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Structural transitions in ultrathin binary mixture films : an interplay
between finite size and surface effects

Jean-Pierre Desideri and Didier Sornette

Laboratoire de Physique de la Matière condensée, CNRS UA 190, Faculté des Sciences, Parc Valrose,
06034 Nice Cedex, France

(Reçu le 6 janvier 1988, accepté le 29 mars 1988)

Résumé. 2014 Nous proposons un modèle pour les transitions homogène-stratifié observées dans les films de
mélange d’3He-4He utilisant la technique du troisième son. On présente un développement de type Landau-
Ginzburg contenant la contribution des interactions atomes-atomes et celle de l’ordre superfluide ainsi que des
termes de surface et d’interface avec en plus la condition de conservation des espèces 3He et 4He. Les résultats
obtenus suggèrent des images précises de la structure des films déduites de l’analyse des expériences et
soulignent le rôle de la compétition entre les termes de volume, de surface et d’interface dans ce régime
d’épaisseurs comprises entre 3 et 20 couches atomiques. Le comportement de ces films apparaît ainsi
intermédiaire entre bi- et tri-dimensionnel et est caractéristique d’effets de taille finie.

Abstract. 2014 We propose a simple model for the homogeneous-stratified transitions observed in 3He-4He binary
mixture films using the third sound technique. A continuous Landau-Ginzburg model with a bulk term
containing both atom-atom and superfluid contributions plus surface and interface terms with in addition the
constraint of conservation of helium 3 and helium 4 is presented and its predictions compared to experiments.
Our results suggest precise pictures for the different film structures deduced from the analysis of experiments
and stress the intricate interplay between bulk, surface and interface energies as occurs in this range of
thicknesses (3 atomic layers ~ d ~ 20 atomic layers). The behaviour of these films appears to be intermediate
between two and three dimensional and points at the importance of finite size effects.
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1. Introduction.

3He- 4He mixtures constitute ideal paradigms for

studying the challenging physics of binary systems in
the presence of surfaces (leading to wetting [1] and
surface transitions [2]...), in restricted geometries
(leading to capillary condensation [3]...) and in low
dimensions. The phase diagram of bulk 3He- 4He
mixtures is well documented as is the study of
various surface transitions (wetting and superficial
superfluid transitions [4]...) occurring when the bulk
phase is in contact with a wall. Also, quasi-two
dimensional films a few atomic layers thick exhibit a
vortex-mediated superfluid transition [5] in agree-
ment with the Kosterlitz-Thouless scenario [6].
On the other hand, much less is known about the

cross-over between two- to three-dimensional be-
haviour with respect to the superfluid order, to the
3He and 4He concentration order and in the presence
of a superfluid-concentration coupling. 3He- 4He
films are probably the best systems for studying

these problems and a wealth of experiments have
been concerned with them. The structure of thin
films as a function of thickness, concentration and
temperature is not yet known precisely : in particular
the existence and the nature of phase separations in
mixture films are still a debated question. From the
complexity and richness of experimental results, we
can distinguish between several regimes depending
on the values of the 3He and 4He thicknesses

d3 and d4 and the temperature :

1) for very dilute mixture films d3  0.2 a.l.

(a.l. = atomic layers), heat capacity measurements
[7] suggest the existence of a lateral phase separation
occurring at the surface of the film. The states of the
3He atoms should be controlled by the discrete
Andreev levels [8] which merge into a continuum as
d4 goes to infinity. Also, third sound velocity
measurements can be affected by the 3He impurities
which could be trapped in Kosterlitz-Thouless vor-
tices [9] ;
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2) for very small d4 (d4  2-2.5 a.l. ), a dead solid
helium layer (= 1 a.l. thick) in contact with the

substrate, which is created by the strong Van der
Waals attraction, contains a significant proportion of
the total 4 He of the film : new mechanisms such as
4He H 3He exchanges in the solid layer could be at
work and explain the survival of superfluidity at such
low thicknesses [10] ;

3) for mixture films with d3 &#x3E; 1 and d4 still of the
order of a few atomic layers such that superfluidity
cannot exist if the film is in a homogeneous state, a
layered phase separation has been observed [5]. This
is reminiscent of the superficial superfluid transition
[4] occurring when a bulk 4He-3He mixture just
oustide the region of phase separation is in contact
with a wall (see below) ;

4) in the intermediate regime (d3 ~ 1-5 a.l., d4
2-6 a.l. ), a very rich phenomenology has been re-
ported [11-14]. For 4He coverage equal to 5.7 a.l.,
mixture films exhibit a nearly complete layered
phase separation [13]. More precise studies [12] have
explored the film structures as d3 and d4 are varied :
a continuous but rather steep crossover from a

homogeneous to an apparently stratified state has
been observed as d4 increases from 3 to 6 a.l. (see
Fig. 4). Note however that these third sound exper-
iments were analysed assuming that the superfluid
and the normal phases are respectively pure 4He and
pure 3He in the layered state, a hypothesis which is
not sustained by measurements of the direct

superfluid mass Us per unit area obtained by torsion-
al oscillator techniques [5]. In particular, the strong
temperature dependence of Us led McQueeney et al.
to the conclusion that the two phases in the layered
film structure are not just pure 4He and pure
3He.

In this work, we study the fourth regime theoreti-
cally and argue that the corresponding experimental
results can be rationalized within a simple model of
the film structure embodying the different competing
contributions of the bulk (atom-atom plus superfluid
order), surface and interface energies. We suggest
that regimes (3) and (4) belong to the general class
of surface or wetting regimes in the presence of finite
size effects [15] and present a model for the different
homogeneous-stratified transitions observed in
3He- 4He binary mixture films. In the spirit of surface
or wetting phase transitions of binary mixtures in the
presence of a wall, we use a continuous Landau-
Ginzburg expansion capturing the contributions of
the bulk free energy of the binary mixture and of
both the surface and interface energies with the
constraint of conservation of 3 He and 4He in the
film. Continuous 3He concentration profiles as a

function of the distance from the substrate are

obtained which exemplify the complex 4He-3He
mixed structure in the films. By comparison with

third sound experiments, our results suggest that the
structural transitions reflect the intricate interplay
between bulk, surface and interface energies that
occurs in this range of thicknesses (3  d  20 )
intermediate between true two and three dimension-
al behaviour. In other words, the behaviour of the
mixture film structure belongs to the class of finite
size effects and, in the corresponding thickness

range, exhibits non-universal features.
In paragraph 2, we develop the Landau-Ginzburg

model, expose in paragraph 3 the results of the
numerical solutions of the mean field equations and
compare them to experiments. Paragraph 4 con-

cludes by pointing out the limitations of the present
approach and discusses its connection with a previous
proposed model presented in [12J. The appendix
gives a new derivation of the third sound velocity in
inhomogeneous superfluid films.

2. The Landau-Ginzburg model.

2.1 INGREDIENTS. - Our main idea is that, suffi-

ciently far from the tricritical point, a mixture film is
essentially a two-phase system in a restricted (ultra-
thin slab) geometry [16]. This implies that the film
structure should result from the competition between
1) a bulk free energy describing the bulk 3He-4He
interactions, entropy and superfluid order leading to
bulk phase separation, 2) the surface (substrate and
liquid-gas) energy contributions and 3) the energy
cost for creating spatial variations of the 4He-3He
concentrations and superfluid order parameter along
the direction perpendicular to the film. These are
the ingredients of the well-studied wetting [1] or
surface transitions [2] in usual binary mixtures, of
the proximity effects in supraconductors [17] and of
the healing length origin [18] for a superfluid in the
presence of an interface. In films, however, the

problem is more involved and exhibits specific
features due to the extreme thinness of the film

(leading to true two-dimensional or to finite size

corrections to three dimensional behaviour, depend-
ing on the thickness of the film), the asymmetry
between the two surfaces. (substrate-liquid and

liquid-gaz interfaces), the coupling between the

concentration and the superfluid order parameters
and the resulting bulk tricritical behaviour.

2.2 ORDER PARAMETERS. - Let us denote X3 the
mean 3He film concentration, X(z ) the 3He concen-
tration at distance z from the substrate (0 -- z -- d,
where d is the total film thickness counted in atomic

layers (a.l.)) and T = A eicp the superfluid order
parameter at z. We define the coarse-grained space
dependent concentration order parameter 0 (z ) by

03A6 = 0 corresponds to a strictly homogeneous film.
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The superfluid order is less easy to take into
account. For two-dimensional films, the amplitude
A whose square gives the bare superfluid density is
usually taken as constant (except at the core of the
vortices) and the phase cp is related to the superfluid
velocity : its non-single-valuedness corresponds to
the presence of topological defects, the vortices. At
small scales (typically of the order of the bulk

superfluid correlation length 03BEs), A may vary notably
and for example it vanishes at the core of the
vortices over the scale 03BEs. This small-scale physics
can be described within a Ginzburg-Pitaevsky expan-
sion in terms of A, from which the value of the
energy needed to create a neutral vortex pair can be
estimated [19]. However, at large scales, the intricate
renormalized interactions between vortices are at

the basis of the defects-mediated Kosterlitz-Thou-
less 2D superfluid transition. Within this scenario, it
is an open problem to describe the influence of the
film structure on the superfluid order. Since we are
concerned with thin films of thicknesses 3 a.l. 
d  20 a.l. typically, one may decouple the small
scale physics in the z-direction from the large scale in
plane two-dimensional physics. This is an approxi-
mation but it is reasonable and leads to a simple
treatment as we see below. We therefore follow

Ginzburg and Pitaevskii [18] and use an expansion of
the wave function T of the superfluid helium. This
treatment does not claim to be describing the

macroscopic superfluid state of the film but aims at
estimating the superfluid contribution to the film
free energy which conditions its structure.

2.3 THE HAMILTONIAN. - The Landau-Ginzburg
free energy reads :

with

G ( 03A6, 1/’) is the bulk free energy density. The term
(1/2) ij(d4S /dz)2 accounts for the energy cost of
non-uniform 3He concentrations stemming from a
disruption of the local order of the helium fluid.
Cc sets the typical scale for the bulk concentration
correlation length (with G (0, q, ) = a (T) 02, in
mean field the bulk concentration correlation length
scales as e[a(T)]-1/2). It is at the origin of the
existence of interfaces between two phases whose
surface tension and width are completely determined
from Cc. The terms G s ( Ø) take into account the
coupling between the surfaces and the concentration
order parameter defined in equation (1). The term

proportional to 1 V 1/1’ 12 is the usual expansion of the
thermodynamic superfluid potential. It is at the

origin of the proximity effects in superconductors
[17] and of the healing length origin [18] for

superfluids in contact with an interface and it allows
one to compute the core energy of vortices. The
third term y 0 . I T 12 describes the coupling be-
tween concentration and superfluid orders (see
[20]).

2.4 REDUCTION TO A SINGLE ORDER PARAMETER.

The film structure should be obtained from the
full calculation of the free energy which depends on
the two coupled fields 0 and T in the presence of
suitable boundary conditions for the superfluid order
parameter. Due to the Kosterlitz-Thouless nature of
the superfluid order and because of the existence of
an additional constraint of conservation of helium

(see below), this program cannot be pursued without
drastic simplifications.

It is well known that superfluidity couples strongly
with concentration ordering, resulting for example
in a critical temperature for the bulk 4He- 3He
mixture at Tc = 0.87 K much higher than the value
in the absence of coupling Tc - 0. 1 K estimated
from the typical He-He interaction strength [21]. In
the limit of strong coupling between superfluidity
and 4He concentration, we have

which allows one to replace the two field problem by
a single order parameter 0. Equation (3) is not

strictly correct everywhere in the film due to the
different influences of a substrate on 0 and T (see
[20]) but is a reasonable starting point. By its very
nature, equation (3) is unable to describe the layered
asymptotic model where a pure 3He layer lies on top
of a pure 4He layer in contact with the substrate.
This is the main limitation of our present approach
which could be cured by considering 0 and 1Jf as two
independent order parameters. In the following, we
assume equation (3) to be valid ; this therefore limits
our analysis to an intermediate concentration range
(see below).
Far away from the tricritical point where the

superfluid correlation length 03BE s is small, expression
(3) can also be viewed as a kind of adiabatic

approximation where the superfluid order parameter
follows the concentration order parameter adiabati-
cally. This amounts to having a2W/aZ2 = 0 in the
Euler-Lagrange equation which yields 1Jf (z) =
1Jf ( ø (z ». The problem is then posed uniquely in
terms of 45. This simplification should retain the
main qualitative features of the problem.

2.5 EXPLICIT EXPRESSION OF THE DIFFERENT CON-
TRIBUTIONS. - We choose G(4), 1 T 12) = G (4S )
as the bulk energy density which describes the bulk
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phase diagram of ’He-’He mixtures : at temperatures
lower than 2.17 K and for 3He molar concentrations
inside the bulk coexistence diagram, bulk mixtures
split into two phases, one which is superfluid with a
3He concentration XS (T ), and the other, a classical
liquid with the 3He concentration XN(T). Setting

and

scaling arguments [22] suggest the following ex-

pression for G(03A6), which must display a minimum
for P = $ sand P = P N :

G(O) = a(qb _ OS)2 (o _ ON )2 (5)

where a = a (T) is a slowly varying function of the
temperature. We have verified that our main results
are not sensitive to the specific form of (5) provided
it describes the essential features of the bulk

4He-3He phase diagram (i.e. the phase separation).
For the surface contribution G, (0 ), we choose

Expression (6) embodies the influence of the Van
der Waals interactions between the liquid and the
substrate with preferential attraction of 4He onto the
substrate due to its smaller effective size created by
zero point motion [23]. With hs &#x3E; 0, this energy is
lowered when 0 (0)  0, i.e. when the local 4 He
concentration becomes larger on the substrate than
in the bulk.

The scale of the surface field hs on the substrate at
z = 0 is roughly given by y 33 - y§% where y 33 is the
liquid-solid surface tension of bulk 3He. For the
liquid gas interface, we would have hsg = y3i -
y4194 which is much smaller than hs by the ratio of the
typical strength of the He-He Van der Waals interac-
tion (= 3 K) to the He-substrate Van der Waals
interaction (= 30-50 K). This justifies our choice of a
liquid-gas surface field hlg::- 0 and leads to equation
(7). We have verified that the results are not

qualitatively changed by adding a surface field at
z = d (which favors 3He due to its larger atomic size
leading to a smaller liquid-gas surface tension). Note
that the most general expression for G,(03A6) should
contain an additional term of the form (1/2) (p s 2
which describes the disordering effect of the presence
of a wall bound to suppress all He-He interactions

between the film atoms and a hypothetical half

infinite space filled with helium taking the place of
the substrate. For this preliminary study, we drop
this term for the sake of simplicity. Lipowsky and
Kroll [24] have demonstrated that the two formu-
lations of surface phase transitions in terms of either

the surface film (6) or the disordering term (1/2) 02
are equivalent. h, is taken equal to 1 in dimensionless
units. The results presented below are not qualitat-
ively changed by another reasonable value of

hs (hs = 0.5-2 ).
Equation (3) implies a renormalization of the

stiffness C2 of the 1 V 03A6 12 term coming from the
IVW 12 term. The typical deformation energy of the
concentration order parameter is

(1/2) kB T§j [ V@ [ 2 which is related to a typical free
energy per helium atom of the order kB T. The
typical superfluid free energy per atom is of order
[19] (1/2) Es 621 VV, 12/po where Es
(27T)-1 (h2/m*2) Po and Po= JA 12 is the bare

superfluid density. From the value of the universal
superfluid jump Ps/T = 4 7TkB m*2/h2 [6, 19], we
estimate Es = kB T(po/Ps) which is larger than

kB T. The gradient term is therefore of the form

(1/2 ) kB TC21 Vo 12 with 6 given by

Therefore, the concentration order parameter stiff-
ness is controlled both by the atom-atom interaction
and by the superfluid order. Expression (8) suggests
that the superfluid contribution to this stiffness is not
at all negligible but in fact brings in the dominant
contribution.

In the following, all distances will be expressed in
units of this characteristic length 6 which we estimate
to be in the range 0.5-2 a.l. In the following, we take
§ = 1 a.l. Another choice rescales all lengths accord-
ingly.

2.6 GLOBAL CONSERVATION. - The films are usu-

ally in equilibrium with a gas in a finite box. At
T = 1.1 K and for a pressure p = 10 mm Hg (for
X = 0.6) corresponding to the bulk liquid-gas equili-
brium at this temperature, the ideal gas law yields a
quantity of helium in the gas corresponding to less
than 0.1 a.l. in the film [25]. This gives an upper-
bound for the amount of helium in the gas since

typical experiments are carried on at lower tempera-
tures and lower gas pressures.

Therefore, we may consider the films as closed

systems and expression (2) must be supplemented by
the condition of global conservation of the species.
This is done via the introduction of a Lagrange
parameter which can alternatively be seen as a bulk
field A competing with the surface field hs. This

additional field introduces a complication in the

treatment and one has to resort to numerical compu-
tation to solve the Euler-Lagrange equations result-
ing from the extremalization of equation (2). This
constraint is expressed mathematically by :
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It changes the physics of the problem since it
amounts to imposing a variable field. The corre-

sponding problem of a thin fluid film without the
constraint (9) i.e. in contact with a reservoir has
been treated in [26]. In this case, one still predicts
abrupt phase separations but displaced from the
bulk transition towards lower temperatures at fixed
concentration or inside the bulk phase separation
diagram at fixed temperature with a displacement
proportional to 1/d which is characteristic of surface
effects in the large d limit. Furthermore, below a
critical thickness, it is predicted that no phase
separation occurs anymore [26]. In our case, with
(9), we will obtain features resembling these results
but rounded out by the presence of the variable bulk
field A.

2.7 EULER-LAGRANGE EQUATIONS. - One has
d

now to extremalize S: dz[f {cl&#x3E; (z)} - À cl&#x3E; (z)]. We0
obtain the Euler-Lagrange equations

with the invariant integral

from equation (11). Setting

and searching for increasing 3He concentration pro-
files as a function of z, we get from (12)

and the system of two integral equations for

03A6(0) and 0 (d) :

Equations (15) and (16) hold as long as the

3He boundary concentration on the substrate obeys
03A6 (0) -- 0. This is verified for weak surface fields

h,. For strong surface fields, one has to look for
solutions in a larger class of profiles which can
display discontinuities in the first derivative : in the
resolution, as soon as X(z )  0, we project the
concentration profile on the value X = 0, corre-

sponding to the existence of pure 4He phase on the
substrate. Equation (16) expresses the conservation
of 3He atoms.

Equations (10) and (12) yield the additional

algebraic equation

The three equations (15-17) must be solved for the
three unknown parameters À, P (0) and P (d). The
resolution is carried on a computer with a grid
optimization method [27]. The integrals are trans-
formed into combinations of elliptic integrals of the
first and third kinds which are calculated by series
expansions [28]. Solving equations (15) and (16)
yields 0 (0) and 0 (d ) from which 0 (z ) is calculated
via equation (12). Then, relevant physical quantities
such as the thermodynamic potential A can be

calculated.

3. Results.

The results of our numerical study of equations (15-
17) for various mean 3He concentrations and tem-
peratures are summarized in figures 1-4. Note the
following points :

1) the films are never completely homogeneous
or stratified but present instead intermediate concen-
tration profiles as shown in figures 1 and 2. Very thin
films display a very steep concentration profile due
to the effect of the surface field which selects the
4He on the substrate. For these very thin films, the
bulk energy density G ( p) plays almost no role and
the corresponding profiles result from the competi-
tion between the gradient and the surface energies.
For increasing thicknesses, the profiles first be-

come smooth (quasi-homogeneous regime) but they

Fig. 1. - Evolution of the concentration profile as a

function of the direction z perpendicular to the film for
several total thicknesses d at fixed 3He concentration
depicted by the dotted-dashed line. d and z are given in
units of the characteristic length 6 introduced in paragraph
2.5. Typically, 6 - 1 a.l. The dashed lines indicate the
values XS (T ) and XN (T ) of the bulk superfluid and normal
phases.
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Fig. 2. - Evolution of the concentration profile 4&#x3E; (z) at
fixed total thickness dl6 = 10, for different mean 3 He
concentrations from X = 0.32 to 0.64. The same conven-
tion as in figure 1 is used. Figure 2 shows that a small
variation of the mean concentration leading to a very small
change in bulk values XS (T ) and XN (T ) results in a drastic
evolution of the concentration profile. The structure

changes from almost homogeneous for Xo = 0.32 to

clearly stratified for Xo &#x3E; 0.42.

sharpen again at higher thicknesses, appearing as
stratified with a 4He-3He interface width of the order
of §. This behaviour is shifted towards larger
thicknesses as the surface field is made larger.
Figure 2 shows that a small variation of the mean
concentration leading to a very small change in bulk
values Xs (T ) and XN (T ) results in a drastic evolution
of the concentration profile. It changes from almost
homogeneous for Xo = 0.32 to clearly stratified for
Xo&#x3E; 0.42 ;

2) by extension from the bulk case, one can speak
of quasi-homogeneous films when 03A6 (0) = 03A6 (d)
and of quasi-stratified films when 0 (0) and 0 (d)
are very different. This distinction is quantified in
figure 3 which presents X(z = 0 ) and X(z = d ) as a
function of the 3He concentration Xo =

d3/ (d3 + d4), where d3 and d4 are the equivalent
3He and 4He thicknesses expressed in units of §, for
different values of the total film thickness

d=d3+d4.
In the limit d - + oo, one recovers the rigorously

stratified structure inside the bulk coexistence region
depicted in dotted-dashed lines forming the rectangle
in figure 3. In the bulk case, the state is homo-

geneous outside the rectangle (in this case 03A6 (0)  .
03A6 (d ) = 0 due to a surface effect : as the coexistence
curve is approached, a wetting layer of 4 He rich

phase grows and leads to complete wetting at the
coexistence point : see [29] for a discussion of this
point) ;

3) in the case of films of finite thickness d, the two
upper and lower curves settle the boundaries of the

finite size coexistence domain : within this domain,

Fig. 3. - Representation of the 3He concentration on the
substrate (lower curve) and on the liquid-gas interface
(upper curve) for different film thicknesses : d/03BE = 10
(continuous curve), d/03BE = 7 (large dashed curve),
d/03BE = 4 (small dashed curve). For each film thicknesses
d, the upper and lower curves settle the boundaries of the
finite size coexistence domain : inside this domain, the film
exhibits a stratified structure with 0 (0) .--c 0 (d) and
outside a quasi-homogeneous state with 0 (0) - 0 (d).
The larger rectangle corresponds to the bulk concentration
values : the domain of coexistence denoted by the lower
and upper curves at a finite thickness d should tend to the

large rectangle in the limit d --+ + 00.

the film exhibits a stratified structure and outside a
quasi-homogeneous state with 4&#x3E; (0) = 4&#x3E; (d). Even
for relatively large film thicknesses, important depar-
tures from the bulk case are observed : the domain
of quasi-coexistence decreases as d decreases and

disappears for d/03BE  4 (see Fig. 3) : this is reminis-
cent of the disappearance of the phase separation
transition in films in contact with a reservoir [26] i.e.
in the absence of a variable bulk field A. In our case,
true transitions no longer exist and the abrupt
changes are rounded out by the variable field A.
One would expect a transition shift AX3 which

scales as åX3 = d-1 and a transition width 8X3 which
scales as BX3 -. e- dl03BE in the limit d --&#x3E; + oo resulting
from finite size effects at first order phase transitions
[15, 26] : the AX3 ~- d-1 law reflects the d-1 relative
weight of the surface terms compared to the volume
term [26] and the dX3 = e- d/f reflects the exponen-
tial relaxation of the concentration profile in the
Landau-Ginzburg model [30, 31] with the constraint
of conservation of the helium. We have been unable
to verify these asymptotic laws numerically due to
numerical instabilities and prohibitive computation
time for d/03BE 15-20. Anyway, this shows that the
range d 10 03BE is outside the asymptotic regime and
is characterized by non-universal behaviours ;

4) we now compare the prediction of our model
for the third sound velocity with experimental re-
sults. The third sound velocity scales as [32, 33] (see
the appendix)

Here, we make the simplifying assumption that the
superfluid areal density u s is proportional to
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d4 and neglect the variation of the superfluid density
due to 3He_4 He interactions. Expression (18) is valid
for a homogeneous film. In the appendix, we
develop a potential hydrodynamic approach which
confirms the validity of (18) for arbitrary concen-
tration profiles.

Usually, ii essentially contains the contribution of
the Van der Waals substrate potential which scales
as JLvdw = Ød- 3 where ø = 30-50 K [12]. Note that a
consistent treatment should incorporate JLVdW in the
free energy density (2). However, this leads to a
much more involved analysis since the Euler-La-

grange equations are no more autonomous and no
invariant integral is then available. Also, the ex-
pected corrections on the concentration profiles are
small (see discussion of Ref. [29]). We therefore
take the view that gvdw has two distinct effects :
1) a bulk-field applied on the concentration profile
(which we neglect in this respect except at z = 0 with
hs) and 2) a stiffness field acting on the upper
interface and which we take explicitly into account
for the third sound velocity.

In addition to tt vdw, our model shows that another

thermodynamic potential A appears and creates a
restoring force in the third sound velocity. It stems
from a thermodynamic stiffness of the film concen-
tration profile. This second term is just A = aF/aO
and, from equation (17), it reads

Therefore, the total restoring force controlling the
third sound velocity is

The additivity is of course an approximation but is
justified by an estimation from a direct resolution of
the differential equation in the presence of the full
Van der Waals potentials [29]. The correction A to
the JLVdW is of the order of 20 % at d === 8 a.l. and
increases in relative weight as d increases in this
intermediate thickness range 3 , d ,10. This does
not mean that A has a longer range than the
d- 3 Van der Waals potential but only that in a

narrow range of thicknesses, an exponential depen-
dence À === e- d/f can dominate.
The third sound velocity computed from equations

(18) and (20) is represented in figure 4a in compari-
son with experimental results already published in
[12]. For the sake of comparison, we have taken
§ = 1 a.l. , 6 = 50 K and a = 2 K (the same curve is
obtained with 0 = 25 K and a = 1 K). Note the

excellent agreement which is not very sensitive to
the values of the parameters : changing a (T) from
1 K to 2 K with 0 = 50 K does not shift the dotted
line by more than 10 % of the difference between the
continuous and dashed curves. The continuous line

Fig. 4. - The third sound velocity computed from
equations (18) and (20) is represented in figure 4a (dotted
line) along with experimental results (triangles) already
published in [12]. For the sake of comparison, we have
taken § = 1 a.l. The continuous line is the prediction of
the Guyer-Miller hydrodynamic model in a rigorously
stratified film and the dashed line is the prediction for a
perfectly homogeneous film. The apparent continuous
transition from the dashed curve to the continuous curve
has led the authors of [12] to suggest that the film was
undergoing a homogeneous-stratified transition. In

figure 4b, we represent the corresponding variation of the
-3 He concentration on the substrate (lower cur0e) and at
the liquid-gas interface (upper curve). Since the system
representation point is outside the finite size coexistence
domain shown in figure 3, the film structure is not

stratified. This suggests that in this case the evolution of
the third sound velocity is not associated with a qualitative
change of the structure of the film from homogeneous to
stratified.

is the prediction of the Guyer-Miller hydrodynamic
model [34] in a rigorously stratified film and the
dashed line is the prediction for a perfectly homo-
geneous film. The apparent continuous transition
from the dashed to the continuous curve has led the
authors of [12] to suggest that the film was undergo-
ing a homogeneous-stratified transition.
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In figure 4b, we represent the corresponding
variation of the 3He concentration on the substrate
(lower curve) and at the liquid-gas interface (upper
curve). Since the system representation point is
outside the finite size coexistence domain shown in
figure 3, the film structure is not stratified. This

suggests that the evolution of the third sound

velocity is not associated, in this case, with a

qualitative change of the structure of the film from
homogeneous to stratified. In fact, the third sound
probe appears to be extremely sensitive to the film
structure via the field A (see the appendix) and its
variations amplify the small changes in the concen-
tration profile. Figure 5 shows the same types of
results as in figure 4a but for d3 = 2 a.l. The agree-
ment with experimental results is less striking but the
trend is good ;

Fig. 5. - Similar results as in figure 4 but for d3 = 2 a.l.

5) recent experiments [35] have studied the evolu-
tion of the film structure upon addition of 3He at
constant d4 == 3 a.l. Measures of superfluidity onset
temperatures To indicate that as d3 increases,
To decreases asymptotically towards a constant value
which is just the onset superfluid temperature
measured by McQueeny et al. [5] for the same
amount of 4He but loaded with 12 a.l. of 3He. This
suggests that the mixture films are stratified for

d3 =:-- 4 and that addition of 3He beyond four atomic
layers does not affect the superfluid phase.
We have tested these results within our model:

figure 6 shows the computed variation of the

3He concentration on the substrate (lower curve)
and at the liquid-gas interface (upper curve) at

constant 4 He coverage and at increasing 3 He
thicknesses d3. Figure 6 clearly shows a smooth
transition from a homogeneous state (03A6 (d) -
03A6 (0)) to a stratified state where the substrate and
liquid-gas interface concentrations are very different,

Fig. 6. - Variation of the 3He concentration on the
substrate (lower curve) and at the liquid-gas interface

(upper curve) at constant 4He coverage and at increasing
3He thicknesses d3 computed within our model. It clearly
shows a smooth transition from a homogeneous
(03A6 (d) - 0 (0)) to a stratified state where the substrate
and liquid-gas interface concentrations are very different,
at a value d3 of roughly four atomic layers. The compu-
tation has been made with the same values of the

parameters as for the other figures.

at a value d3 roughly around four atomic layers. The
computation has been made with the same values of
the parameters as for the other figures. Note that the
transition is better defined for larger 4He coverages.
Figure 6 can be interpreted from figure 3 as the

penetration of the configuration point inside the

finite-size coexistence domain ;

6) temperature effects may also be studied within
our approach. Figure 7 represents the variation of
the 3He concentration on the substrate (lower curve)
and at the liquid-gas interface (upper curve) at

constant 4He and 3He coverages (d4 = 6.4 and

d3 = 3.6) as a function of the temperature. In our
computations, we have kept constant the coefficient
a in equation (5). The effect of temperature appears

Fig. 7. - Variation of the 3He concentration on the
substrate (lower curve) and at the liquid-gas interface

(upper curve) at constant 4He and 3He coverages (d4 = 6.4
and d3 = 3.6) as a function of temperature. In our

computations, we have kept constant the coefficient a in
equation (5). The effect of temperature appears only via
the variation of the values of the bulk concentrations

Xs (T ) and XN(T).
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only via the variation of the values of the bulk
concentrations Xs(T) and XN(T). The continuous
curves show a homogeneous-stratified transition
around T = 0.35 K whereas the bulk values pre-
sented by the dashed lines exhibit only a very
smooth behaviour. These results are reminiscent of
the experimental finding of a sharp increase of the
third sound velocity as T decreases [35].

4. Discussion.

We have presented a simple model for the

homogeneous-stratified transitions observed in
3He-4He binary mixture films using the third sound
technique. A continuous Landau-Ginzburg model
with a bulk term containing both atom-atom and
superfluid contributions plus surface and interface
terms with, in addition, the constraint of conser-
vation of helium 3 and helium 4 has been compared
with experiments. Our most important results are
the following :

1) compared to previous models [12], our ap-
proach has suggested precise explicit pictures for the
different film structures (via the 0 (z ) field) deduced
from the analysis of experiments ;

2) it has stressed the intricate interplay between
bulk, surface and interface energies as occurs in this
range of thicknesses (3 atomic layers 
d  20 atomic layers). The behaviour of these films
therefore appears to be intermediate between two
and three dimensions and points at the importance
of finite size effects ;

. 3) the important role of the bare superfluid order
has been recognized to control largely the stiffness of
the 3He concentration profile in the direction perpen-
dicular to the substrate. This is in the spirit of the
discussion of [36]. In usual normal fluids, the same
qualitative results should hold but for smaller
thicknesses (d / 03BE c) due to the absence of the

superfluid sti f fness ;
4) our results have suggested that a steep change

in the third sound velocity (which can be obtained
experimentally) is not necessarily connected with a
corresponding sharp evolution of the concentration
profile. In other words, the abrupt increase or

decrease of the third sound velocity is not the

unambiguous signature of a film phase transition.
This stems from the great sensitivity of the third
sound probe which amplifies the evolution of concen-
tration profiles ;

5) the third sound velocity depends continuously
on the film structure via the value of the ther-

modynamic potential. Therefore, the dichotomic
choice stratified or homogeneous imposed by the use
of the Guyer-Miller model [34] has been refined in
the appendix to take into account smooth concen-
tration profiles with in fine the validation of the

Atkins-Rudnick formula [33]. The case when a pure
normal phase floats above the superfluid in very
inhomogeneous films remains an open problem to
tackle in full generality ;

6) the connection between the present approach
and the previous multilayer interface model (MIM)
presented in [12] to account for the third sound

experiments is similar in spirit to the unification of
the capillary and Van der Waals view points for

describing a single interface. More precisely, the
MIM essentially weighs the mixing entropy which is
taken into account in the present approach by the
gradient term in the Landau-Ginzburg expansion for
the chemical potential. Our present approach has
the advantage of clearly relating the physics in thin
4He-3He mixture films to the known surface and
finite size physics and moreover allows quantitative
predictions.

Let us end by a list of the limitations and possible
extensions.
As a first extension, it would be useful to treat the

full Hamiltonian (2) with the two order parameters
03A6 and W. Furthermore, our interdimensional treat-
ment does not include the coupling with the two-
dimensional Kosterlitz-Thouless superfluidity. This
could be done using the tools developed in [37, 38].
Indeed, Berker and Nelson [37] have used a vectorial
generalization of the Blume-Emery-Griffiths model
which have been solved using an approximate Mig-
dal-Kadanoff renormalization scheme. This model

correctly embodies the Kosterlitz-Thouless nature of
the superfluidity, the He-He interactions and of the
coupling between superfluidity and concentration.
However, it is essentially two-dimensional and does
not take into account the strong influence of the
substrate and of the liquid-gas surfaces. The superfi-
cial superfluid transition of a 3He- 4He bulk mixture
in contact with a wall attracting preferentially the
4He (semi-infinite geometry) has also been studied
with the same tools [4]. It would be desirable to
extend the analysis to the finite film case. Mon and
Saam [38] have gone a step in this direction by
considering a two-layer 3He- 4He mixture model and
have studied the consequences of departing from a
purely two-dimensional framework including the
effect of the substrate potential. Compared to the
experiments presented in [12], the discreteness of
the 3He levels does not seem to be relevant and
furthermore, the experiments were performed at an
essentially constant amount of 4He and 3He and not
at a fixed chemical potential. The general treatment
of superfluid films remains an interesting question
for future investigations.
As T decreases towards absolute zero, coupling of

the third sound with the sound in the gas above the
film can become large and may drastically change
the interpretation of the third sound experiments
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and therefore the relevant comparison with our slab
model [39].
Improvements in the presented model will be’

carried on in a future work along the following
lines: 1) one should take the z - 3 substrate Van-
der Waals potential into account completely (this
implies tackling non-autonomous second-order dif-
ferential equations), 2) one should treat the competi-
tion between the two order parameters 0 and 1JI’,
explicitly within the Landau-Ginzburg formalism
and 3) finally one should address the Kosterlitz-
Thouless nature of the superfluidity in addition to all
other features.

Appendix.

The technique of the third sound velocity measure-
ments has evolved as a very efficient and sensitive

probe for testing the structure and the physical
properties of thin superfluid films. Third sound is
similar to a gravity shallow wave. Its velocity is
therefore a function of the film thickness d as

C3 = (gd)112 [32, 33], and of its concentration profile
(stratified or homogeneous) via the value of the
effective spring force g which is simply the gradient
of the fluid chemical potential. When the film is

heterogeneous, g is changed. Direct measurement of
C3 gives access to the physical state of the film via
the modelling process film structure C3.
The problem of determining the structure of a film

from a third sound experiment is therefore to invert
this film structure C3 transformation. However,
this inversion is impossible to perform in its largest
generality since it is related to the general class of
inverse problems where a function characterizing the
film structure (namely the superfluid concentration
profile 0 (z )) must be recovered from the knowledge
of a single number (C3 ). The only way to get
information on O(z) from the measurement of

C3 is to use a priori knowledge in order to restrict
the space of possible functions compatible with a
given measurement. This is done usually via models -
which achieve simple connections between structure
and third sound velocity.
At present, there exists only one such film struc-

ture --&#x3E; C3 model. It is the hydrodynamical treatment
of the third sound propagation of Guyer and Miller
[34] which considers two extreme cases : only the
completely uniform film and the completely stratified
film in which each layer contains a completely
homogeneous fluid.

In order to improve information recovery in the
comparison between theoretical predictions for the
films structures obtained in models with exper-
imental results, we propose a simple hydrodynamical
model of the third sound velocity in inhomogeneous
4He-3He mixture films which generalizes the Guyer-
Miller approach to encompass the case of continuous
superfluid concentration profiles.

We start from the usual linearized equations of
motion of the two-fluid model, for 4He-3He mixtures,
supplemented with the following assumptions :
i) the liquid film is assumed to be incompressible,
ii) we neglect the interactions of the film with the
vapor and therefore any coupling with modes in the
gas, iii) we assume that there is neither horizontal
nor vertical motion of the normal fluid component,
i.e. the normal fluid is clamped. This approximation
results from the damping effect of the viscosity in the
motion of the normal fluid as estimated by compar-
ing the film thickness d with the viscous penetration
length 5 (d  d ). This assumption allows us to

simplify the hydrodynamic model considerably by
getting rid of the momentum and entropy conser-
vation equations in which one should take the
viscous and diffisivity terms into account. One can
imagine the motion of the superfluid component as
invading the free space left by the normal component
in a way similar to the motion of a superfluid in a
porous medium. This assumption should be valid if
the superfluid invades more or less the whole
available film thickness. However, should it not be
the case (as for example when a layer of normal fluid
floats on the superfluid), the treatment should then
incorporate the pressure effect induced by the pres-
ence of the dead 3He layer which has been termed
blanket effect [34]. This is done in our treatment by a
suitable definition of the chemical potential J-L.

Finally note that a consequence of the clamping of
the normal fluid is the attenuation of third sound.
We do not try to describe or extract information
from the attenuation data [33].

1. The generalized hydrodynamic model.

The two basic hydrodynamic equations therefore
read

Equation (A.I) is the mass conservation condition
with the hypothesis of incompressibility and the
condition vn = 0 . vs and vn are the superfluid and
normal velocities respectively. Equation (A.2) is the
superfluid equation which writes that the superfluid
component can be accelerated by a gradient of
chemical potential resulting either from a ther-

modynamic cause such as a pressure or temperature
gradient or from any external potential such as

gravity or Van der Waals interaction. From equation
(A.2), one deduces that Vx Vs can be chosen zero.
Therefore, v, becomes :

where (p is the scalar velocity potential, a function of
the spatial components. Using (A.3) in (A.2) yields
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Consider the case of a film of thickness d contained
between z = 0 and z = d and a perturbation from its
horizontal equilibrium state parametrized by the
height profile’ (x, y ), where the plane (x, y) is

parallel to the substrate. In homogeneous fluids, we
usually have a, fat = Vsz = ðcp laze Writing this re-
lation for an inhomogeneous fluid would imply that
a motion £ of the liquid-gas interface does not

involve any motion of the normal component of the
fluid. This is not correct since we cannot distinguish
which fluid is convected by a vertical motion of the
interface. The generalized relation between £ and
vz at z = d is obtained as follows. We define a

surface S (&#x3E; C2) on the liquid-gas interface. The
fluid flux convected by the vertical motion of the
interface is Sp(d)a,/at where p =Ps+Pn is the
total fluid density. This flux is fed by the flowing in
of super fluid flux Sps vsz(d) where Vsz is the compo-
nent of Vg along the vertical axis z. Equating the two
terms yields the generalized boundary condition at
the free interface :

Let us write equation (A.4) at the liquid-gas inter-
face. In the presence of the disturbance C, it is

convenient to translate equation (A.4) from
z = d + C to z = d. Therefore, equation (A.4) be-
comes :

which by time derivation and use of equation (A.5)
gives

We can explicit equation (A.1) under the form :

In equation (A.I) we have used the fact that the
density Psis only a function of z since the film is
stratified only in the z direction. Using equation
(A.3) in (A.8) gives

Equations (A.7) and (A.9) are the two basic equa-
tions for describing the third sound propagation in
an inhomogeneous film. They must be supplemented
by the condition that the vertical fluid velocity
vz, is zero on the substrate :

For homogeneous films (aps/az = 0), we recover
from (A.7), (A.9) and (A.10) the well-known equa-
tions for the third sound propagation [33].

2. Resolution of the hydrodynamic equations in

inhomogeneous films.

Note that the two equations (A.7) and (A.9) are
identical to that of classical shallow waves in very

inhomogeneous film fluids. The role of gravity is

played by (a g 18Z), = d. The theory of waves in

heterogeneous liquids has been developed many
years ago (see Ref. [40] for a general treatment) but
only in the commonly encountered case of small
heterogeneities characterized by a typical scale of
the inhomogeneity variation (scale over which the
density changes appreciably) larger than the

wavelength of the excitation. In our case, we are in
the other limit since the scale of the inhomogeneity
variations is the film thickness d which is of the order
of a few atomic layers. This is very small compared
to the third sound wavelength 1 cm. Therefore,
equations (A.7) and (A.9) have not been analysed
previously in the literature : 4He-3He ultra-thin film
mixtures provide one of the few opportunities to
observe such large heterogeneities at such small
scales.

Resolution of equation (A.9) is well known in the
context of shallow gravity waves. We search for a
solution for cp under the parametrization

Without loss of generality, we choose the direction
of propagation in the x direction. Using (A.11) in
(A.7), (A.9) and (A.10), we obtain the following set
of equations :

We have defined the effective acceleration

g == (ð JL / ðz )z = d and the dimensionless function

The case e(z)=0 yields the usual shallow wave
equations resulting in the dispersion relation [33]

since then f (z ) = ch kz and

More generally, one can solve the system of

equations (A.12-14) for the dispersion relation
w (k) in the following way. The crucial step is to

recognize that k2 f  d-1 d f /dz i.e.

(kd )2 ,c d (d Log f /dz), due to the extreme thinness
of the film compared to the third sound wavelength
2 7r/k. This hypothesis will be verified consistently
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at the end. This allows to replace the term kz f by
k2 (with f = 1) in (A.12) which yields the solution

Expression (A.17) satisfies the first boundary con-
dition (A.13). Inserting in equation (A.14), we
obtain the following dispersion relation ( w /k )2 =

- rd

w v

which gives the third sound velocity

where the average superfluid density is

Equation (A.18) has the form of the Atkins and
Rudnick equation [34]. The hydrodynamic potential
theory justifies the use of equation (A.18) even for
extremely inhomogeneous films.
We can now verify the assumption that

k2 f..c d - 1 df /dz. Indeed, it is easy to obtain an

upper bound for d f /dz since dz’ p, (z’) == z ( p s)
z u

and f 0 du jTM dz’ p , (z’) == z2 (p,), typically. There-to 
z 
0

fore, dz’ d f /dz is of the order of (kd )2 which is
very small (kd ~ 10- 6 ) which proves the validity of
the assumption f - 1.
Note that in the case when the upper liquid-gas

interface is pure 3He, the previous theory breaks
down. One has to consider the 4He_3 He instead of
the liquid-gas interface and take into account the
floating 3He layer by adding to the chemical potential
/-t the pressure exerted by the 3H layer and created
by the 3He-substrate Van der Waals attraction. A

hydrodynamical treatment of this blanket effect has
been presented in [34] but a direct potential theory
for general inhomogeneous fluids remains a challeng-
ing open problem.
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