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Résumé. 2014 Le comportement ordonné ou chaotique des trajectoires de particules chargées dans le champ magné-
tique statique du réacteur thermonucléaire Astron est étudié numériquement. Malgré le fait que la fonction hamil-
tonienne correspondante est de classe C°, ce qui entraîne que ce système dynamique ne possède pas de véritables
tores invariants dans l’espace de phase pour aucune valeur numérique h de la fonction hamiltonienne, aucun signe
de comportement chaotique n’a été constaté pour des valeurs de h modérées et pour des intervalles de temps
d’importance physique. Nous calculons une intégrale formelle du mouvement qui peut, dans certains cas, décrire
d’une manière satisfaisante le comportement ordonné des trajectoires.

Abstract. 2014 The ordered or chaotic behaviour of charged particle trajectories in the static magnetic field of the
Astron thermonuclear reactor is numerically investigated. Despite the fact that the corresponding Hamiltonian
function is of class C°, from which it follows that this dynamical system does not possess true phase space invariant
tori for any numerical value h of the Hamiltonian function, no sign of chaotic behaviour is detected for moderate
values of h and for time intervals of physical significance. A formal integral of motion is calculated that can, in
certain cases, describe in a satisfactory way the ordered trajectory behaviour.

Tome 46 No 4 AVRIL 1985

LE JOURNAL DE PHYSIQUE
J. Physique 46 (1985) 495-502 AVRIL 1985,

Classification

Physics Abstracts
03.20 - 41.70

1. Introduction.

Since the pioneering work of Henon and Heiles [1]
the study of ordered and of chaotic trajectory beha-
viour in perturbed integrable dynamical systems
modelling various non-linear processes has been the
topic of numerous research papers. The common

general result of all this work was that for a small
enough perturbation strength all the trajectories of a
given system were found to be of the ordered type,
suggesting that the system was integrable. When the
perturbation strength, however, crossed a « critical &#x3E;&#x3E;
value, domains of chaotic behaviour began to develop
in phase space demonstrating its true non-integrable
nature [2]. Today the ordered picture that all these
systems exhibit for mild perturbations is understood
through a series of theorems, known under the collec-
tive name o K.A.M. theorem &#x3E;&#x3E; after the initials of
Kolmogorov, Arnold and Moser who formulated and

proved them. This theorem concerns the qualitative
behaviour of the trajectories of perturbed conservative
integrable dynamical systems that are described by
Hamiltonian functions of the type

where I and 0 are the action-angle variables of Ho
(which therefore is integrable), H, is 2 n-periodic in
01, fJ2, ..., 0n and 8 measures the strength of the

perturbation. The K.A.M. theorem then guarantees
that for s &#x3E; 0 the majority of the phase space invariant
tori of Ho (the surfaces where lie the isoenergetic
trajectories of the integrable dynamical system) are
not destroyed but they do survive, being only slightly
deformed, provided that the value of B is « sufficiently
small ». Therefore the ordered behaviour of such sys-
tems for small values of s is the manifestation of the

persistence of these invariant tori ([2]-[4] and refe-
rences therein).

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:01985004604049500

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphys:01985004604049500


496

The K.A.M. theorem is proved under the following
three conditions which, as we will see, are far from
trivially satisfied in dynamical systems of physical
interest

a) The Hamiltonian function Hhas to be of the form
of (1) with Ho non-degenerate, which generally means

that the zero order frequencies (OH 0) of the system
depend explicitly on 
B Oli /

depend explicitly on the actions.

b) H has to be sufficiently differentiable in Ii and
Oi, of class C’". The lowest necessary and sufficient
value of m is not known in even one case [3], but it
appears that it is a function of the number of degrees
of freedom of the dynamical system [5], [6]. In the
special N = 2 case, which is the most studied, Chiri-
kov [6] has shown that m &#x3E; 2 is necessary, while
Herman [7] has shown that m &#x3E; 3 + s, 0  8  1,
is sufficient For m = 2 there are examples of dyna-
mical systems showing the existence of invariant
tori [6] as well as counter-examples showing the
opposite [8], while Sinai [9] proved that no invariant
tori exist in the case of a hard sphere Boltzmann gas,
whose Hamiltonian is not even differentiable.

c) The initial conditions have to be « sufficiently

far » from a resonances oHo I 0, i.e., they have

to satisfy for all r the relation

where r is an integer N-vector, y depends on 8 and the
non-linearity of Ho (see condition a) above), and
i depends on N and m.
From the above three conditions the third can be

usually met by adjusting the values of the parameters
and the initial conditions of the system. The degree
of non-linearity and of differentiability however are
inherent to each system and, if conditions a) and b)
are not met, only a numerical study can reveal the
existence or not of invariant tori. Many dynamical
systems of physical interest, for instance, do not meet
the non-degeneracy condition a); their numerical

investigation, however, revealed a behaviour quali-
tatively similar to that of non-degenerate systems,
so that in general it is believed that degenerate systems
do possess invariant tori of complete measure as s - 0
(e.g. [1,10,11]) although notable exceptions to this do
exist (e.g. [12]). The effect of the degeneracy to the
quantitative behaviour of perturbed integrable dyna-
mical systems is discussed in detail by Lichtenberg
and Lieberman [4].
Dynamical systems of physical importance described

by Hamiltonian functions not analytic or even infi-
nitely differentiable are not a common case in the
literature, and thus the differentiability condition for
H has been up to now mainly investigated by ad hoc
constructed abstract dynamical systems (e.g. [13]).

In this paper we investigate the behaviour of the tra-
jectories of a dynamical system of physical interest
which does not meet neither the non-degeneracy nor
the smoothness conditions of the K.A.M. theorem
and still shows numerical evidence for the existence
of K.A.M.-type invariant tori. This system describes
the motion of test ions in the magnetic field of the
Astron thermonuclear reactor [14]. This field is static,
cylindrically symmetric and has closed magnetic
lines created by external coils and by a relativistic
electron layer, called the E-layer, gyrating at a dis-
tance Pi from the axis of symmetry of the field (Fig. 1).
The curvature of the magnetic field lines inside the
E-layer is very large and becomes infinite in the limit
where the E-layer is considered as a surface, which
is the approximation used by Christofilos. In this
case the Hamiltonian function describing the single
ion motion in the magnetic field of Astron is a C°
function and therefore not smooth enough to guaran-
tee the existence of invariant tori of complete measure
for a perturbation approaching to zero [6-8]. This is,
however, a purely theoretical result referring to the
behaviour of the ion trajectories for t --&#x3E; oo which
is not necessarily of physical interest, since, due to
ion-ion and electron-ion collisions, single ion trajec-
tories have a meaning for limited time intervals only.
What therefore is of interest here is not the behaviour
of ion trajectories for all times, but rather their beha-
viour for time intervals of the order of the free flight
time of an ion. As we show in this paper a numerical
solution of the equations of motion shows that ion
trajectories seem to lie on smooth phase space sur-
faces (invariant tori) for a time interval 3 x 105 0c
during which the ion has crossed more than 103 times
the E-layer, where the derivatives of H are disconti-
nuous. Therefore the low differentiability of the
Hamiltonian function of this system does not induce
an observable stochasticity in the trajectories due to
the non existence of true invariant K.A.M. surfaces,
at least for a time interval of physical significance. It
should be noted that similar results on dynamical
systems not satisfying the K.A.M. theorem have
been recently obtained by Saito et al., Henon and
Wisdom and Contopoulos [15].

Fig. 1. - Magnetic field lines in the Astron thermonuclear
reactor. Due to the symmetry, only one quadrant of the
p - z plane is shown.
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This paper is organized as follows : in section 2
we give the Hamiltonian function describing the
motion of an ion in the magnetic field of the Astron
thermonuclear reactor and we investigate the beha-
viour of ion trajectories using the surface of section
technique. In section 3 we calculate a typical integral
of motion in series form (a new invariant) and we show
that it can explain in certain cases the apparent ordered
behaviour of these trajectories. Finally in section 4
we summarize and discuss our results.

2. The Hamiltonian function.

The (non-relativistic) equations of motion of a charged
particle with charge q and mass m in the magnetic
field of Astron are, in cylindrical coordinates p, Q, z,

In (2) H is the Hamiltonian function given by [16]

p p’ P q, and pz are the canonical momenta and Ap. Aq"
Az are the components of the vector potential of the
magnetic field given by [14]

where

In (3) J1 is the Bessel function of the first kind and

first order, k = m1 (m1 = 1.84... is the first root of
Pi

J1(x) = 0), pi is the radius of the E-layer, po = 2 pi is
the radius of the last closed magnetic surface, 2 L is the
length of the E-layer, Bo is the magnitude of the magne-
tic field at the centre (p = 0, z = 0) of the reactor and
cl, C2, ki, k2 and A are parameters defined from the
geometry of the field [14], [17]. From (2) and (3) we
see that q6 is an ignorable coordinate of H, so that p.
is a first integral of the motion. Therefore we can
reduce by one the degrees of freedom of the system
by writing (2) in the form

V(p, z) in (4) is an « effective » potential, E(A, p) is
given by

and p,, is treated now as a parameter whose value
depends on the initial conditions.. Notice that in (4)
and (5) we have used dimensionless variables by
normalizing length to pi, time to Q; 1 = (qBo/mc) 1
and mass to m. From (5) it is evident that the partial
derivatives of the effective potential V are in general
discontinuous at p = p;, so that V is of class Co.
Therefore, the existence of invariant tori cannot be
guaranteed in this case by the K.A.M. theorem,
and one has to resort to numerical calculations in
order to investigate whether the trajectories of the
Hamiltonian (4) show regular or stochastic beha-
viour. Before starting numerical integration of the
trajectories of the Hamiltonian (4) one has to select
a value for p,,, since ci, C2, ki, k2 and A are defined
from the geometry of the magnetic field, which in
this work we assume already given. The criterion
we use for this selection concerns the topology of the
zero velocity curves (ZVC) of (4). Recall that the
ZVC of a Hamiltonian system of the form of (4)
are defined through the equation

and that trajectories starting inside a closed ZVC are
restricted in this region forever. It therefore, we want
to study trajectories crossing repeatedly the E-layer,
we should select a value for Pq, giving closed ZVC
that contain the E-layer. Incidentally notice that the
trajectories inside these ZVC are of physical interest
as well, since they lie where the « hot » plasma is
supposed to be. The value we select for p,,, according
to the above criterion, is the one giving V(1, 0) = 0,
because in this case the effective potential V has an
absolute minimum at p = 1, z = 0 and (4) possesses
closed ZVC for a wide range of values of h, in the
range 0  h  hm. (e.g. for protons and for typical
values off and Bo, hmax corresponds to 250 keV [17]).
For other values of Pq, either the ZVC restrict the
particles far from the E-layer (Fig. 3) and/or there
are no ZVC for small values of h. Note also that for
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ov ov 
this value of the derivatives a y and az are conti-az
nuous at p = 1, z = 0, while their o jump » at the rest
of the E-layer (p = 1, z :0 0) is minimal.
Using the above selected value for Pq, and a set of

values for ci, c2, ki, k2 and A calculated in [17] we have
integrated numerically many trajectories of (4) for
various initial conditions and for h = 0.125 x 10- 5
which, for protons and for typical values of pi and
Bo, correspond to 0.125 keV [17]. Although all the
integrated trajectories have been followed for a time
ttraj &#x3E; 105 Oc 1, during which they have crossed the
E-layer more than 103 times, no clear sign of chaotic
behaviour has appeared yet. Namely :

a) All trajectories do not fill all the allowable space
inside the corresponding ZVC (e.g. see Fig. 2), as if they
were confined by a curve more restrictive than the
ZVC.

b) The consequents of the trajectories on the surface
of section p pP (the consecutive, both ways (z &#x3E; 0
and z  0), intersections of the phase space trajectory
with the surface z = 0) seem to lie on smooth curves
which would be the intersection of the invariant tori
with this surface, should these invariant tori really
exist (Figs. 4 and 5). Since for typical values of the
magnetic field, plasma density and temperature

Fig. 2. - Zero velocity curve, trajectory boundary from
I i(3) and a trajectory with initial conditions zo = ppo = 0,
Po. = 1.02, po = P+o and h = 0.125 x 10- 5. In this and the
other figures the parameter values are cl = 2.387, c2 = 1.967,
kl 1 = 5.573, k2 = 2.50 and A = 5.25.

Fig. 3. - Zero velocity curves for p,,  Pq,o and a) h = 10 - 3,
b) h = 10 - 4, c) h = 10 - 5, d) h = 0.125 x 10 - 5 and a typical
trajectory for case d

Fig. 4. - Surface of section plot and invariant curves drawn
using Ii(O) (dashed line) and Ii(3) (solid line) for the trajec-
tory in figure 2.

Fig. 5. - Surface of section plot and invariant curves drawn
using I i(3) for three trajectories with initial conditions

zo = pp. = 0, Pq, = Pq,o’ h = 0.125 x 10- 5 and po = 1.04,
1.06 and 1.09.

(B~ 104 G, n ~ 1014 and T ~ 10 keV) the collision time
troll (~10’-3 s) is considerably shorter than ttraj
( ~ 10 - 2 s) these trajectories should be considered
as ordered for all practical purposes. The numerical
evidence therefore indicates that for small values of h
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the dynamical system described by (4) behaves as if
possessing invariant tori of positive measure, in
exact analogy with the dynamical systems satisfying
the conditions of the K.A.M. theorem.

3. Calculation of a quasi integral.

Since the Hamiltonian function (4) is only Co, we do
not expect, according to what we have already mention-
ed, that it possesses true K.A.M. surfaces. On the other
hand the numerical integration shows that the tra-
jectories of this Hamiltonian seem to lie on smooth
surfaces for long times compared to the basic time
scale of the system. It is, therefore, of interest to

investigate whether this regularity in the behaviour
of the trajectories could be described in some way
analytically, even if this cannot be justified by the
smoothness of the Hamiltonian. This is done by
constructing a formal integral of motion of the Hamil-
tonian (4) in series form by a standard perturbation
algorithm based on Lie transformations [18]. In

doing so we take into account that the form of the
Hamiltonian in the inner part of the cylinder p = 1
is different from that in the outer part, so that in fact
we calculate two such integrals, one valid in the inner
region (p  1) and one in the outer (1  p  J2).
Each series then is used, truncated at an order selected
by a simple criterion as discussed later, to explain the
properties of the trajectories in the region of its vali-
dity.
The algorithm we use to calculate the formal inte-

gral requires the Hamiltonian to be in the « regular »
form

where 0  8  1 is a small parameter. Notice that
the dynamical systems of the form (1) belong to the
above class, having Hi - 0 for i &#x3E; 1. In case where
no intrinsic « small parameter » measuring the strength
of the perturbation is present, as in our case, the

splitting of H in Hi can be done by a Taylor expansion
of H around a stable equilibrium point. The dyna-
mical system is then described (in the vicinity of the
equilibrium point) by the Hamiltonian

where Ho consists of the second, H, of the third and
so on for the higher order terms of the Taylor series,
and the role of the small parameter is essentially
played by the numerical value hN of HN (e.g. see [4]).
Applying the above method to the Hamiltonian (4)
and recalling that p = 1, z = pp = p_, = 0 is a stable
equilibrium point of (4) for Pq, = Pq,o’ we find

and similar expressions for the higher order terms,

where x = p) 1 and , = -5-PT)o. The trivial cano-P 0
nical transformation now

transforms (7) to

where Ho is of the form required by Deprit’s algorithm.
One can therefore apply directly this algorithm to
construct a formal integral (e.g. see [19]). The pre-
sence of the quadratic term p2 in Ho however makes
the calculations complex, introduces « drifting &#x3E;&#x3E;
resonances in the integral (i.e., polynomials in p.,
in the denominator) and does not contribute to the
investigation of the effect of the E-layer crossings,
since the latter is related to the radial part of the
motion. Notice also, that Ho is not and cannot be
written in the form Ho(I1’ 12), as required by the
K.A.M. theorem, since the zero order motion in the
z-direction is a translation and not a libration or a
rotation. Alternatively, one can try to transform Ho in
(9) to Ho’ = Ho(h,12). A method to do this, proposed
by Contopoulos and Vlahos [20], is to « create » a
term 1/2 w22 z2 in Ho by splitting a higher order term
of H1. By a transformation then similar to (8) Ho
in (9) becomes Ho’ = 11 + 12 which is of the required
form. In this work we follow another alternative :
we consider only trajectories with a small z-velocity,
in which case p2 can be removed from Ho leaving
Ho’ = Ho(h, 12) = 11. Notice that neither Ho = 11 + 12
nor Ho = h do satisfy the non-degeneracy condition
of the K.A.M. theorem. This alone, however, does not
necessarily imply a generic chaotic behaviour, as

most degenerate two degrees of freedom systems show
the existence of K.A.M.-type invariant tori (e.g. the
famous Henon-Heiles system [1]; see also [21]). The
removal of pz from Ho is formally done through the
canonical transformation [22]
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where s is an ordering parameter used to rearrange
the terms in Ho and H1; once the new integral

00

1;* = £ si Ii /i ! has been calculated up to a desirable
i=1

order, s is set equal to one. Notice that this method
is similar to the method of the adiabatic ordering
described in [4].
The complexity of the calculations, which increases

rapidly with the order, restricted us in this work to
calculate only the terms up to order 6 in s, which are
given in the Appendix. A partial sum

can then be used as a true integral if it remains reaso-
nably constant along a trajectory, something that is
checked in figure 6. In this figure we see that, aside
from the fact that all I*(n) are wildly oscillating for
large z, which can be easily interpreted as due to the
poor approximation of cosh (kz) by the truncated
Taylor series of H, Ii(3) is far better conserved than
either I*(0) or Ii(6). Since, due to the limited smooth-
ness of the Hamiltonian function, we do not really
expect Ii to be convergent, this behaviour could be
interpreted as the manifestation of the true asymptotic
nature of h. Alternatively one could argue that the
divergence originating in the limited smoothness
would appear at a higher order, in which case the
divergence at n = 3 is due to the method of calcula-
tion of li . To clear this point we decided to calculate
another typical integral of (4), this time following the
« regularization process &#x3E;&#x3E; of Contopoulos and Vla-
hos [20]. The regular form of

in this case enabled us to use a computer program [23]
to calculate the terms of this integral up to order 12
in the variables x, z, px, pz. The partial sums ø(n)

Fig. 6. - Plot of the partial sums Ii(O) (dashed line), Ii(3)
(solid line) and 1*(6) (dotted line) versus z for the trajectory
in figure 2.

however showed the same divergence as the partial
sums I*(") at the corresponding to B3 order. Accor-
dingly we decided to select Ii(3) as the best choice
and use it as a true integral of motion of the Hamil-
tonian (4) to calculate :

a) trajectory boundaries (by setting px = pZ - 0
into Ii(3); note that the curves calculated in this way
are not envelopes but an equivalent of the ZVC,
where Ii(3) is used in place of H).

b) invariant curves (by eliminating pz between H
and 1*(3) and then by taking the section of the resulting
surface with the plane z = 0).
The results are given in figures 2, 4 and 5. In figure 2

we observe that the analytically calculated boundary
describes in a satisfactory way the limits of the cor-
responding, numerically calculated, trajectory for
not very large values of z. This, however, should be
expected since it follows directly from the decoupling
at zero order of the radial and the longitudinal motions
in places where cosh (kz)/cosh (kL)  1. The agree-
ment between the analytically (from Ii(3») calculated
invariant curves and the numerically calculated conse-
quents of the corresponding trajectories is also very
good (Figs. 4 and 5). In particular we see that Il*(3)
describes the « experimental &#x3E;&#x3E; points better than

Ii(O) (Fig. 4) which shows that it contains « more »
information. Notice, however, that, although the

consequents of all trajectories on the surface of section
seem to lie on smooth curves with no signs of chaotic
behaviour, only the consequents of trajectories with
small x initial are well described by the invariant
curves calculated through Ii(3) (Fig. 5). This can be
considered as an indication that perhaps a formal
integral constructed by a different algorithm could
describe the behaviour of the trajectories of the Hamil-
tonian (4) better than Ii(3) does. Such an integral,
however, has not been found in the present work.

4. Summary.

In this paper we studied the behaviour of single par-
ticle trajectories in the cylindrically symmetric magne-
tic field of the Astron thermonuclear reactor. This
field is discontinuous at a cylindrical surface of

radius p = Pi where a layer of gyrating relativistic
electrons, the so-called E-layer, causes the magnetic
field lines to close. Due to this discontinuity the
Hamiltonian function describing the single particle
motion has discontinuous partial derivatives at p = p;.
The limited smoothness of the Hamiltonian and the

resulting non-applicability of the K.A.M. theorem
lead one to believe that the majority (in the measure
sense) of the trajectories crossing the E-layer is of
the chaotic type, i.e., they are not quasi-periodic on
invariant tori. A numerical investigation of the tra-
jectory behaviour however shows that this is not
true since the intersections of all the integrated tra-
jectories with the surface of section p pp were found
to lie on smooth invariant curves, at least for time
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intervals of physical significance (an order of magni-
tude longer than the mean ion collision time).
The existence of true invariant curves in a two

degrees of freedom dynamical system is a necessary
condition for the existence of two first integrals of
motion. In the present case this implies that, besides
the Hamiltonian function, there exists a quasi-inte-
gral, valid for time intervals less than or equal to the
integration time ttraj. Motivated by this implication
we calculated by a Lie transform algorithm a second
typical integral of motion, which however showed
a divergent behaviour at a low order. This behaviour
could originate either in the low differentiability of
the Hamiltonian function or in the method of the
calculation. In any case however it is of interest to
note that a partial sum Ii(3) of this typical integral,
truncated where the signs of divergence appear,
describes in a satisfactory way the observed proper-
ties of the trajectories. In particular the invariant
curves calculated from Ii(3) agree with the conse-
cutive points of intersection of the trajectories with

the surface of section p-pp, at least for trajectories
with initial condition po near 1, while the orbits in
configuration space lie inside the level curves of

It(3) (calculated from the relation (It(3»)px=pz=0 = C).
The main result, therefore, of the present work can

be summarised as follows : a near integrable dyna-
mical system with two degrees of freedom may not
possess chaotic orbits of observable measure for
small perturbation values, even if it does not satisfy
the smoothness conditions of the K.A.M. theorem

(as they are modified by Herman) and this for time
intervals longer than any physically meaningful time
scale of the system. This ordered behaviour can be
described, at least in some cases, in an approximate
way by a formal integral of motion truncated at an
appropriate order.
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Appendix

Here we give the seven first terms of the formal integral 1 * = y II- It; calculated in section 3 of this paper.1 i i ii P P

They are

where by 81 , E2, E2 , E4, 8s and e6 we denote respectively the coefficients of the terms 2 3 z4, x2 z2, xzj and
x4 of the Taylor expansion of the Hamiltonian (4) around the stable equilibrium point x = z = px = pz = 0.
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