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Model calculations for wetting transitions in polymer mixtures

I. Schmidt and K. Binder
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(Reçu le 13 mai 1985, accepté le 6 juin 1985)

Résumé. 2014 Nous étudions des mélanges binaires partiellement compatibles de polymères flexibles en présence
d’une paroi qui adsorbe préférentiellement un des composants. Utilisant une approximation de champ moyen
du genre Flory-Huggins, nous montrons que, dans le cas générique, à la coexistence des deux phases, la paroi est
toujours « mouillée », c’est-à-dire recouverte d’une couche d’épaisseur macroscopique de la phase préférée. Nous
montrons aussi que, sur la courbe de coexistence, la transition vers l’état non mouillé se passe à des fractions de
volume d’ordre 1/~N (N est la longueur de la chaîne). Nous trouvons à la fois des transitions de mouillage du
premier et du second ordres et nous étudions la variation, à travers la transition, de l’épaisseur de la couche de
surface, de l’énergie de surface et d’autres quantités reliées. Nous discutons à la fois la validité de l’approximation
de grande longueur d’onde que nous utilisons et les effets possibles de fluctuations sur le « mouillage critique ».
Nous comparons nos résultats à des simulations numériques de Monte Carlo du mouillage dans des modèles
de type Ising. Nous mentionnons brièvement le rapport de nos résultats avec des travaux antérieurs et avec de
possibles conséquences expérimentales.

Abstract. 2014 Partially compatible binary mixtures of linear flexible polymers are considered in the presence of a wall
which preferentially adsorbs one component. Using a Flory-Huggins type mean field approach, it is shown that
in typical cases at two-phase coexistence the wall is always « wet », i.e. coated with a macroscopically thick layer
of the preferred phase, and the transition to the non wet state occurs at volume fractions of the order of 1/~N
(where N is the chain length) at the coexistence curve. Both first and second order wetting transitions are found,
and the variation of the surface layer thickness, surface excess energy and related quantities through the transition
is studied. We discuss both the validity of the long wavelength approximation involved in our treatment, and pos-
sible fluctuation effects for « critical wetting », comparing our results to Monte Carlo simulations of wetting in
Ising models. The relation of our results to previous work and possible experimental consequences are also briefly
mentioned.
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1. Introduction.

A surface of a container enclosing a fluid mixture,
which has a miscibility gap and is held at a compo-
sition corresponding to one of the coexisting phases,
may be completely wetted by the other phase. This
phenomenon of « complete wetting » is predicted to
occur in all binary mixtures close enough to their
critical point of unmixing [1]. Changing the state of
the system such that one moves along the coexistence
curve to a region of low mutual solubility, one under-
goes a o wetting transition » from the wet state,
where the surface is coated with a macroscopically
thick layer of the phase preferred by the wall, to a
non-wet state, where this thickness is microscopically
small. This transition typically is first order but

may also be second order (o critical wetting » [2-24]),
the order of the transition changes at a wetting
tricritical point [2-4]; if the wetting transition is

first order there should also exist a precursor pheno-
menon in the one phase region where the thickness
of the adsorbed surface layer jumps from a small
to a large but finite value (« prewetting » [1]).
While there thus is an enormous theoretical acti-

vity on this problem, experimental work so far

reports observations of first-order wetting transitions
only [25-33]. It does not seem easy to find systems
suitable for the observation of critical wetting. In
order to understand this problem further it clearly
is necessary to look into the details of specific systems
more closely. This is one motivation why it should
be interesting to study mixtures of linear flexible
macromolecules which is the subject of the present
work : in polymer mixtures, the degree of polyme-
rization (in our description, the « chain lengths &#x3E;&#x3E;
NA, NB of polymer species A, B) can be varied in a
controlled fashion over a wide range (for a practical
example, see e.g. [34]), while the basic interactions
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between monomers (as well as monomer-wall inter-
actions) should be essentially independent of chain
length (apart from end effects). In addition, since the
chemical structure of these macromolecules is so

complicated, one may well have somewhat different
effective interactions than for the case of mixtures
of small molecules. Since in (partially) compatible
polymer mixtures the effective energy responsible
for unmixing, measured as usual by the Flory-Huggins
parameter [35] x, is much smaller than unity [energy
being measured in units of KB T, T being the tempe-
rature and KB Boltzmann’s constant], there is no
reason to assume that interactions between the
monomers and the wall will be similarly small.

Consequently, the region where the wall is wet is
not restricted to the vicinity of criticality. One thus
expects to observe the wetting transition in a region
where the mutual solubility of the mixture is small.
Thus one expects drastic surface effects in thin

films of mixed polymers. In addition, the growth
of the wetting layer into the bulk may be an important
mechanism of phase separation, when one studies
mixtures of polymers quenched into the two-phase
regions, which is a problem of current theoretical [36,
37] and experimental [38] interest Additional kinetic
effects are expected to be associated with the (first-
order) wetting transition itself : in the wet phase,
the non-wet state may be metastable until one reaches
a « surface spinodal » [23], and vice versa. For mixtures
of small molecules the limit of metastability in the
bulk (standard « spinodal ») is of little physical
significance [39], because of fluctuation effects, and

thus it is questionable whether surface spinodals are
significant then. For polymer mixtures, on the other
hand, the mean field character of the unmixing
transition [40] also has the consequence that the
bulk spinodal gets a well-defined meaning, for NA,
NB -+ oo [37]; we also expect that surface spinodals
are significant then. In addition, since polymers are
rather slow objects one might also more easily follow
the decay of metastable surface states [23].

In section 2, we formulate our model and derive
some general results, while section 3 gives typical
numerical results for the quantities of interest Our
treatment is closely related to that of Nakanishi and
Pincus [23], but unlike the latter authors we do not
restrict the treatment to the vicinity of the bulk
critical unmixing, as it is very unlikely that the wetting
transition occurs there; thus we also disagree with
their conclusion that critical wetting is nearly
impossible for polymer blends. In section 4, we then
discuss fluctuation effects on critical wetting for

polymer mixtures, and for the sake of comparison
discuss some recent Monte Carlo results on critical

wetting in the Ising model [41]. Section 5 summarizes
our conclusions.

2. Phenomenological theory.
We start by writing down an expression for the bulk
free energy of the polymer mixture in the long wave-
length approximation [23, 36, 37], for a semi-infinite
system (z &#x3E; 0) { surface area with surface element
dA located at z = 0 }

Equation (1) is based on considering a simple cubic
lattice of spacing a, each cell of which is either taken
by one effective unit of A (there are NA such units
along an A chain) or B, 4Y is the volume fraction
of A, and Ap the chemical potential difference (for
convenience we work in the grandcanonical ensemble
although in practice 0 rather than Ap is the experi-
mentally controlled parameter). The interaction para-
meter X (leading to unmixing for X &#x3E; 0) is found to
depend on temperature T and volume fraction 45
(and even on chain length if end effects are included)
[42], but we shall ignore the dependence of x on 0
and NA, NB in the following, and also assume the
polymers to be monodisperse. More accurate theories
of polymer mixtures avoiding this Flory-Huggins
approach [35] are possible [43], but are rather com-
plicated and involve many parameters, and hence will
not be considered here.
The lattice spacing a of the Flory-Huggins lattice

can be related to the effective Kuhn step lengths
(J A’ (JB of the chains (defined from gyration radii
Rg r = aA,.,/NA/6, Rg r = aB..,INB16) as [36, 37, 44]

however, in the following we shall simplify the problem
by implying complete symmetry NA = NB, UA = 7p
( = a, independent of 4», deferring a discussion of
asymmetry effects to the end of this section. It is
also important to recall that even under the chosen
assumptions equation (1) is quantitatively reliable

only in the long wavelength limit

however, as will be discussed below (see also [45]),
equation (1) provides a qualitatively reasonable

description for the present problem also when equa-
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tion (3) is not fulfilled In order to show this we shall
treat the limit NA, NB -+ oo by the method of Helfand
and coworkers [46, 47] for the study of interfacial
properties [equation (1) corresponds to the treatment
of polymer interfaces in reference [48]]. A more com-
plete treatment applying the numerical techniques of
Noolandi and Hong [49] is left to future work.
The perturbing effect of the surface is described

by an additional contribution, the « bare » surface
free energy F:b), which is assumed to depend on the
local volume fraction 0 * 4Y(z = 0) at the surface
only

A simple explicit expression for fs(b) is obtained

using linear and quadratic terms In ø, analoguous
to equation (1), if ø1 is small, and again omitting
unimportant constant terms

where p, plays the role of a chemical potential diffe-
rence favouring species A in the surface layer, and g
represents the change of interactions near the surface
(including the effects due to « missing neighbours »,
etc.). Hence g can be positive as well as negative.
We shall discuss the consequences of choosing a
more general form for . occasionally, and will
also briefly comment on long-range surface pertur-
bations where . z) decays towards zero for
z -+ oo in power-law form, as it happens for van
der Waals forces between the surface and the molecules
in the mixture [16-18]. If instead 1 - 01  1, we

ma ex and b _ - ’ 1 - - 
1 

1 - 2,may expand f = - P?(1 - 4»1) - 2 9( 4»1)2,
which apart from an unimportant constant again
reduces to equation (5).
As usual we disregard any inhomogeneities in

directions parallel to the surface, and find the equili-
brium solution from minimizing the total free energy
{ A is the total surface area }

where

The bulk solution 0 . =- 4Y(z -+ oo) is found from equations (6), (7) disregarding all surface and gradient terms,
and hence described by the equation

At the coexistence curve Ap = 0 in this symmetric case. By the notation X(O., AjM) we have already indicated
that it is more convenient to use ø 00 and AM as independent variables rather than x and AM.

The concentration profile near the surface is now obtained as the solution of the following equation [« phase
portrait » [2, 3]]

Following standard treatments [1-3] the surface excess free energy F. is then obtained as

Minimizing this result with respect to «P1 yields a boundary condition at the surface,
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Using this equation together with equation (9) for z = 0, one finds an explicit solution for «P1,

with

and where G is the free enthalpy per site

and the solution yielding the minimum value of F8 has to be taken. Equation (10) can be re-written as

Next we define a local « surface layer susceptibility &#x3E;&#x3E; Xl, I as [50]

and similarly

Keeping ø 00 and Ap fixed in equation (15) means that the Flory-Huggins-Parameter x is kept constant [Eq. (8)],
and hence this corresponds to a derivative at constant temperature as usual [50], since x is controlled by the
temperature. Using equation (12) for fi and equation (5) for . it is straightforward to derive explicit expres-
sions for X, and X, ’. These quantities are of particular interest, since the prewetting critical point can be found
from the condition xi,l = 0; if this occurs at the coexistence curve (Ap = 0) we have a wetting tricritical point
One can also ask how 45, responds to a change of temperature (and hence change of 0. with other parameters
staying constant),

A further quantity of interest is the excess internal energy due to the surface, which becomes,

Finally we consider the solution for the concentration profile itself, which results from equation (9) as

This expression shows that the profile is exclusively
determined by the bulk properties of the mixture -
the boundary condition at the surface enters only
through the lower integration limit : one thus finds
just the same type of profile which would exist also
between the bulk co-existing phases 0(’) = 0 ,
ø x = 1 - 0. ; the distinction only is that the

surface can cut off this interfacial profile at any value
0, intermediate between ø 00 and 1 - ø 00. Of course,
if 01 -+ 1 - ø 00 in equation (19) z -+ oo. Thus, if

01 &#x3E; 1 - 0. (we assume 0.  Ov ,,,i, = l /2, so that
we assume an A-rich phase in the container), the
profile decreases first from 0, to 1 - 0. as z -+ oo,
while the interface from this B-rich layer at the sur-
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face to the A-rich phase in the bulk is at a macros-
copic distance. This is the description of the « wet »
state of the surface in this framework.
An interesting quantity hence is the thickness D

of the B-rich layer which we define as

For 0 near 0. we have [45]

where the correlation length of concentration fluctua-
tions at the coexistence curve is given by [37]

D is only meaningful (finite) in the non-wet state,
where 01  1 - ø 00. A second order wetting transi-
tion hence is obtained, when upon change of ø 00

for Ap = 0 the surface concentration P 1 smoothly
moves towards the critical value

From equations (15), (23) it is easy to show that the
susceptibility xll stays finite at the critical wetting
transition. In fact, xi i has a jump singularity there,
it jumps from the value X’l to a value X-1, where

where G"(O, x) = ð2G(tP, X)/ðtP2. Also the slope of
x 11 stays fmite as 0, tends to the critical value tP frit =
1 - 0.. We note

and find for (P, = lim (I - 4D. + s) that (putting
z-o+

02f(b) X

now 2013- = for simplicityD,p 1 2 /

One also finds that the jump Xit - X-1 vanishes when N -+ oo at fixed t/) 00.
In order to check where critical wetting occurs and where first order wetting occurs, we locate the wetting

tricritical point, for which equation (23) must hold and in addition xl,i = 0. This yields

From equation (24) one can check that only xi i (and axil/aiP1) diverge at the tricritical point, while X-1 and
the associate slope stay finite. Since the value of the Flory-Huggins parameter X at the critical unmixing temp-
perature is Xr = 2/N, we conclude that for the function G (Eq. (13)) is of order N ’ B and hence the function f,
(Eq. (12)) is of order N-112 - As a result, we conclude from equation (25a)

where the function f2(0.) is finite for tP 00 -+ 0 and using equations (12), (13) becomes

Thus equation (25) can be satisfied only if - ð2fs(b)/ðØ IØ1JQ,AIl=O,Øl= I-tboo (which is simply the constant g if one

uses Eq. (5)) is negative. Since this quantity typically will be of order unity, we can satisfy equation (25) only
for ø 00 oc N - 1/2, and hence f2( ø (0) a/.JT8 then, and hence we find the tricritical wetting point for
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The generalization of this result to the asymmetric case (aA :0 QB, N A =1= NB) in the limit NA -+ oo simply is
(45(2) its the concentration at the A-rich branch of the coexistence curve)

From the general topology of the wetting phase-
diagrams [4] in the space of the variables /.4 Am and T
(or equivalently, ø cx,) it then immediately follows
that for g &#x3E; 0 we have always first-order wetting,
while for g  0 the region of first order wetting occurs
for 00,  (OOO)tricritg while for (O.)t,.ic,it  0.  Ocrit
(= 1/2 in the symmetric case) critical wetting occurs.

Since (Ø oo)trierit is so small (Eqs. (27), (28)), polymer
mixtures hence would be excellent candidates of

systems to observe critical wetting (at least if the
framework of short-range surface perturbations, Eq.
(4), would apply). This conclusion is opposite to the
work of Nakanishi and Pincus [23]; in our opinion,
this discrepancy is due to the fact that their parameter
g (which should not be confused with our g) is of
order N for polymer blends, and not of order unity
as assumed Then tricritical wetting does not occur
very close to Oc,,it, as they imply, but rather close to
0. = 0.
For critical and tricritical wetting the condition

that 4P = oex (= 1 - ø 00 for symmetric mixtures)
also implies that the profile at z = 0 is flat, the inter-
face from 0(2) at the surface to 0(’). = 0. is infi-

nitely far apart, and hence dO/dz = 0 at the surface.
From equation (11) we then conclude that critical
wetting occurs for

or

Hence tricritical wetting is only possible for

If ø 00 &#x3E; (Ø oo)tricrit we have the surface nonwet for
JJl  p%(D  oo) and wet for JJl &#x3E; p%(D = oo). If
for fixed JJl  (u)tricrit we vary ø 00 (by changing
the temperature, following the coexistence curve),
we obtain the critical wetting transition at (we must

have - 1  JJl  - 1/2 in order to have wetting at
g

the A-rich side at all)

In the case of a more general choice of f,(’) than
equation (5) we find 0"" from the solution of equa-
tion (29a).
A fully explicit treatment is also possible if aA 0 Op

but still NA = NB = N. Then equations (25), (26)
yielding the wetting tricritical point is replaced by

(If ail a£ « 4Y equation (32) leads to (4Y);; m (/Ô;f8:) 18 N øl I fbao,åp=O,fb1=1-fbao )2 instead of equation (28),

i.e. there is an intermediate regime where (Ø oo)tricrit oc N- 1 before one crosses over to the asymptotic behaviour
(Øoo)tricrit oc N-l/2 for N -+ 00. ’ 

From equation (31) we see that the wetting transition can occur anywhere along the coexistence curve of

the polymer mixture, if -1  III  -1/2 : if illIg&#x3E; -1/2, the surface stays always non-wet, if illIg  -1
g 

it stays always wet (for N - oo). However, if ø:it is very small { or if we study the first-order wetting transition
possible for ø 00  (Ø oo)tricrit }, the long wavelength theory is inaccurate, because the interfacial profile then
becomes very steep in its centre, and an alternative approach is required [46, 47, 49]. Defining a length L from
the maximum slope of the profile [45]
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one would find from equation (9), putting

which tends to L = (al3) X- 1/2 for tP 00 --+ 0 [45].
This result implies that in the centre of the profile
equation (3) is not fulfilled, and hence it is no surprise
that the prefactor al3 of the last relation is not corro-
borated by the exact treatment,[46, 47, 49], although
the variation with X - 1/2 is predicted correctly.
For a treatment of the limit tP 00 --+ 0 we apply the

approach of Helfand and co-workers [46, 47]. Rather
than solving a differential equation for 4Y one has to
solve two differential equations for the auxiliary
functions qA(z), qB(z)

where O(z) = qA(z) and the Lagrange multiplyer ,
ensures the condition q’(z) + qg(z) z 1. These equa-
tions have been used for the computation of inter-
facial profiles and free energies but their derivation
by the method of Hong and Noolandi [49] shows that
the same equations result also for a problem with a
local free surface perturbation; in the limit N ..... oo
the free surface acts as a boundary condition for

equation (34) only [51]. Following Helfand [46, 47]
we note that equation (34) can be rearranged to yield
a « conservation law » for the « Hamiltonian » R,

Since the minimum free energy in the bulk is obtained
for Je = 0, equation (35) yields a boundary condition

Thus specifying the value 0 1 at the surface uniquely
determines the concentration profile. The solution
to this problem hence is simply the interfacial profile
obtained by Helfand et al. [46, 47],

where the inflection point of the profile occurs at a
distance d from the surface which follows from

A second-order wetting transition hence can occur
for ø1 = 1 only (d - oo). If 01  1 equations (37),
(38) describe a non-wet profile. Depending on the
behaviour of fs(b)(ø1), one can again have also a first-
order transition at a point where F.I(AKB T) for the
non-wet state becomes equal to h(b)(I) + a, a being
the interfacial free energy (in units of temperature)
between the bulk coexisting phases with concentra-
tions 0 = 0, ø = 1 as obtained in reference [46].
Since equations (20), (37) imply that for 01 -+ 1 we
have D ,zt d, equation (38) again shows the logarith-
mic divergence of the thickness of the wet layer when
a second-order wetting transition is approached
As a result, we have found that the qualitative features
of the description of wetting at ø 00 = 0 in the frame-
work of the long wave length approximation and in
the framework of the theory of Helfand et al. [46, 47,
49] are the same, although prefactors (such as the
length L in Eqs. (37), (38) and in Eq. (33)) differ.

3. Numerical results.

In the framework of the long-wavelength approxima-
tion, the problem of obtaining the concentration pro-
file is reduced to a simple quadrature (Eq. (19)).
In the regime where the wetting transition is first order,
one must obtain F. from equation (10) through another
quadrature both for the wet and the non-wet state,
and locate the transition from the intersection of the
two surface free energy branches. The thickness D,
of the layer follows from another quadrature (Eq. (20)).
We have done this for a number of typical cases which
are described below. We have chosen units such that
a - 1 for simplicity.

Figure 1 shows typical profiles resulting from

equation (19). The dependence on chain length can
be completely absorbed in the normalization of the
abscissa, and the only relevant parameter is ø 00
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Fig. 1. - Concentration profiles O(z) plotted vs. z at

the coexistence curve (A) and in the one phase region (B).
Parameter of the curves is 0.(A) and N Ap(B). Note that
in case (B) the position of the surface is not specified -
it simply follows from the condition O(z = 0) - 01.

(for AM = 0). As mentioned above, (P, only acts as
a cut-off on the profile and was arbitrarily chosen
01 = 0.8 in figure 1 A ; profiles with smaller (larger)
01 are simply found by shifting the ordinate axis
to the right (or left, respectively; the missing part of the
profile for 0 &#x3E; 0.8 is found from noting that the
full interfacial profile is anti-symmetric around the
point O(z) = 1/2. This symmetry is no longer true
if we allow åJl =1= 0 (Fig. 18). For 0, &#x3E; 1 - ø 00 the
surface would be wet for AM = 0 but is coated with a
layer of finite thickness only if Au :0 0. One can see
from figure 1 B how the wetting layer develops when
Ap - 0. Figure 2 shows the growth of the layer thick-
ness D when we approach the wet state along the
coexistence curve.

Figure 3 shows our findings on the dependence of the
relation between the parameter g and the concentra-
tion (Ø oo)tricrit at which the tricritical point occurs.
As emphasized above, for values of (g) of order unity
(Ø oo)tricrit is rather small, particularly for longer chain
lenghts. Figure 4 shows then the complete phase
diagram of the surface in the (ul, ø oo)-plane. For
clarity we display rather small values of N and not
very large values of - g either, so that the region of
first-order wetting can be clearly distinguished The
surface spinodals and the first order line merge tangen-
tially at the tricritical point (one surface spinodal is
simply the line ø 00 = 1 + p,lg). In a physically reali-

Fig. 2. - Thickness D of the « wet » layer plotted vs. ø 1
for several values of ø 00.

Fig. 3. - Plot of the second derivative of the bare surface
free energy (- g) versus the concentration (Ø oo)tricrit of
the wetting tricritical point. Parameter of the curves is N.
The corresponding normalized first derivative at 0, 1 = 0
at the tricritical point, Jl1/ g, is a straight line independent
of N (Eq. (29b)). We choose units where a = 1.

zable situation, we may change the temperature and
thus 0., but the effective values of g andu, then change
also (factors of I/KB T have been absorbed in their
definition, etc.). We hence expect that we cut the phase
boundary at the wetting transition by variation of
temperature in general under a finite angle. The beha-
viour then is quantitatively similar to the results
observed for a variation of III for g, ø 00 held fixed
(Figs. 5-8, various examples for other values of the
parameters are found in Ref. [51]). We see that at the
second-order wetting transition the variation of 01
always is rather smooth, while Us has a kink-type
maximum there. The susceptibility XII is finite at the
transition, but exhibits a jump singularity. When ø 00
comes close to (Ø oo)tricrit a rather sharp maximum of
X I I is observed (Fig. 6) which is a precursor of the
critical divergence of Xll found for Øoo = (Øoo)tricrit.
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Fig. 4. - Surface phase diagram in the (,u,, 0.) plane for
three values of g. The region where the surface is wet (at
small p,) is separated from the non-wet region by a phase
boundary which describes the wetting transition. For

0_ &#x3E; (Ø "r’ )tricrit this is just the straight line, equation (29b).
The region of first order wetting is shown for both N = 10,
100 and denoted by dash-dotted curves. In this regime surface
spinodals occur and are shown by broken curves.

Fig. 5. - Variation of -P, (upper part), xl (middle part),
Us (lower part) with M, for N = 300, 0. = 0.1, g = - 0.7.
Arrows show the location of the wetting transition. In this
case (Ø oo)tricrit N 0.017. Note that Us as shown here does
note contain the factor ðØoo/ð(I/T (cf. Eq. (18)).

For ø 00  (Ø oo)tricrit the wetting transition is weakly
first order, and we obtain then jump singularities in
01 and Us as well (XII then has a delta-function singu-
larity superimposed on its jump). It is seen (Fig. 7)

Fig. 6. - Variation of øl (upper part), xii (middle part),
Us (lower part) with p, for N = 10, 0. = 0.08, g = - 0.7.
Arrows show the location of the wetting transition which
still is second order but close to the tricritical point
((Ooo)tricrit ":Zt; 0.067).

that the first-order wetting transition occurs at a value
ø1- before 451 reaches the value 1 - Øoo at which cri-
tical wetting (Figs. 5, 6) would occur, and then 01
jumps to a value ø 1+ larger than 1 - 4D.. If N - oo,
however, the fact that (Ø oo)tricrit oc N - 1/2 also means
that the jump ø t - ø - vanishes proportional to
N - 112 -already for N = 300 under otherwise compa-
rable conditions this jump would be hardly visible
on the scale of figure 7, as corresponding calculations
show [51].
The behaviour is very different for g &#x3E; 0 where

critical wetting does not occur and one rather observes
always a transition of strongly first order (Fig. 8).
Figure 9 shows the phase diagram for a number of
typical cases. We note that there exists in this case a
particular concentration ø: (marked by crosses in
Fig. 9). For 45.  0*, we have ø1 &#x3E; 0. in the
non wet state and there the profile decreases mono-
tonically, while for 0.  0* we have ø1  0. and
the profile increases monotonically.

Finally we turn to pre-wetting transitions, which
occur for negative Ap (i.e., in the one-phase region)
if the wetting transition for AM = 0 is of first order.
The line of these (first-order) pre-wetting transitions
ends in a pre-wetting critical point, which again is
located analytically from requesting xi,i = 0, using
equation "(15) for AM  0. The resulting expressions
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Fig. 7. - Variation of 0, (upper part), xl (middle part)
and Ug (lower part) with p for N = 10, 4’00 = 0.05, g = - 0.7.
Arrows show the location of the first-order wetting transi-
tion.

Fig. 8. - Variation of CPl (upper part), xli (middle part),
and Us (lower part) with III for N = 100, g = 0.01 and
cP 00 = 0.15.

Fig. 9. - Surface phase diagram in the (u,, P ex) plane for
two values of g &#x3E; 0 and three values of N. The surface
is wet below and non-wet above these curves. Crosses
mark the point where in the non-wet state the concentration
profile is exactly flat, dT/dz = 0.

are straightforward to obtain but lengthy [51] and
hence will not be reproduced here. Figure 10 shows,
as a typical example, the critical value g, as a function
of Ap where the pre-wetting critical point occurs, for
typical values of cP 00 (which fixes the considered tem-
perature) and chain length.

4. Fluctuations.

As always with mean field theories, one has to worry
in which way the statistical fluctuations neglected in
this approach may modify the results. This question
is particularly relevant for the various second-order
transitions possible in the system.
With respect to the bulk critical point of unmixing,

fluctuation effects are important only in a very narrow
region of x, cP 00 around the critical point which
shrinks to zero as N - oo [37, 40] ; therefore such
« bulk » fluctuations need not be considered for the

present problem.
With respect to the prewetting critical point, which

is an essentially two-dimensional transition in the

Ising model universality class [4], the situation already
is different. For two spatial dimensions, there is no

longer any mean-field regime taking over with

increasing chain length N, and the behaviour is

intrinsically non-classical [37]. As an order parameter
of this transition, one may take the jump AD occurring
in the thickness D (Eq. (20)) when one crosses the pre-
wetting line defined by Ap = åJ.lc( l/J .,). The mean
field treatment predicts that D oc [((p,,)Pc _ 000]1/29
(,P.)Pc being the value of ø 00 in the bulk aL which tem-
perature the pre-wetting critical point occurs, if one
follows the pre-wetting line; in reality we expect that
D oc [(Ooo)pc - 0.]1/8, the exponent being that of the
two-dimensional Ising model. Also the numerical

prediction for (O.)Pc (and gc(åJ.l) as shown in Fig. 10)
is quantitatively unreliable, fluctuations tend to shift
the critical point to a regime of stronger coupling.
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Fig. 10. - Surface phase diagram describing pre-wetting
phenomena : in the plane of variables g, Au lines gc(Ap)
separate the regime where first-order pre-wetting occurs
{ g &#x3E; ge ,(Ap) I from the regime where one smoothly approa-
ches the wet surface when AM -+ 0. Several choices of ø 00
and N are shown. On a separate scale also the value ø pw
of the concentration at the pre-wetting critical point is
shown.

While these expectations seem plausible on general
grounds, we have not made any attempt to study them
in any detail.
The situation is more subtle for critical wetting, for

which dimensionality d = 3 is the marginal dimension
for the validity of mean field theory [10-12]. While
mean field theory predicts that the correlation length
j II of fluctuations of( PI (0) 01(p) &#x3E; - 0’, p being a
coordinate in the surface plane, diverges with an
exponent vjj = 1 as the transition is approached,
this is predicted to be no longer true when fluctuations
are taken into account [10-12, 15]. The relevant fluc-
tuations for this problem are capillary wave excitations
of the interface separating the surface layer (whose
concentration is 1 - P 00’ at least approximately)
from the bulk (which has concentration 0.). Taking
account of these fluctuations invalidates the concen-
tration profiles as shown in figure 1, of course. In
addition, the exponent vim is predicted to be enhanced
over its mean field value; taking into account the
scaling relation between v j ~ and the exponent Y 11
describing the singularity oil /n (if there is one) [13],

one hence also expects a cusp of X, 1 rather than just
a finite jump (and hence y, 1 = 0) as in the mean field
case (Figs. 5, 6). Note the exponent 11 is predicted
to be non-universal and to depend on a parameter w
defined as

where (1 is the interfacial free energy between bulk

coexisting phases, and Çcoex the correlation length
at the coexistence curve. Near the critical point of a
polymer mixture we have [37]

where Xcrit is the value of the Flory-Huggins para-
meter at criticality. Thus w becomes

Since the mean field regime of a polymer mixture

occurs [37, 40] for IN 1 - Xx it)1/2 » 1, we hence
x

find that w  1; for this regime all theories [10, 11, 1]
agree that (w  1/2)

and hence

Thus polymer mixtures offer the interesting possi-
bility to check this prediction of critical wetting
theory [10, 11, 15] by varying the parameter
-I"IN(I - X,ritlX)’I’, for instance by changing the tem-
perature and chain length such that one observes cri-
tical wetti transitions for different values of the com-bination N(1 - XcriJX)1/2. Of course, equations (42,
44) are only valid in the mean field critical region of
these mixtures; in the non-mean field critical region

very close to criticality, whereJ N ( 1 - Xcrit 1/2 z 1,x 
one crosses over to a value of w which is universal and
estimated as [11, 52] w = 1.2 ± 0.3; the theoretical
predictions [10, 11, 15] still are somewhat controver-
sial for this regime where w &#x3E; 1/2.

If we go sufficiently away from criticality equa-
tions (40) can no longer be used and one crosses over
to a regime where the « local » interfacial thickness
is no longer given by C;coex but rather by [45-47, 49]
L oc ax-112 (cf. Eq. (34)). Also the interfacial energy a
then is a oc X1/2 a-2. We speculate that equation (40)
for w should now be replaced by

Since for mixtures having a critical unmixing point
(X,:,i, = 2/N for symmetric mixtures), we expect that
x is very small throughout, and hence equation (44)
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would lead to the prediction yi 1 oc Xl/2 which also
would be very interesting to test
As experiments on real materials pertinent to these

questions are not yet available, we conclude by
briefly describing a few results of a recent Monte
Carlo simulation of critical wetting in an Ising model
[20, 52], figure 11. This model calculation was done
with nearest-neighbour exchange only; to model a
polymer mixture by an Ising model one would have
to choose a large but finite range of the exchange
which is controlled by the length of the chains [37].
It is seen that nevertheless the simulation results are

remarkably similar to the mean field predictions,
figures 5, 6 (of course, there is no obvious way to
make the comparison more quantitative, it is not

straightforward to translate the parameter of the
simulations to those of the mean field calculation).
It seems that the critical wetting transition occurs in
the simulation at a value Pl slightly below 1 - 0.
already. There occurs a broad finite peak of xl l ;
probably in this case w is as large as about w 1.8,

Fig. 11. - Variations of 0 , (upper part), Xll middle part)
and Us (lower part) with a surface magnetic field H1 measured
in units of exchange constant J for a simple cubic Ising
ferromagnet with a free surface at a temperature J/Kg T =
0.35 (note the critical point occurs at J/Kp Tc 0.2217)
at bulk coexistence (bulk field H = 0). These results are
based on Monte Carlo simulations as described in refe-

rence [20]. The surface internal energy is measured in units
of J, and xl in this figure is defined as xi i = Om,IOH,, m,
being the « magnetization » of the first layer (note 0, =
(1 - mi)/2).

and hence a strong divergence of ç 1, is predicted
[11, 15]. The associated singularity of xi l in the Ising
model is obviously hard to observe in the simulation,
[52] ; but then it is likely that it also would be very
hard to observe in a real experiment.
We conclude this section by a discussion of effects

due to long range surface fields : as mentioned after
equation (5), on the basis of van der Waal’s forces
one would predict that fs(b)(p, z) oc z- 3 for z -+ oo,
and then the treatment presented in section 2 also
is not quantitatively correct. But it has been shown
for mixtures of small molecules and related systems
[ 17, 18] that also in this case one may have both first-
order and critical wetting, and hence the possible
phase diagrams are qualitatively similar. In this case
the marginal dimension for critical wetting is below
d=3 [13], and hence there is no need to worry about
the above fluctuation effects. Since our model calcu-
lations anyway are not a faithful representation of a
real polymeric mixture even in the bulk (there are
effects of asymmetry, chain polydispersity, unknown
dependence of x on volume fraction, temperature,
and even chain length), we have not undertaken the
large numerical effort to perform explicit calculations
for this case as well.

5. Conclusions.

In this paper, we have given a mean field analysis of
wetting transitions of polymer mixtures. Even on the
mean field level, our results are still somewhat qua-
litative because of (i) our use of the long-wavelength
approximation and (ii) restriction to the case of short
range surface perturbations. In spite of these restric-
tions, we believe that the following conclusions are
of general validity :

a) for physically reasonable regimes of parameters,
second-order wetting transitions can be found It
would be interesting to check this prediction experi-
mentally. If one could realize a situation where the
short-range part of the surface forces is much larger
than the long range van der Waals’s part, one would
have an approximate realization of a system with
fluctuation corrections to mean field but the constant w

(Eqs. (40), (42)) being very small, which is very interest-
ing because of the predicted non-universal critical

behaviour;
b) physically the forces exerted by the wall to the

mixture are fixed and can not easily be varied. In
polymer mixtures one can vary the chain lengths
NA, NB of the constituents, and due to the existence
of a second disposable parameter (in addition to
temperature) one has more experimental freedom in
studying wetting transitions, than in other mixtures;

c) since one expects for partially miscible polymer
mixtures the unmixing tendency at the surface to be
relatively strong in comparison to that of the bulk,
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a rather strong surface enrichment of one constituent
of the mixture must be expected even away from
two-phase coexistence. This phenomenon may become
important particularly for applications of thin films
of polymer blends.
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