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Résumé. 2014 Pour expliquer la dépendance en température de l’élasticité des gels thermo-réversibles, nous proposons
un modèle simple. Ce modèle suppose que le gel est formé de chaînes de Langevin dont les deux bouts sont fixés
à des jonctions qui sont des régions cristallines. Les segments proches de chaque extrémité sont fortement liés.
Lorsque la température augmente on suppose que les segments sont libérés de la jonction comme des molécules
gazeuses qui s’évaporent ou se subliment à partir de la phase condensée. Quand tous les segments de l’une des
deux extrémités sont libérés de la jonction, la chaîne ne contribue plus à l’élasticité. La mécanique statistique permet
d’évaluer l’élasticité des gels numériquement. On montre que ce modèle reproduit bien le comportement caracté-
ristique de la dépendance en température de l’élasticité des gels thermo-réversibles.

Abstract. 2014 In order to explain the temperature dependence of elasticity of thermo-reversible gels, a simple model
is proposed It assumes that the gel consists of Langevin chains whose both ends are loosely fixed in crystalline
junction regions in such a way that the segments near each end are bound densely in one of the junction region.
The segments are assumed to be released from the junction with increasing temperature just as gas molecules
evaporate or sublimate from the condensed phase. When all the segments in one of the both ends are liberated from
the junction, the chain would cease to contribute to the elasticity. The elastic modulus of the gel is estimated nume-
rically by means of statistical mechanics and the characteristic behaviour of the temperature dependence of thermo-
reversible gels is shown to be well reproduced on the basis of this model.
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1. IntroductioEL

There have been many investigations on the rheolo-
gical properties of gels such as gelatin [1 ], agar-
agar [2, 3], carrageenan [4, 5], pectin [6, 7] and so forth
because of their importance in food industry [8] and
biomedical application [9]. The gelling materials can
control the food viscoelasticity by a small amount of
their presence, and so they are called texture modifiers.
Elasticity of these gels changes drastically at the gel-sol
transition. The material is called gel when the lifetime
of the cross-links in the network is longer than the
experimental time scale, and is called sol when the
lifetime is shorter. Therefore the term gel or sol depends
on the time scale of the rheological measurement.
However, even at the temperature range lower than
the transition point, the elasticity remains often

remarkably temperature dependent. Since this quality
is very important in actual applications, many studies
have been carried out on the temperature dependence
of the elasticity of gels [10-12]. However, there have

been no investigations on the molecular mechanism
for the temperature dependence of thermo-reversible
gels. We propose here a simple model for explaining
the temperature dependence of elastic modulus of
weak gels.

2. A model for thermo-reversible gels.

Thermo-reversible gels are assumed to consist of two
regions : somewhat crystalline region consisting of
junction zones and the amorphous region consisting
of long flexible chains. This picture is widely accepted
for kappa-carrageenan gels and other polysaccharide
gels [13] and for poly-vinyl alcohol gels [14,15].
The nature of the binding in such junction zones is

considered to be of secondary weak interactions as
hydrogen bonding, van der Waals interactions or
molecular entanglements. In some cases this region
consists of close association of double helices.
The following model may, therefore, be plausible.

The gel consists of Langevin chains having N segments
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Fig. 1. -- The schematic representation of network struc-
ture in weak gels. The shaded part stands for cross-linking
junction. Cross-linking junctions are linked by a long chain
whose end-to-end distance is r. This long chain is composed
of n segments, each of which has length a.

of length a (Fig. 1). The Langevin model, which is
more general than the Gaussian chain model, is

adopted here so that the case of strong stretching of
chains can be taken into account. The both ends of each
chain are bound to two of the junction zones by the
weak secondary interactions. The number of captured
segments depends on temperature, i.e. the segments
are released from the junction with increasing tempe-
rature and reeled in it with decreasing temperature.
In other words, the junction region is considered to be a
reservoir of the snaking chain. For simplicity, we will
neglect the spatial extent of the junction zones.

Suppose n segments are released into the amorphous
region between two junction zones distant from each
other by ra. The thermodynamic weight of the snak-
ing part of the chain is given by

where p is related to r by

Here C(p) is the so-called Langevin function [16]. The
work required to increase the end-to-end distance of a
chain is given by the change in its Helmholtz free

energy A(r, T), thus the tensile force X along the
direction of r is expressed as

because the energy u of the random-coil chain is inde-

ppndent of r. Since the entropy s of the chain is related
to the above w(r) as s = k log w(r), we easily get

thence fl = aXlkT. Then the partition function of a
chain can be written as

where E is the binding energy required for a segment
to be liberated from the junction zone. Since fl depends
upon n, the sum (4) is not simple geometric series and
we have to make some approximation to calculate it.
Let no be the number of released segments which
maximizes the summand In of Z. Then

where flo is the value of /3 corresponding to no, i.e.

where C -1 represents the inverse Langevin function.
Now, let us remember that the gel elasticity decreases

drastically at the gel-sol transition. We restrict our
consideration to the temperature range lower than the
transition point. Then there must be an upper limit v
for the number of segments released from the junction
zone because a chain will be liberated from the junc-
tion and ceases to contribute to the elasticity. We
assume that this takes place when n &#x3E; v. The value
of this v should be determined semi-empirically so as
to get agreement with experiment. This point will be
discussed later.

Replacing the summation approximately by inte-
gration, we can rewrite Z as

where

By the transformation of variable,

and
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Z is represented as

Now, let us consider the relation between infinitesi-
mal macroscopic strain and the relative change in r.

Imagine an infinitesimal longitudinal deformation
of a cylinder of length 10 and radius Ro (Fig. 2). Since
gels can be regarded as incompressible, the relation

holds for Al = 1 - 10 and AR = R - Ro. Suppose the
vector r combining two junction zones in this cylinder
is replaced by r’ after the deformation. Then we can
easily show the following relations;

where br = r’ - r and 60 = 0 - 0’. Substitution of

equation (13) into equation (12) leads to

The mean free energy for chains will be obtained by
taking its average over directions, assumed to be
random, as

where A = - k T log Z is the free energy per single
chain with fixed r, and f(r) denotes the statistical

Fig. 2. - The uniaxial deformation of a cylindrical gel
whose initial diameter and height are Ro and 1, respectively.

distribution function of the distances r. This F can be
rewritten as [17]

where

Let X be the number of chains in a unit volume, then

Comparing this with the second expression of equa-
tion (17), we obtain

where  ... &#x3E;r = 4 n1- ... f(r) r2 dr/.N’ represents the0

average over the distance r.
Since, however, all the chains do not contribute to

the elasticity, the number X must be replaced by the
number of active chains. We may assume that the
active chains are those having n  v as stated before;

’The elastic modulus E is, therefore, given by

The calculation of 82 Af8r2 from

is a little tedious but straightforward. The final result is

where
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3. Comparison with experiments and discussion.

The open circles in figure 3 show the temperature
dependence of the dynamic Young’s modulus of an
8 % w/w poly (vinyl alcohol) (PVA) gel observed at
2 Hz [18]. The degree of polymerization of PVA was
2 400. The number of molecular chains N in 1 cm’ is
about 1018. The curves in figure 3 are those obtained
by numerical calculation of equation (21) for various
values of p = v/rm. Since we know very little about
the distribution function f(r), we replace it by a
delta function having the peak at certain average value
rm of the end-to-end distance r. The energy 8 and the
assumed mean end-to-end distance rm are chosen as
100 k and 400, respectively. The characteristic feature
of the experimental Young’s modulus is well repro-
duced by the calculated curves.

Figures 4-7 show the calculated values for the elastic
modulus for different values of Jl. The number JV’ is

Fig. 3. - The comparison of observed Young’s modulus
for a PVA gel (0) with calculated values obtained from
equation (21). The figures besides the curves represent the
value of p.

Fig. 4. - The calculated curves of elastic modulus obtained
from equation (21). The figures besides the curves represent
the values of p. The bonding energy s is fixed as 100 k.

Fig. 5. - The calculated curves of elastic modulus obtained
from equation (21). The figures besides the curves represent
the values of p. The bonding energy s is fixed as 200 k.

Fig. 6. - The calculated curves of elastic modulus obtained
from equation (21). The figures besides the curves represent
the values of p. The bonding energy 8 is fixed as 400 k.

always fixed to 1018 as in figure 3. As is seen from
these curves, the increasing or decreasing tendency
of the modulus depeqds quite sensitively upon the
values of the parameter M. Beyond some critical value
of p, the elastic modulus increases monotonously, while
it decreases monotonously below it. For large values
of the parameter g equation (21) tends to

which is the familiar expression for permanently
cross-linked rubber like materials [16].



797

Fig. 7. - The calculated curves of elastic modulus obtained
from equation (21). The figures besides the curves represent
the values of p. The bonding energy s is fixed as 1 000 k.

Since we have assumed that the binding energ3
of the cross-linking junction is always the same foi
each dissociation, the total number N of the segment,,
in a chain does not appear explicitly in equation (21)
It is implicitly involved in v (hence in q) because i

must be a certain number slightly smaller than N
More important simplification is that the interactior
between chains has not been taken into account. Sc
the concentration dependence of the elastic modului
of the gel cannot be explained by the present treatment
There are already many experimental results that the
elastic modulus of the gel is roughly proportional tc
the second power of the concentration. The scaling
treatment has accounted for this behaviour [19]. The
aim of the present model is the explanation of the tem.
perature dependence of the elastic modulus for weal
gels based on widely accepted molecular picture of thE
gels.
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