only on the mean chain length. Similarly, although the typical
degree of extension of the chains upon straining the network differs widely between the species, the network
modulus is formally independent of f(S). We investigate scattering from a long labelled chain crosslinked in a
network at many randomly-positioned points, and explicitly account for the Poisson distribution of lengths
between crosslinks. The scattering function is calculated exactly if the simplification of affine deformation of
the junction points is made, and if the junctions are allowed to fluctuate freely, then an approximate solution is
possible. The former model (Polydisperse Junction Affine model) agrees much better with the experimental
data than the existing theories, both as regards the shape of the Kratky plot and the iso-intensity contours.
There remain, however, features of the data which cannot be reproduced by any of the models considered. It is
shown by the calculation of limit curves that these differences can only be accounted for by a treatment which
goes beyond the idea of phantom chains.
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Introduction.

Theories of polymer networks often use the concept
of the phantom network, in which the chains are
assumed to interact only at certain permanent junc-
tion points (or crosslinks) [1-4]. It is possible to

determine the properties of this simplified system in
a way which would be extremely difficult if the full
interactions, including topological entanglements
etc., were taken into account.
A further approximation is usually made, namely

that the chains comprising the network all have the
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same length. This is very clearly untrue for exper-
imental systems (although progress has been made
in producing monodisperse « model » networks [5]).
It is assumed that experimentally measurable quan-
tities, which involve an average over many chains,
will not depend strongly on the variation in chain
lengths which occurs, and that therefore it is valid to
introduce a mean length at the beginning of the
calculation. It is the object of this paper to investi-
gate to what extent this monodisperse approximation
is justified.
An alternative to the monodisperse approximation

is provided by the replica method, introduced by
Deam and Edwards [6]. Although this is a powerful
general basis for calculation, the constraint of re-
maining analytically tractable forces other approxi-
mations. In particular the localizing effect on a chain
of its crosslinks has been represented by a harmonic
potential well. We will proceed using the phantom
network since this will allow a clear comparison to
be made between polydisperse and monodisperse
theories without the influence of complicating factors
such as entanglements, chain stiffness etc. We do not
use the replica method explicitly but draw on some
of its results.

1. The phantom network.

The phantom network has been discussed by many
authors, the most comprehensive treatments being
by Flory [1], and James and Guth [2-4]. We will here
list the basic assumptions of the theory and discuss
under what conditions we may expect them to be

applicable :
(1) The network consists of subchains which are

freely flexible and which have an end-to-end vector r
described by the Gaussian probability distribution
p (r ). (The word subchains is used since in general
the network will be formed by irradiating or adding
crosslinking agent to a melt of long chains, so that
there will be more than one crosslink on any

chain.) ;
(2) The subchains interact only at their end

points ;
(3) The distribution p (r ) of end-to-end vectors for

a subchain is the same in the unstrained network as it
was in the uncrosslinked system under the same
conditions of temperature, solution concentration

etc. ;
(4) In this paper we assume that the arc lengths

between crosslinks are governed by a probability
distribution f (S ) which we may specify, that the

lengths of neighbouring subchains are independent
of each other, and that all crosslinks have the same
functionality 0.

Assumption 3 is discussed by Flory [1]. To see its
validity we must consider the way the network was
formed. We visualize an uncrosslinked melt just

prior to crosslinking in which there are many points
of contact, or near contact, between chains. The

crosslinking process is seen as an instantaneous

freezing-in of certain of these contact points chosen
at random to become permanent junctions. The
process introduces no stress into the system : it
remains in equilibrium. The set of equilibrium
configurations of the network is a subset of the

configurations of the melt, and the subchain vector
distribution remains unbiased by the crosslinking.
A further consequence of the above argument is

that since there are many potential crosslink sites the
chance of a chain linking with itself is very small.
Also the chance of a subchain forming part of a
closed loop containing only a small number of other
subchains is very small. This is an important point in
the analysis following in section 2. We note that

these arguments will not apply to all possible con-
ditions under which networks form. For instance if

the crosslinking occurs in dilute solution then a chain
is much more likely to link to itself than to other
molecules. There will be many small loops, and we
would not expect the phantom network theory to
apply so well.
The simplest form of the theory assumes that the

junction points are fixed, and that they deform
affinely, i.e. in direct proportion to the macroscopic
strain. We refer to this as the Junction Affine

network. James and Guth [2-4] modified the theory
to allow junction fluctuations, and we refer to this
case as the Phantom network.

Consider a subchain which can be represented as a
random walk of N steps of length f. Its end-to-end
vector distribution is :

where

This equation defines S to be the mean square value
of any one component of the end-to-end vector.
Since S is proportional to the arc length of the
subchain (L = Nf ) we will from now on refer to
« subchains of length S ». This is the natural way of
defining subchain lengths, since (r2) can be
measured experimentally whereas N and f are less
easily obtainable.
For the subchain linking junctions A and v we may

write :

where RlLv is the mean end-to-end vector for the
chain and p ,, is a fluctuation about the mean.

Ril , is not in general zero - the network does not
collapse to a point. For each subchain the value of
RIL v remains fixed, and the distribution of r IL v is
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therefore not equal to p (r ). The distribution p (r )
applies only when we consider the whole ensemble
of subchains, with their ensemble of values for

RJL v.
James and Guth considered the problem of the

introduction of the non zero mean vectors by using
certain « fixed junctions » which determine the

boundaries of the network. The mean vectors

{R03BCv} are then determined by the balancing of
forces at each junction point. They showed that
because of the properties of the Gaussian distribu-
tions for r03BCv, the fluctuations {p JL v } also have

Gaussian distributions and that the variances of

these distributions are independent of the values of
the mean vectors, and hence independent of the
initial arbitrary choice of fixed junction positions.
Flory [1] and Eichinger [7] have demonstrated that
for the monodisperse network :

The subscript zero indicates the reference state in
which the network was formed. We may define

scff to be the length of a free subchain which would
have the same fluctuations as does the real subchain
S when it is constrained by the network.

for a monodisperse network . (1.5)

For a polydisperse network (p 2) will be different
for each subchain, but it has been shown by
Graessley [8] that in the absence of small loops (i.e.
when the local topology is tree-like) the correspond-
ing result :

applies for all subchain length distributions. We feel
this is a key result whose implications have not been
fully appreciated. We present an independent proof
of it in appendix A in the language of the resistor
network analogy to be introduced below.

It may be stated (refering to the derivations of [8]
and [1]) that the free energy of the strained network
relative to the unstrained state is

where N c is the number of subchains per unit volume
and the À i are the extension ratios along the

principal axes. The front factor g is given by :

If the network may be approximated by a tree-like
structure then, following Graessley [8],
g = 1 - 2/0. This means that both the modulus and

the shape of the stress-strain curve depend only on
Nc and 0 and are independent of the distribution
f (S ) of subchain lengths. The shear modulus G may
be obtained from (1.7),

and if we make the assumption of incompressibility
then the Young’s modulus is E = 3 G. That the
modulus should be independent of f (S ) is in clear

disagreement with experiments on bimodal networks
by Mark et al. [5, 14-17]. The experiments are

discussed further in section 4, but we note here that
the experimental samples contain very short chains
with very limited extensibility. The Gaussian theory
would therefore not be expected to apply.

In deriving (1.7) the so-called additivity assump-
tion is made, namely that the strain-dependent term
in the free energy may be separated from all other
contributions, such as polymer-polymer and

polymer-solvent interactions. This is true only for
deformations which preserve the volume of the

sample, and providing the temperature and nature
of the solvent are not changed from the conditions
occurring during crosslinking. The effect of polymer-
solvent interactions and the validity of the additivity
assumption are discussed by Ball and Edwards [9].
We note that the Junction Affine network corres-

ponds to the 0 = oo limit of the phantom network,
where p 2 = 0 for all subchains and g =1. The

topology of the junction affine network is irrelevant
since the chains are not affected by their neighbours.
The role of topology in the phantom network is

important. For example the regular tetrahedral

lattice (o = 4 ) with all the chains the same length
may be shown to have g = 1/2 (= 1 - 2/0),
whereas a regular cubic lattice (o = 6) with all

chains the same length has g = 1/3 (#= 1 - 2/4&#x3E; ).
Regular lattices maximize the number of small loops
and are very unrealistic configurations. As discussed
above, the conditions of formation are likely to

prevent the formation of large numbers of small
loops, and to make the tree approximation a good
one.

The rest of this paper is concerned with calculating
quantities which depend on the distribution of values
of scff rather than merely the average occurring in
(1.8). We retain the tree approximation, noting that
the whole of what follows is dependent on it. A

solution for the opposite extreme of the regular
lattice has yet to be found when the chains are

polydisperse.

2. Fluctuations in the polydisperse network.

2. 1 THE RESISTOR NETWORK ANALOGY. - The
variables {x}L’ Y}L’ z}L} representing the coordinates
of the junctions have a joint probability distribution
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which is the quadratic form

where

S}L v is the length of the chain connecting junctions tt
and v, and l/S}LV = 0 if junctions g and v are not
connected.

The y and z distributions are equivalent to (2.2)
and independent of x, and

It has been noted by many authors that these
equations are equivalent to Kirchhoffs equations at
the junctions of a network of resistors. Eichinger [7,
10] uses Kirchhoff matrices and the formalism of

graph theory to discuss the conformations of combi-
nations of Gaussian chains. De Gennes [11] also
discusses the parallel between the conductivity of a
resistor network and the elastic modulus of a poly-
mer system. We explicitly state the analogy below.

Consider a network of resistors which has the

same connectivity as the polymer network. Each
subchain S Ji-1I is represented by a resistor n Ji- 11. A
current I Ji- may enter each junction from outside.
Kirchhoff’s laws applied at the junctions give :

with

The point to point resistance d2 eff when current is
allowed to flow through all possible routes between
the junctions is given by

and

then

Clearly the result holds for any two points in the
network, not merely junctions, since the points may
be designated as junctions with only two subchains

emerging from them. It is now possible to make
progress in determining the point to point network
fluctuations from the resistor analogy.

Fig. 1. - i) A network may be represented as a circuit
with two infinite trees of resistors - shown here for

functionality 3 ; ii) each of the trees may be replaced by a
single resistance to ground X. ,

2. 2 THE BETHE LATTICE MODEL. - Figure li

shows the circuit representation of the network if the
tree approximation (discussed above) is made. It is a
Bethe lattice with branching ratio « = ø - 1.
Many systems have been approximated by Bethe

lattices, since they give rise to recursion relations
which often allow an « exact » solution of the

problem. The review by Thorpe [12] discusses many
examples. Stinchcombe [13] considered the conduc-
tivity of a Bethe lattice and derived relations equival-
ent to (2.8) and (2.9). The case of percolation was
then treated in detail, but solutions of relevance to
the present discussion were not obtained. Bethe
lattices were also used in the work on phantom
networks by Graessley [8].
The motion of two points in the network which are

connected by a route passing through a small number
of subchains will be correlated. Points which are
connected only by routes passing through many
subchains will have negligible correlation. For the
Bethe lattice model to apply the only closed circuits
in the network must be « large » in the sense that the
correlations between opposite sides of the loop are
negligible. We will obtain an estimate as to how

large this has to be below.
Consider the resistor network of (2.6) represented

by a Bethe lattice and focus on one particular
resistor S (Fig. 1). The value of S has been chosen
according to some (given) distribution of subchain
lengths f (S). The ends of this resistor are connected
to earth by two infinite trees of resistors. Each of the
resistors in the trees has a resistance independent of
the others, also determined according to f (S ). The
trees may be replaced by single resistances Xl and
X2. X, is the resistance between junction 1 and earth
if no current is allowed to flow through S. Seff is the
resistance between junctions 1 and 2 if current is
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allowed to flow directly through S and via earth
through )(1 and X2,

The values of Xl and X2 are governed by a
probability distribution g (X) which is dependent on
f (S) and which we wish to calculate. To do this we
note that all the other junctions in the network are in
principle no different from 1 and 2. The resistance
from any junction in the tree « downwards » to earth
is a value of X determined by the same probability
distribution g (X). The circuits in figure 2 are thus
equivalent, and

The sum is from 1 to « since there are a = í/J - 1
branches emerging downwards from each junction.
We require the probability distribution of the new
value X to be the same as that of the Xi. Thus
g (X) is the solution of the self consistency relation :

Analytical solutions for g (X) have not been found
for non trivial choices of f (S). The relation has been
solved numerically in section 3, however several

approximate solutions are possible, and are discussed
here.

Fig. 2. - These two circuits are equivalent since each
junction in the tree of fig. li is equivalent. This leads to the
self-consistency relation (2.9).

2. 3 APPROXIMATE SOLUTIONS. - The simplest
approximation is to replace all the Si by their mean
value So, and all the X, by a single value X, i.e. we
assume that the network is monodisperse. (2.8) now
becomes

from which

We refer to this value of X as Xmono when we require
to distinguish it. Substituting this into (2.7) we
obtain :

which proves (1.5) for the monodisperse network.
A better approximation is to allow S to take its full

range of values, but to assume that the X distribution
can be characterized by a single mean field value
XM. This value XM will not be equal to Xmono, neither
will it equal Xo, the mean of the true distribution
g (X). In the mean field approximation (2.8) be-
comes :

The simplest non trivial distribution for f (S ), and
one which is of experimental interest, is the « bimod-
al » distribution : the network contains a fraction

pl of short subchains of length Sl, and p2 of long
subchains of length S2 connected randomly.

In this case :

This equation has one positive root XM. Table I
compares the values of XM with the true means
Xo calculated in section 3, and with Xmono. For

S2lSl = 2, a moderately broad distribution for

f (S ), it can be seen that the three values all lie
within - 5 % of each other. There is however
considerable disagreement in the more extreme case
S2/S1= 20.
The reason that the simple approximations work

better than we might have expected is that the
distribution g (X) is much narrower than f (S ), as is
discussed below and in appendix B.

Before using these values of X to calculate exper-
imentally measurable quantities it is useful to define
some further functions of Sand X. The sum of two

independent X values occurs frequently (Eq. (2.7)),
therefore we introduce a variable Z = Xl + X2 with
probability distribution :

We denote the average appearing in the front factor
(1.8) as J.
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Table I. - The mean Xo of the calculated X distri-
bution compared to the monodisperse and the mean
field approximations for the bimodal networks de-
fined in section 3.

For the bimodal distribution this reduces to the

weighted sum of two one dimensional integrals,
J1 and J2.

It is J1 and J2 which determine the way the short and
long chains extend when the network is stretched

(see section 4). We can define mean field values for
Z, Jl, J2 and J in an obvious way.

We note that while J is identically 2/0 for all

f (S ), JM is only approximately 2/ p. The extent of
this error in the mean field approximation can be
seen from table II. It is again only large for the very
broad distributions S2lSl = 20.
A very good approximation to the self-consistent

distribution g (X) can be obtained when f (S ) is itself
a narrow distribution. If we write

so that

Table II. - Calculated values of the integrals J,
Jl, and J2 compared to the mean field approximation
for the bimodal networks discussed in section 3.

then we may expand the factor

occurring in (2.9) in powers of sand x. Quantities of
interest may be written as series in the moments

(s2), (S3)... These series will rapidly converge
when f (S ) has a narrow spread about So. The details
are given in appendix B. Figure 3 shows g (X) calcu-
lated by the moments expansion compared to the
full self-consistent solution, in the case of the very
narrow bimodal distribution :

The approximation shows all the significant features
of the distribution. An important result of the

appendix is that :

Thus, as stated before, the X distribution is much
narrower than the S distribution. This is particularly
true for high functionality. We would expect the
mean field solution to become better as .0 increases.
This is useful because obtaining the self-consistent
solution becomes very time consuming for large 4&#x3E;.

3. The self consistent solution obtained numerically.

We now solve (2.9) numerically for several functions
f (S) of interest. The method is to use a trial function
g (X) on the right of the equation, evaluate the

integral to give a new function g’ (X), then use this as
a new trial function. The procedure is repeated until
g’ (X ) = g (X). The process can be viewed as choos-
ing the values of the resistances many layers down
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Fig. 3. - The probability distribution function g (X) of
resistance to ground calculated for a functionality 3
bimodal network with 50 % chains length 1.00 and 50 %
chains length 1.05. Solid line : self-consistent solution.
Broken line : approximation using moments expansion.
The 1 : 2 : 1 ratio of heights of the three main peaks is due
to the three possible combinations of the two resistances in
the top layer of the tree.

the tree in figure 1 according to the initial trial

function, and on each iteration moving one layer up
the tree. We reach the top of the tree on convergence
of the distribution g (X). The values of the resist-
ances in the lower layers of the tree have very little
effect on the value of the total X. In other words the

process will converge to a self-consistent solution

independently of the choice of the initial trial.
Choice of a suitable initial trial function will

increase the rapidity of convergence. When [(8) is a
bimodal distribution there is a finite maximum and
minimum value of X which occur when all the
resistors in the tree are of one type.

For the results in table II we use a uniform « top
hat » distribution between Xm;n and XmaX as the trial.
This interval is divided into N equally sized bins with
discrete probabilities gn assigned to each bin n. All
calculations in this section deal with cP = 3 for ease
of computation.
The program was tested with N = 200 using the

narrow bimodal distribution (2.18). The same sol-
ution was obtained from three different trials. The

iterations were stopped when typical values of the
probabilities gn had remained constant to at least 5
significant figures for several iterations. In each case
convergence occurred after about 20 iterations, i.e.

the correlation between points ± 20 subchains apart
is negligible. This gives us an indication of the size of
loops which can be tolerated. Experimental measure-
ments are likely to be considerably less precise than
this, and to ensure convergence to 3 significant
figures only 6-8 iterations were required. (We cannot
directly equate the number of iterations with the

loop size since to close a loop requires a short path to
earth from both ends of a subchain. This does

however provide a reasonable estimate.)
The shape of the curve in figure 3 is easily

understandable. The resistance to earth is most

strongly dependent on the resistors at the top of the
tree. There are three possible combinations of
resistors in the top layer of the tree: Si Sl,
Sl S2, and S2 S2. These occur in a 1 : 2 : 1 ratio, hence
the three main peaks in figure 3. These peaks are
each split into three due to the values of the resistors
in the second layer. Further structure is not seen.

The g (X) distributions only have the near symmetry
of figure 3 when f (S) is very narrow, cf. figure 4.
Two series of distributions were calculated with

S, and S2 fixed and varying pl and p2.

An estimate of the accuracy of the method can be
obtained by looking at the values of J in table II,
which should of course be exactly 2/3. The error is
due to the discretization of the probability distri-
bution. If sufficient bins are used the method is

exact.

The other f (S ) distribution of interest is the
Poisson distribution, which occurs if we assume

every monomer on the original chain has an equal
chance p of becoming a crosslink. The probability of
a subchain having n monomers is thus

when p --+ 0

hence

Fig. 4. - Self consistent solution for g (X) for a

functionality 3 bimodal network with 50 % chains length 1
and 50 % chains length 2. The function no longer has the
near-symmetry of figure 3 when the input S distribution is
broader.
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Since both the S and the X distributions are

continuous there are 0 (N 4) combinations of the
four resistances instead of 0 (N 2) as before, so it is
necessary to use a much smaller number of bins.
Here Xmin is zero and we introduce a cutoff in the S
and the X distributions at Sc beyond which the
probability is taken to be zero. The results in figure 5
were obtained using 36 bins of widths which were
smallest at small S in order to obtain the maximum
resolution of the distributions in the region where
they have their greatest weight. The mean of this
distribution is found to be Xo = 0.77 ± 0.01, and the
distribution yields a value of J = 0.67 ± 0.01. This is
to be compared with Xm... = 1.0 and XM = 0.610.
The mean field approx in the Poisson case is

Numerical solutions for XM and JM are shown for
several values of 0 in table III. We note from

figure 5 that g (X) is quite sharply peaked and dies
off much more rapidly than f (S) for large X, and
that the mode of the distribution is approximately at
XM.

Table III. - Values o f XM and JM for networks with
Poisson distributions o f subchain lengths with various
functionalities compared to the mean of the calculated
distribution for 0 = 3 and the true J values (= 2/ 0 ).

4. The elasticity of bimodal networks.

Bimodal networks are of particular interest because
they are the simplest polydisperse network and

because of the model networks of Poly-dimethyl-
siloxane studied by Mark et al. [5]. These exper-
iments have shown that the stress strain curves for

the networks are very dependent on the ratio

Pl : P2 of short to long chains, and that both the
stress and strain required to break the sample are

Fig. 5. - The subchain length distribution f (S ) = e- S and
the self-consistent solution for g (X) for a functionality 3
network with randomly positioned crosslinks (radiative
crosslinking). Despite the slow tail-off of f (S ), g (X) tails
off rapidly for large X and is strongly peaked about a
characteristic value. The peak will be sharper for higher
functionality.

often much higher for the mixed networks than for
networks of either the long or the short chains alone.
These results strongly disagree with the assertion

of section 1 that the elastic properties should be
independent of the subchain length distribution.
This is directly attributable to the non Gaussian

nature of the very short chains in the experimental
materials and their limited extensibility. Curro and
Mark [14, 15] have shown using rotational isomeric
state models that the short chains in their exper-
iments have an end to end vector distribution

significantly different from a Gaussian. A detailed
interpretation of these experiments is thus outside
the scope of this paper, however the present study of
Gaussian networks will clarify some points concern-
ing the response of the different chain species when
the network is stretched which are of relevance to

the experiments.
Before deformation

where

Upon a deformation along the principal axes x
becomes x = À x K’x + p x’ and p (x) becomes :
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where

This ratio has a different value for the short subc-

hains (J, = Jl) and the long subchains (J, = J2)-
Since J2 - J 1 it is the long chains which are more
extended relative to their initial length than the short
chains. We will consider the uniaxial extension

A, = A, À x = Ay = k - 1/2.
The radial distribution function before defor-

mation is given by

After deformation we may express the r distribution

in polar coordinates as

Now integrating w.r.t. 0 and 0 we obtain the new
radial distribution function

where D is Dawson’s integrals i

P À (r) can be evaluated directly in the monodis-
perse case since Lx and L, have single values. In the
bimodal case Lx and Lz are functions of S and Z.

The radial distribution function for the short chains

P 11 &#x3E;(r) is obtained by averaging over the Z distri-
bution with S fixed at S1.

Similarly for the long chain distribution P 12)(r).

Fig. 6. - Radial distribution functions of chains in a

functionality 3 bimodal network (50 % length 1, 50 %

length 20). The r scale is measured in terms of ro, the initial
r.m.s. length of the chain species in question. a) The
unstrained radial distribution function, which with this

scaling is the same for the short and long chains ; b) short
chains at A = 4, c) long chains at A = 4. The long chains
are much more extended than the short relative to their
initial r.m.s. length ; d) chains in a monodisperse network
at A = 4.

Figure 6 shows P 11)(r) and p k (2)(r) evaluated at
A = 4 for the network with S21S, = 20 and

pl = p2 =. 0.5. The r scale is measured in units of

ro, the initial root mean square length (which is of
course different for the short and the long subc-
hains). The curves are compared to the undeformed
distribution, which with this scaling is the same for
the short and the long subchains, and to P À (r) for a
monodisperse network at A = 4.

(Evidently a mean field version of P 11) and
pi2) is possible, with Z = ZM and no integration over
Z. The curves are found to be almost indistinguish-
able from the self consistent solution when

S2lSl = 2 but in rather poor agreement when

S2/Sl = 20.)
The stress strain curves for the model networks

show a significant upturn at a deformation A u before
the break point is reached, i.e. the modulus in-

creases. This has been interpreted as due to the
limited extensibility of the short relative to the long
chains. Although the short chains are less extended
than the long relative to their initial rms length
ro = M, they are more extended relative to their
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maximum length rm = Nf . It is important to dis-

tinguish clearly between the two measures. Andrady,
Llorente and Mark [16, 17] have compared typical
values of r at A,, with rm obtained from the rotational
isomeric state model. Reasonable correlation was
found. The modulus began to increase at r/rm
60-70%.
Such comparisons are only of limited value since

firstly the typical r value chosen was not the value of
the root mean square length predicted by the

phantom network model (4.5), and also since choos-
ing any single typical r value will not give information
on the extension of the few chains which have very
large end to end distances. A better approach might
be to consider the high r end of the radial distribution
functions. If a significant proportion of the chains
are predicted by the Gaussian model to have end to
end distances greater than rm then clearly the model
will not be valid and the modulus will be higher than
predicted. It is the few chains with very large
extensions which will first cause the increase in the
modulus.

5. Orientational properties of network chains.

There are many experimental techniques for measur-
ing the orientational order introduced into the

monomer units in the chains when a network is

stretched. Kuhn and Grun [18] showed that the

birefringence of a strained network is proportional
to (P2(cos X» (where y is the angle between a
monomer unit and the direction of strain and

P2 is the second Legendre polynomial). (P2&#x3E; can

also be measured by Fluorescence polarization, and
broad line nuclear magnetic resonance yields
measurements of (P 2&#x3E; and (P 4&#x3E;. These and other
techniques are reviewed by Ward [19].
We obtain values for (P 2&#x3E; and (P4) for polydis-

perse networks with particular reference once again
to bimodal networks. In this case there is the

possibility, by selective labelling of the network, of
measuring the orientational order of one of the chain
species independently of the other [20]. Monomer
unit orientation in the monodisperse network has
been treated by Treloar [21] and by Roe and
Krigbaum [22]. We need only summarize the results
and point out the differences due to polydispersity.
The calculation of the chain orientation is unusual

in that the step length f and number of steps N are
critical, since in the perfectly Gaussian limit (f --+ 0
and Nf2 = constant) the monomer units would be
isotropic at all strains. The polymer molecule is

represented by a chain of freely hinged rods. A
typical rod makes an angle 0 with the end to end
vector of the chain, and an angle X with the z axis
(the direction of strain). The end to end vector r
makes an angle O with the z axis. We wish to
calculate (P2(Ç» and (P4(ç» where :

It is found that the monomer units on any chain

have a most probable distribution of orientations

with respect to the end to end vector of that chain

given by :

where /3 is the inverse Langevin function L - (r/NP )
defined by :

We may write {3 as a power series in t, and evaluate
the Legendre polynomials for small t. Following the
method of Roe and Krigbaum we find, with the
polynomials normalized as above,

where PÀ (r) is the deformed vector distribution from (4.7). Evaluating (5.3) to leading order gives :

In the monodisperse case, putting S = Nf2 /3, this becomes :
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This is the result obtained by Erman and Flory [23]. It differs from the original result of [18, 21, 22] by the
factor (1 - 2 / 0 ), the same factor which occurs in the modulus.

In the polydisperse case we need to take the average of (S - seff)/s2 weighting all monomers equally
rather than weighting all subchains equally as before, i.e. there is an extra factor of S/So in the probability
distribution.

Thus (5.6) applies for the polydisperse network too. The leading term in the birefringence remains
proportional to the stress in the polydisperse case.
For completeness we obtain the 0 (t4) in P2.

The original treatment had the junction points
deforming affinely. This is equivalent to the oo = o0
limit of the phantom network model, where seff = 0.
In the monodisperse junction affine case :

This is given by Treloar. To leading order P4 is given
by :

in the monodisperse case .

Unlike P2, P4 is dependent on [(8). (Both the
0 (t4) terms appear to differ from Roe and Krigbaum
by a factor of 5/3.)
We express the results for the distributions con-

sidered in section 3 as a ratio of Pn for the polydis-

perse network to Pn for the monodisperse network
with subchain length equal to the length of the short
chains. We consider leading order only. For the
bimodal networks we define :
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Treating the data for the fourth polynomial in the
same way,

similarly

and

which is not in general equal to 1.

Fig. 7. - Chain orientation in a bimodal network (50 %
length 1, 50 % length 2). The Legendre polynomials
(P2) and (P 4&#x3E; calculated as the ratio of short to long
chains is altered (p, is three fraction of short chains). The
vertical scales show relative values. Absolute values de-

pend on the number of statistical segments in the chains. 0
Average over all chains, * Short chains only ; D Long
chains only. The broken line is (P 4&#x3E; for a monodisperse
network with the same mean subchain length.

Figures 7 and 8 show these functions plotted
against pl, the proportion of short chains. The

difference between the orientation of the monomers

in the short and the long chains can be seen to be
large in all cases. The results reinforce the fact that
the short chains are more extended relative to their

maximum length, therefore A1 &#x3E; A2, but less ex-

tended relative to their initial rms length.
Using the calculated g (X) for the Poisson distri-

bution with -0 = 3 we find that the ratios of

(P 2&#x3E; and ( P 4 ) relative to a monodisperse network
with the same mean subchain length are

A = 0.99 ± 0.01 and B = 1.13 ± 0.01. A would of

course be exactly 1 if there were no inaccuracies in

Fig. 8. - As figure 7 for a network with 50 % length 1,
50 % length 20. Note the logarithmic scale. The orientation
of the short chains is an order of magnitude greater than
the long chains.

the calculation, whereas the deviation of B from 1 is
real.

Erman and Flory [23] have considered some

complications which are likely to occur in real

networks, such as the restriction in junction fluctu-
ations which will be caused by entanglements and
dense chain packing. They have predicted that the
stress : birefringence ratio will actually depend on
the strain. They have some success in matching
experimental results to their theory. However, the
differences between A1 and A2 predicted here are so
large as to make them easily experimentally observ-
able, and the phantom network calculations provide
a reasonable basis for comparison. Mean field pre-
dictions for A l and A2 can easily be obtained by
substituting the values Jm 1 and JM in (5.10). In view of
the other complications which would occur in a real
system it is thought that the mean field approxi-
mation would be a sufficiently accurate starting
point, especially since real systems are likely to be
cf&#x3E; = 4 rather than 0 = 3.

In recent work by Mitchell [24] values for

P2 are obtained from wide angle X ray scattering.
The results highlight the fact that the theory is

expected to apply only for r2  (NQ )2 i.e. for
A 2  N. In these experiments values of N required
to give the measured P2 values are - A 2. Terms of
higher order in t are important in this case.

6. SANS from polymer networks.

The results of recent neutron scattering experiments
(to be discussed below) show large unexplained
differences from the existing network theories. It is
therefore of interest to examine in detail the effect of
the approximations made in calculating the scattering
function, and to introduce an explicit treatment of
polydispersity into the calculation.



1797

The network for which it is simplest to obtain the
scattering function is the monodisperse end-linked
network considered by Pearson [25]. All subchains
have an equal length and certain labelled subchains
are distributed randomly within the network in such
a way that there will be negligible interference
between scattered particles from different labelled
subchains. It is more usual in experimental systems
to have many crosslinks on a labelled chain.
Ullmann [26] considered scattering from a network
containing long labelled chains with many crosslinks,
assumed to be equally spaced along the chain. He
obtained the scattering function assuming the junc-
tions to be fixed and to deform affinely : the

monodisperse junction affine model (M.J.A.). A
solution for the monodisperse phantom network
(M.P.N.) case (allowing free junction fluctuations)
was also obtained by Ullmann, but this was only
approximate. In section 7 we derive the exact

M.P.N. solution.

As discussed above, if the network is made by
forming crosslinks at random sites along the chains
in a melt, then the subchain lengths will have a

Poisson distribution. This is generally held to corre-
spond to the situation in networks formed by irradia-
tive crosslinking. Warner and Edwards [27] used the
replica method to obtain an approximate solution in
this case. In this treatment the random positioning of
the crosslinks is incorporated by assuming a mean
localization of the labelled chain by its crosslinks

which is the same at all points. This work has been
extended recently by Vilgis and Boue [28] to include
the partially restricted crosslink points of the Flory-
Erman model [29] and the slipink treatment of

entanglements. In section 8 we give a simple argu-
ment which yields the same form for the scattering
function as the replica method, and which sheds light
on the approximations used in the replica calcu-

lation.

The work of Bastide, Herz and Boue [30] has
demonstrated that both the monodisperse and the
replica methods are in substantial disagreement with
the experimental measurements. There are two

major differences between the data and the existing
theories apparent when looking at the Kratky plot
(i. e . q 2 S (q ) against q) for q perpendicular to the
stretch direction. The peak at intermediate q is much
lower and broader than predicted by theory, and the
convergence of the curve to its limiting value for
large q is much slower than predicted by theory.

In this paper we demonstrate that accounting
accurately for the polydispersity of the subchains
leads to substantial changes in the predicted shape of
the scattering function. In section 9 we use the

resistor networks discussed above to obtain the

scattering function for a polydisperse junction affine
(P.J. A. ) network with arbitrary f (S ), and apply it to
the Poisson distribution case. The polydisperse phan-

tom network (P.P.N.) calculation presents consider-
able difficulty, however we do obtain an approximate
solution.

Sections 7-9 are largely mathematical. The reader
not interested in the details of the derivations may
turn to section 10, where the conclusions relevant to
fitting the experimental data are discussed.

7. Monodisperse models.

The intensity of coherent scattering at scattering
vector k is given by

Where rpq is the vector linking monomers p and q on
the labelled subchain (or subchains). Writing this in
an integral representation

The variables s and s’ represent arc length along the
chain of length So. Because of the Gaussian nature of
the chain segment r (s ) - r (s’ ) we may write

The sum is over Cartesian components. We will
sketch the derivation of the monodisperse models
since we will use them in generalizing to the polydis-
perse systems. For Pearson’s end-linked chains :

The fluctuations are independent of A therefore
when A = 1 :

Here we have used the « Flory assumption » (as-
sumption 3 of section 1). Now defining the dimen-
sionless scattering vector q by :

and letting I t - t’ I = I s - s’ /S« we obtain :
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The M.J.A. model has Ns subchains of length
So forming one long labelled chain crosslinked to
many unlabelled chains. Ullmann considers the case
of dangling chain ends in detail, and thus distin-

guishes five different positionings of the arc length
variables sand s’. We follow Bastide, Herz and Boue
in assuming that NS is large and dangling ends have a
negligible effect. There are then only two cases : s
and s’ on the same subchain or on different subc-

hains.
In the former case S (q ) = Sself (q ) with = 00. In

the latter case let there be n subchains between the

two subchains on which s and s’ are situated

(0 -- n -- Ns - 2). Since the junction points are

assumed fixed the vector r (s ) - r (s’ ) is the sum of
three independent parts. Introducing the notation :

We find in this case :

There are (N s - n - 1) pairs of subchains with n
intermediates and each of these pairs must be
counted twice to give the correct weighting in

comparison to Sself, therefore the contribution from
subchains with n intermediates is :

Assembling the contributions and normalizing so

that the limit of S (q ) as I q ] -+ oo is 1 /qz we find

It is possible to express Sself (q ) and 11 (q ) in terms
of error functions and Dawsons integral but we have
evaluated the integrals numerically.
Ullmann uses the equivalent equation to (7.7) for

finite 4&#x3E;. This is only an approximation since the
three parts are no longer independent. The problem
can be viewed in terms of the equivalent circuit of
figure 9i. The resistor Y represents a tree with

2 branches in the top layer rather than

(4) - 1) as is the case for x. We desire to calculate
the resistance between points 1 and 2, which is the
mean square of the fluctuations between the points.
We use the notation p 1= any one component of the
fluctuation of point 1 from its mean position, and
p 12 = any one component of the fluctuation in the

separation of points 1 and 2.

(p /) is the resistance to earth via all routes from

point 1 (Fig. 9ii).

and similarly for (p)) . To find (p 1 P 2&#x3E; we use
Ullman’s argument that :

where the first term is the equilibrium displacement
of junction v caused by the motion of junction g,
and - is a displacement caused by the instantaneous



1799

Fig. 9. - i) Circuit for the Monodisperse Phantom Net-
work model ; ii) resistance to ground ,from an arbitrary
point.

disequilibrium of forces, and is uncorrelated with

p, or p v. Hence :

We now show that the correlation in the motions
of the arbitrary points 1 and 2 may be expressed
entirely in terms of the correlation in the motions of
the junction points. The equilibrium displacements
of points 1 and 2 are linear interpolations of the
displacements of the junctions either side of them.

and

This is an important result since it does not

depend on the network being monodisperse. How-
ever it is only in the monodisperse case that we can
evaluate the expression using (7.13). Combining
(7.11, 7.12, 7.13, 7.15) yields an expression for

(p lz). Before deformation :

and therefore after deformation :

which may be substituted into the exponential in the
scattering function integral. This is much more

difficult to evaluate than the M.J.A. case since the

variables t and are no longer separable so we have
a two-dimensional integral instead of the square of a
one-dimensional integral. Also the n factor is not

separable either so we must do a different integral
for each value of n in the sum. We have not

evaluated the M.P.N. solution. In the light of the
results below we believe it would not differ substan-

tially from the other models which we discuss.

8. The replica result.

The result of Warner and Edwards [27] may be
written

The normalization is as before, and again t is arc

length measured in units of So. The constant

w = 6 N.,INf2 of references [6, 27] has been re-
placed by C in our notation, where

Now with No = the mean number of monomers on

a subchain and N = No NS = the total number of

monomers on a chain, we have

This result was generalized by one of us [31] to
arbitrary even functionality, in which case the same
functional form as (8.1) was found with

It was then suggested that analytic continuation of
this result to odd functionality was valid.
The replica treatment of Gaussian networks is

based on the idea that topological constraints divide
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the configuration set of the network into many
distinct sets not accessible to each other without

breaking and reforming bonds. The method deals
elegantly with this problem, but unfortunately evalu-
ation of the free energy and the scattering function
relies on the introduction of an approximate Green
function in which the chain is localized by its
crosslinks in a harmonic potential well. The depth of
this well is determined by a variational principle
which minimizes the free energy for the value of w in

(8.4). All information on positioning of the crosslinks
is lost. All points on the chain become equivalent.
We are thus led to consider the alternative mean

field representation below.
The labelled chain is, in the resistance analogy, a

wire of unit resistivity connected to earth by a

continuous medium of conductivity (Fig. 10i). An
element dt of the chain is represented in figure l0ii
from which we have :

writing cr =1 /C2 (anticipating the result (8.9)) we
find :

Now put a current [in into the wire at t = 0, which
maintains the voltage V (0 ) = V o. The solution for
V (t ) is :

Hence the resistance to ground from any point is

In a similar way, putting current Iin into the wire
at the origin and taking the same current out at

another point t we find that the resistance between
two points distance t apart is :

This expression tends to twice the resistance to

ground in the limit t - oo where the two points
become independent.
The Flory assumption applied to this model means

that before deformation :

and therefore after deformation

which is exactly the factor occurring in the replica
form of the scattering function (8.1) i.e. the above
model deforms in a way which gives rise directly to

Srcp(q). For clarity we will continue to refer to (8.1)
as the replica formula for the scattering function,
though we will view it in the light of the above model
rather than its original derivation.
We must now address the issue of the value of the

constant C. The resistance to ground in the smeared
out model is C /2, therefore we choose C to be twice
the average resistance to ground in the real network
(measured in units of So). For a monodisperse
network we may use (7.12) :

In the polydisperse case we have :



1801

Fig. 10. - Mean field model with smeared out resistance
to ground. This is a realization of the effects of the

approximations made in the replica calculation, and yields
the same answer for the scattering function.

We are interested in this quantity for the Poisson
distribution of subchain lengths. For .0 = 3 evaluat-
ing the expression with the calculated g (X) gives
C = 1.53 ± 0.01, which is remarkably close to the
value C = Crep = 3/2 obtained by the replica calcu-
lation of (8.4) extended to 0 = 3. Table IV com-
pares Crep and Cmono to the best estimate of C from
the current data for several values of 0. For

cp =1= 3 the best estimate is calculated as a midpoint
between upper and loioer bounds. The lower bound
is the mean field solution obtained by putting
Xl = X2 = XM in (8.12) and only integrating over S.
The upper bound is obtained by putting X, =

X2 = Xo (which is itself estimated from (B.8)) and
integrating over S. For 0 ::-- 6 these bounds are very
close. The limit 0 -+ oo of (8.12) is :

which is different from the limit of Cmono and

C rep. In short it is found that C rep is an accurate

approximation for cf&#x3E; = 3 and cf&#x3E; = 4 but that it has
the wrong limit as cf&#x3E; -+ 00, and that the mean field
result (lower bound) is an accurate approximation
for 0 &#x3E; 4.

Figure 11 shows the replica scattering functions
for several values of C compared to the junction
affine models. The functions are evaluated for a

sample under uniaxial extension (A = 4.6 ) with q
perpendicular to the stretching direction and

N, = 50. We choose these values for comparison to
reference [33]. The curves are discussed in sec-

tion 10.

9. Polydisperse models.

For the polydisperse junction affine model we again
distinguish between the cases of s and s’ on the same

Table IV. - Various approximations for the constant
C in the replica formula for the scattering function.

. 

Fig. 11. - Kratky plots (q ‘ S (q ) ) for perpendicular
scattering from a uniaxially extended network with
A = 4.6 and the number of subchains (meshes) along the
labelled chain N, = 50. a) Monodisperse Junction Affine ;
b) Polydisperse Junction Affine (c) (d) and (e) Replica
model for 0 = 3 (C = 3/2), cp = 4 (C =1 ), and 0 = oo
(C = 2/3 ). The difference between (a) and (b) is attribut-
able entirely to polydispersity. The replica curves, which
model the effects of junction point fluctuations, converge
much more rapidly than the junction affine curves. The
dimensionless wave vector q is scaled relative to the r.m.s.
mesh size (see Eq. (7.5)).

subchain and on different subchains. In the former
case (7.6) can be generalized as

where T = S/So and t = s/S.
This must be averaged over the distribution of

subchain lengths. In the Poisson network

f(T) = e- T :
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In the second case the junction affine assumption
allows a generalization of (7.8) :

where T and T’ are independent lengths and

Tn is the sum of n independent values of T. (7.9)
becomes :

which when averaged over T gives :

Tn has a probability distribution given by :

which can be evaluated using the convolution
theorem for Laplace transforms. For f (T) = e- T we
have :

The factor in (9.2) involving Tn is now averaged over
this distribution.

hence

This has been evaluated for NS = 50 and A = 4.6 in
figure 11.
A principal result from experiment is that the

peak in the Kratky plot for perpendicular scattering
is much lower than predicted by the monodisperse
models. We note that the P.J.A. curve is significantly
lower than the M.J.A. Also, the deformation in a

phantom network model will always be less than in a
junction affine model for the same A. Therefore the
perpendicular scattering curve will be lower (closer
to the curve for the undeformed sample) for phan-
tom network models. It is therefore of interest to

attempt a proper treatment of the polydisperse
phantom network.
As was noted in the discussion of the M.P.N.,

when the junctions are allowed to fluctuate the term
in Ai (t, t’) involving the number of intermediate
subchains n does not separate conveniently from the
other variables and it is necessary to do a separate
integral for each n and sum these. From figure 9 it
can be seen that the number of variables involved is

(n + 2) S-values, 2 X-values, (n + 1 ) Y-values plus t
and t’. Performing the integration over all these
variables is a major computational task. We there-
fore make the simplification of replacing all the X
variables by XM and all the Y variables by YM. As
stated above, Y is the resistance of a tree with

cp - 2 branches on the top layer instead of cp -1.
Hence YM is defined by

We are interested in -0 = 4 where XM = 0.247 and
YM = 0.371 (in units of So). Because of the relatively
narrow distribution of X it is not unreasonable to

replace X by a single value. The major effect of
polydispersity lies in the variation of the S variables
(those in the labelled chain itself). It was also noted
above that the mode of the g (X) curve = X M, and
therefore we prefer to set X = XM rather than
X = Xo.
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Fig. 12. - The three simplest terms contributing to the
Polydisperse Phantom Network scattering function. (Cf.
Fig. 19 and analysis in Sect. 9.)

The three simplest contributions to the scattering
function are shown in figure 12.

i) t and t’ on the same subchain :

which leads in the usual way to :

ii) t and t’ on neighbouring subchains (n = 0 ) :
We require the resistance between points 1 and 2

in figure 12ii (which are not necessarily junction
points) :

with T and T’ two independent subchain lengths.
Solving Kirchhoffs equations yields :

iii) the n =1 contribution :
The notation is as above with the addition of a third independent subchain S * = So T*. We find :

For n &#x3E; 1 even the initial step of solving Kir-
chhoffs equations is not easy and it is clear that
some further approximation is necessary. We might
hope that the contributions from n &#x3E; 1 would be

very small since Ai (t, t’ ) appearing in the exponen-
tial is large in this case. If this were true then the
final scattering function would not be sensitive to the

approximation used, however crude this might be.
Unfortunately this proves not to be the case, as is
discussed further below and shown by figure 19. We
therefore must attempt some sensible approximation
for n &#x3E; 1, preferably in which the whole range of n
can be treated in one integral.
We will again make use of figure 12iii, but the
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resistor T*, instead of representing just one subc-
hain, will represent the resistance of the intermediate
chain length regardless of the number of subchains
within this length. The replica approximation for the
point to point resistance (8.9) may be used :

This expression is substituted into (9.15) in place of
T* every time it occurs. Equation (9.16) remains
valid with the new value of Sfff and (9.17) becomes :

Thus we have an approximation for the contribution
to the scattering function from all values of n -- 1.
Adding cases (i) and (ii) to this we obtain :

The Kratky plot for this approximation to the
P.P.N. is shown in figure 13. It is seen to be

extremely close to the replica curve with C = 1,
suggesting that the replica form was initially a very
good approximation to the real answer. There

remain, of course, numerous approximations in the
P.P.N. form presented here and it is difficult to be
sure of their effect. However it is possible to obtain a
lower bound on the curve in a simple way, as

follows.
In all models (t, 0 ) is of a form similar to (8.10),

Le. : .

These mean square fluctuations cannot be greater
than C for any value of t, since this is the value if the
two points are independent. If the fluctuations are
set to C for all t this maximizes A in the perpendicular
direction (where A 2 _ 1) and therefore minimizes
the scattering function. However Ai (t, 0) cannot be
greater than t : the dimensions must decrease in the

perpendicular direction when the material is

stretched. Therefore we set :

with C = 1 for 0 = 4 as above. This situation is of
course completely unphysical, yet it provides a

useful lower bound to the perpendicular scattering
function and an upper bound to the parallel scat-
tering function. (If the special case for t  C were

not included then 4 would become negative in the
parallel direction and the scattering function would
not converge). The bound for the perpendicular
curve is seen in figure 13 to be extremely close to the
replica curve and the P.P.N. approximation. In the
parallel direction (Fig. 14) the upper bound is not
close to the other models and therefore does not

provide such a useful guide.

Fig. 13. - Perpendicular scattering from a uniaxially
extended network with A = 4.6 and N, = 50. a) M.J.A. ;
b) P.J.A. ; c) P.P.N. approximation ; d) replica (C = 1 ) ;
e) limiting curve ; f) unstrained network. The proximity of
curves (c) and (d) indicates that the replica treatment was
initially a good approximation to the P.P.N. Scattering
functions for all Gaussian models with this value of

Ng must lie above curve (e), this means that it is necessary
to assume a substantially smaller NS (longer mesh size) to
match the experimental data (see Fig. 15).

10. Discussion and comparison with experiment.

Since the real networks may be expected to behave
in a way intermediate between the junction affine
and the fully fluctuating phantom networks we wish
to compare the experimental data to one junction
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Fig. 14. - As figure 13 for Parallel scattering. The limit
curve (e) does not provide a useful upper bound in this
case.

affine model and one phantom network model.
Figures 13 and 14 demonstrate the main findings of
sections 7-9 relevant to our choice of models.

The junction affine models (curves a and b)
predict the most anisotropic scattering (strongest
perpendicular scattering and weakest parallel scat-
tering). In the perpendicular direction both the

Monodisperse and Polydisperse Junction Affine
models show slow convergence of the q 2 S (q ) curves
to the limiting value of 1. The polydisperse model
derived in section 9 can be seen to differ substantially
from the monodisperse theory over the range of q
which is of interest. Since polydispersity of subchain
lengths is clearly present in the radiatively
crosslinked experimental networks we choose the
P.J.A. as one of our models for comparison with
data.
The replica scattering function (curve c) was

originally derived as an approximation to scattering
from the Polydisperse Phantom Network. It was

shown in section 8 that it corresponds to the extre-
mely simple model of figure 10 which contains no
information on positioning of crosslinks, and in
which all the unlabelled network chains are rep-
resented by a continuous medium. In spite of this
apparent crudity it was found to be a very good
approximation to the true P.P.N. scattering function.
The best estimate for the P.P.N. function derived in
section 9 (curve d) differs very little from the replica
function. We therefore choose the replica function
for comparison to the data in view of its much

greater simplicity and ease of evaluation.
We have investigated two sets of experimental

data, both made on polystyrene gels crosslinked by
irradiation in concentrated solution. The deswollen

gel data is taken from Bastide, Herz and Boue

(Fig. 4) [30], and is for scattering from labelled paths
of two different lengths in a gel deswollen to 1/10 its
original volume. The scattering should be equivalent

to that in the perpendicular direction from a network
in uniaxial extension with A = 4.6, since 10- 113 =
4.6-112. The data for uniaxially extended networks is
taken from Bastide and Boue (Fig. 1) [32]. It
measures both parallel and perpendicular scattering
from networks with A = 1.46 and 4.6.
For the long path in the deswollen gel it was

estimated in the original paper that -- 50 crosslinks
were present on a typical chain, and that the typical
end to end distance of a subchain (or mesh) was
- 125 A. The curves in figure 13 are evaluated for
NS = 50. Glancing at the experimental data points in
figure 15 it is evident that all the curves have a peak
of a much higher intensity than the data. Curve e
represents a lower bound for all Gaussian models
with this value of A and NS. (Derivation of the
limiting curve is contained in Sect. 9.) Thus no
model based on phantom Gaussian chains will match
the data if we retain the assumption of .50
crosslinks.

In figure 15 we have plotted a series of theoretical
curves for the P.J.A. model corresponding to differ-
ent numbers of subchains on the labelled chain. The
mean subchain length So is held constant, hence the
curves correspond to different total chain lengths
with the same crosslink density. The N, values
chosen are 24, 18, 12 and 6, together with a curve for
the unstrained network with NS = 6. The wave
vector scale is measured in dimensionless units

q = k fto (see Sect. 7). We view So as a scale factor
to be determined by sliding the experimental data
(in A-1) to best fit into the series of curves.

Fig. 15. - Fit of scattering data for a deswollen gel to the
P.J.A. model. * Molecular weight of labelled path
M, = 2.5 x 106; 0 M,, = 8 x 105. The data has been

scaled horizontally until it best fits into the series of

theoretical curves. The theoretical curves are for A = 4.6
and NS = 24, 18, 12, 6 and an unstrained curve for

N, = 6. The data appear to correspond to N, = 15-16
(long path) and Ng = 6 (short path). Implications of this
for the apparent mesh molecular weight are discussed in
the text. (Data taken from Bastide J., Herz J. and Boue F.
J. Phys. (1985) [30]).
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Figure 15 shows that a good fit may be obtained by
setting So = 100 A. The low molecular weight
path (M, = 8 x 105) matches the N, = 6 curve and
the high molecular weight path (M, = 2.5 x 106)
corresponds to N, = 15-16. We note that the ratio of
the two Mw values and the two N, values are

approximately equal, which must be true if the
crosslink density is the same in both cases. A more
exact correspondance of these ratios cannot be

expected since the labelled chains had a considerable
degree of polydispersity (see Tab. I in Ref. [30]).

Although the fit appears good and the Ns values
of the two sets of data are relatively consistent
between themselves it must be noted that they are
inconsistent with the original estimates of Bastide
et al. Measurements of the network modulus lead to
an estimate of the number of crosslinks, and hence
to the average subchain (or mesh) molecular weight.
Mesh molecular weights in the range 20.000-50.000
were estimated, depending on the elasticity theory
used. This corresponds to a range of 50-125 meshes
on the Mw = 2.5 x 106 chains. If N, = 16 then the
mesh molecular weight is 150.000. The average mesh
end to end distance was estimated as 125 A, whereas
the current fitting parameter yields the value

(3 So )lr2 - 170 A.
A similar fitting procedure to the replica model

(Fig. 16) yields a best fit at ,ISO == 77 A. The

theoretical curves are for NS = 32, 24, 16 and 8. The
replica curves converge relatively rapidly to the limit
q 2 S (q ) = 1, and it can be seen that no rescaling of
the data will produce a fit as good as figure 15. We
therefore conclude that, if these values of N, are to
be believed, the experimental gels are behaving
more like junction affine networks than phantom
networks.

Fitting of the uniaxial extension data has proved
rather less successful. In reference [32] it is shown
that both the perpendicular and parallel data at

A = 1.46 can be matched to theoretical models, but
different models and different numbers of links are
used for the two directions. This is clearly unsatisfac-
tory. At A = 4.6 the agreement with theory is even
worse as is indicated by figure 1 of reference [32].
We have been unable to find any model which

provides a good fit to both the perpendicular and
parallel scattering data consistently, even if a re-

duced NS value is postulated.
We do not present the graphs of the fitting process

for this data due to their inconclusive nature.

However we do note that the A = 1.46 data is at

least roughly matched by the theories and suggests a
relatively large NS (= 50), and that the A = 4.6 data
differs much more from the theories, and if anything,
would suggest a much lower value of N,, as is

observed in the deswollen gel data, which is also

equivalent to A = 4.6. We therefore conclude that

simple Gaussian network treatments are not suf-

ficient to explain these results entirely, and that
problems with the theories are particularly apparent
at large deformations. We suggest several possible
causes for this below.
At large q it is possible to obtain approximations

to the scattering functions as series in 1 /q2. This has
been done for all the models as it provides a useful
check on the numerical integration routines. For the
replica model the expansion is :

for q in the parallel direction, and the A 2 is replaced
by 1 /A for q in the perpendicular direction. Hence
in the parallel direction the coefficient of 1 /q2 is

large and negative, whereas in the perpendicular
direction it is small and positive. The perpendicular
curve should therefore converge to the limit more

rapidly than the parallel curve. This effect occurs in
all the models, as is seen by comparing figures 13
and 14. The experimental data is anomalous not only
in that it converges very slowly at large q, but also in
that it appears to converge more rapidly in the

parallel than the perpendicular direction. The scat-
tered intensity at high q is thus higher than predicted
in both directions. It is difficult to think of any effect
that would explain this. The apparent shape of the
curves is very dependent on the limit value of

q 2 S (q ) for large q estimated in the experiment. We
note that this normalization of the data is rather
difficult to do accurately since the data never really
reach the limit in the accessible q range.
We have evaluated the iso-intensity contours for

the P.J.A. and the replica models with N, = 50 and
A = 4.6. Figure 17 shows that the replica contours
are very rounded and that the P.J.A. contours are

Fig. 16. - Best fit of the same data to the replica model
(C = 1 ). The scaling factor used is different (see text).
The theoretical curves are for A = 4.6 and N, = 32, 24,
16, 8 and an unstrained curve for lVs = 8. The data do not
fit so well into this series of curves.
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Fig. 17. - Iso-intensity contours for a uniaxially extended
network with A = 4.6 and NS = 50. The direction of strain
is vertical. Left - replica model (C =1 ), Right - P.J.A.
The inner contour is 10 % of the central intensity and each
subsequent contour is reduced in intensity by a factor of
1.6. The range of q is I q perp I -- 5 and I q para I -- 5. The

angular junction affine contours compare more favourably
with the lozenge-like experimental contours (Fig. 18).

Fig. 18. - Iso-intensity contours for uniaxially extended
polystyrene network at A = 4.6. Left - short relaxation
time, Right - long relaxation time. Only the right hand
side is intended for comparison to figure 17. (Reproduced
from Bastide J. and Boue F. Physica (1986) [32]).

rather more angular. The contours obtained in

experiment [32], [33] (see Fig. 18) show the surpris-
ing feature of being lozenge-like in shape at large A.
The left hand side of figure 18 shows scattering from
the sample when quenched below its glass transition
temperature only a short time (30 secs) after apply-
ing the strain. The right hand side shows scattering
after a long relaxation time (30 mins). Relaxation
effects are beyond the scope of this paper. The

phantom network results should apply more accu-
rately to the fully relaxed sample, and therefore only
the right hand side of figure 18 is intended for

comparison to figure 17. Whilst the P.J.A. contours
are not exactly lozenges they are much closer to the

observed shape than the rounded replica contours.
Thus the iso-intensity contours agree qualitatively
with the deswollen gel data that the networks are
behaving more like a junction affine network than a
fully fluctuating phantom network.
There are several points concerning the derivation

of the scattering functions which should be borne in
mind. In the P.J.A. model the number of subchains

N, is fixed and each subchain has a range of lengths,
therefore the total chain length will vary. In reality
the total length of chain is fixed and NS varies. The
problem evidently does not arise in the monodisperse
models, and also not in the replica model, since the
length is fixed. The P.P.N. model is a compromise
between the two situations, and is slightly unsatisfac-
tory in this respect. Thus the models differ in the

way they treat the finite length of chain. The most
obvious effect of this is seen at small q. The replica
function at q = 0 gives Srep = N,14. Other models
differ from this by 1 part in NS. The discrepancy is
essentially an end effect. It has the same status as the
unstrained dangling ends of the chain which we have
already chosen to neglect. It is thus unimportant for
large N,, but may become important at small

N, values -- 10. In the experiments, however, the
original chains were far from being exactly monodis-
perse, and the two effects are likely to cancel out to a
large extent.

It is somewhat difficult to assess whether an exact

treatment of the P.P.N. case would differ more from

the replica model than does the present approxi-
mation. Figure 19 sheds some light on this matter.
Curve a shows the contribution from scattering
centres on the same subchain only (equivalent to the

Fig. 19. - The contribution of the different terms in the
P.P.N. model to the total scattering. a) scattering centres
on the same subchain only ; b) scattering centers on the
same and neighbouring subchains ; c) scattering centers on
the same, neighbouring, and next-neighbour subchains.
See figure 12 ; d) final approximation to total scattering.
For high q the total scattering consists almost entirely of
the three short distance terms. At small q the long distance
terms are important.
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end-linked case). Curve b shows the contributions
from the same and neighbouring subchains, and
curve c includes the next neighbours in addition.
These cases are shown as circuit diagrams in fig-
ure 12. In the notation of section 9 curve c has the

scattering function

Curve d is the final approximation for the total
scattering from the P.P.N. model. It can be seen that
for q &#x3E; 3 the total scattering is represented almost
entirely by these three short distance terms. How-
ever for the peak at q -- 1 the majority of the
scattering comes from the long distance terms for
which only the approximation of (9.18) is available.
The peak height is thus rather uncertain, although in
this region it is bounded closely below by the lower
limit curve, and it is also bounded above by the
P.J.A. The true P.P.N. curve does not therefore
have the slow convergence at large q seen in the
junction affine models, and if the peak region is to
differ substantially from the approximation then it
must be towards a higher, sharper peak shape,
rather than a lower, broader one. Hence an exact
P.P.N. calculation will not resolve the problems
discussed above.
The order of the curves in figures 13 and 14 is

slightly different from the reverse order which might
be expected : the P.P.N. is above the replica curve in
both directions. In fact at q &#x3E; 5 the P.P.N. curve in

the parallel direction crosses below the replica, and
indeed the 1 /q2 expansions show that at sufficiently
high q the order in the two figures must be strictly
reversed.
The current work clearly shows that the introduc-

tion of polydispersity into the calculation of the

scattering function has a marked effect. Although
the P.J.A. model has some success in matching the
deswollen gel data, and in predicting the angular
shape of the iso-intensity contours, it is clear that the
introduction of polydispersity alone is not sufficient
to explain all the anomalous features of the data.
Some treatment which goes beyond the idea of

phantom Gaussian chains is required, since this will
then not be constrained by the limiting curves

calculated above.

Vilgis and Boue [28] have considered various

possibilities. The theory of Flory and Erman [29]
considers the major effect of topological entangle-
ments in the network to be a restriction of the degree
of fluctuation of the junction points. The form factor
was calculated in accordance with this theory for an
end linked network only in reference [28]. Since the
model is intermediate between the fully fluctuating

phantom network and the junction affine network
the scattering function will lie between these bounds,
and is therefore not expected to provide a signifi-
cantly better fit to the data. Ball et al. [34] have
modelled the effect of entanglements by « slip
links ». They find that the entanglements have the
largest effect at small deformations. The material
behaves as though the effective number of crosslinks
decreases when it is stretched. This does indeed

appear to be the case from the data of reference [32].
Vilgis and Boue have calculated the scattering
function for the slip link model, but again only for an
end-linked network. It would therefore be of interest
to extend this treatment to a labelled chain with

many crosslinks.

Bastide, Herz and Boue [30] are of the opinion
that the number of network defects such as pendant
chains etc. is small in the gels which they use for
experiment. However, computer simulations of the
radiative crosslinking process by Sly and Eichinger
[35] suggest that the presence of pendant chains, the
formation of short wasted loops, and the scission of
chains are all important factors. The scattering of a
network which contains a large fraction of unstrained
chains due to this type of defect would obviously be
expected to be much closer to the unstrained net-
work scattering. The consequent reduction in per-
pendicular scattering might be expected to be larger
in long distance, small q terms, and this is the region
where the current theories predict too great a

scattered intensity. This is therefore another possible
avenue for further investigation.
We wish to stress the importance of the high q

region of the data (q = 3 - 5 ). Here the scattering
predicted by any one model is essentially indepen-
dent of Ns (see Figs. 15, 16), and yet in this same
region the models do differ substantially between
themselves. Thus accurate data in this region would
enable a distinction to be made between the models
without needing to consider the value of Ns, which is
not a very well known parameter. It is unfortunate

that the signal to noise ratio in the experiment in this
region is quite high, as is acknowledged in reference
[30] .

Conclusions.

We have shown that it is possible to use the analogy
between resistor networks and systems of Gaussian
chains to calculate the behaviour of polydisperse
polymer networks. The modulus and the stress

optical coefficient of a network are found to be

formally independent of the distribution of chain

lengths within the network. When a bimodal network
is strained the chains are found to deform in such a

way that the short chains are much less extended
than the long ones relative to their initial root mean
square length, and yet are much more extended than
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the long ones relative to their maximum length. The
consequence of this is that the orientation of the

chains, as measured by the Legendre polynomials
P2 and P4, is much greater for the short chains than
the long ones. The difference in response is quite
large even for relatively small length ratios and

should be easily experimentally observable.

The scattering function for polydisperse networks
(in which the crosslinks are randomly positioned
along a long labelled chain) is found to differ

substantially from that for monodisperse networks
(in which the crosslinks are regularly spaced along
the chain). It is possible to fit the data for deswollen
polystyrene gels quite well to the predictions of the
Polydisperse Junction Affine model, if we assume a
substantially reduced crosslink density from that

originally estimated. Consideration of the shape of
the iso-intensity contours for uniaxially extended
gels also implies that these materials are behaving
more like a junction affine network than a fully
fluctuating phantom network. However there remain
substantial differences between the measured inten-

sity in the uniaxially extended systems and that

predicted by any of the models considered. It has
been shown by the calculation of limits on the form
of the scattering function that these differences are
unlikely to be explained by any treatment which
does not go beyond the idea of phantom Gaussian
chains.

Appendix A.

We wish to show that (seff / S) = 2/ cf&#x3E; for all S

distributions. From the circuit diagrams in section 2
we have

and so

But

Therefore

since all the Si and Xi are independent. Hence,

Appendix B.

We wish to solve (2.9) in the case where f (S) has a
narrow spread about its mean So.
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Thus

Squaring this equation and taking expectation values
gives (using the independence of all the variables
si and xi),

The self-consistency relation can be written approxi-
mately as :

where for convenience the same symbols g and f are
used for the probability distributions with respect to
the new variables. This can be solved by taking
Fourier transforms.

from (B.2)

We illustrate the method using the narrow bimodal
distribution of (2.20) :

with 0 = 3, (B.5) becomes :

The function F * (k ) can easily be obtained from
f (s ), and we may use an approximation for G which
is valid for the small argument k/16 :

hence

To get back to g (X) we need to shift the function
along by Xo. An estimate of Xo is obtained by
averaging equation (B.1) over all the si and

x; distributions.

The zero order approximation is

otherwise, rearranging, we obtain :

and it is sufficient to put the Xo on the right of the
equation equal to Xmono or Xm. Similarly we may
expand the equation :

- I - 

to obtain

Hence XM is always less than Xo.
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