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Résumé. - Le problème de la détermination des harmoniques de rotation 03A61, 03A62, ... dans le cas d’un potentiel
diatomique numérique est considéré. Ces harmoniques récemment définies par 03C8vJ = 03C8v0 + 03BB03A61 + 03BB2 03A62 + ...

(où 03C8vJ est la fonction d’onde du niveau vibrationnel 03C5 et du niveau rotationnel J, avec 03BB = J(J + 1)) sont étudiées
pour le potentiel de Dunham, et pour un potentiel numérique défini par les coordonnées de ses points de retour
et par des interpolations et extrapolations polynomiales. Les expressions analytiques des harmoniques 03A61, 03A62, ...

sont données sous forme de polynômes dont les coefficients sont simplement liés à ceux du potentiel dans le cas
du potentiel de Dunham, et aux coordonnées du potentiel dans le cas du potentiel numérique. L’application numé-
rique est simple. Les exemples présentés montrent que la fonction d’onde de vibration-rotation 03C8vJ calculée à
partir des fonctions harmoniques reproduit sa valeur calculée directement jusqu’au huitième chiffre significatif.

Abstract - The problem of the determination of the rotation harmonics 03A61, 03A62, ... for the case of a numerical
diatomic potential is considered. These harmonics defined in a recent work by 03C8vJ = 03C8v0 + 03BB03A61 + 03BB2 03A62 + ···

(where 03C8vJ is the wave function of the vibration level v and the rotation level J, and 03BB = J(J + 1)) are studied for
the case of the Dunham potential and for a numerical potential defined by the coordinates of its turning points with
polynomial interpolations and extrapolations. It is proved that the analytic expressions of the harmonics 03A61, 03A62, ...

reduce to polynomials where the coefficients are simply related to those of the potential in the case of the Dunham
potential, and to the coordinates of the turning points in the case of the numerical potential. The numerical appli-
cation is simple. The examples presented show that the vibration-rotation wave function 03C8vJ calculated by using
two harmonics only is « exact » up to eight significant figures.
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1. Introduction.

In the Born-Oppenheimer approximation [1], a given
electronic state of a diatomic molecule is characterized

by the potential U(r), a function of the internuclear
distance r.
The most commonly used method for the

determination of U(r), for two decades, is the
well known semi-classical Rydberg-Klein-Rees
(R.K.R.) method [2]. The R.K.R. potential is usually
given in numerical form, i.e. U(r) is defined by the
coordinates of some points (turning points or others)
with interpolations and extrapolations which are,

usually, polynomials or can be reduced to polyno-
mials.
A new trend in the treatment of the potential pro-

blem is the quantum mechanical (Q.M.) method [3-5].
This method replaces the semi-classical laws used for
the R.K.R. method, by the properties of the wave-
function.

This method has already been applied to some

states of the molecules N+2 Li2, CO, I2, H2... These
published results show that the Q.M. potential is

generally in better agreement with the spectroscopic
data than the R.K.R. potential [3-6]. Use of this
method might become widespread in the coming
years.
The Q.M. potential is given in a numerical form

like the R.K.R. potential. Yet these two potentials
differ from each other, not only in the theoretical
approach, but also in the mathematical treatment

(and numerical analysis). Unlike the R.K.R. method,
the Q.M. method implies the computation of the,
wavefunction t/lvJ(r) (v and J being the vibration and
rotation quantum numbers).
A highly accurate vibration-rotation wavefunction

is required, not only to assure a good accuracy of the
Q.M. potential, but more generally to assure good
accurate vibrational and rotational characteristics
for any numerical potential (mainly for energy expec-
tation values, matrix elements and line intensities).

Therefore, the introduction of the rotation harmo-
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nics is useful. These functions 0,, 02, ... are related to
the wavefunction t/lvJ by t/lvJ = t/lv + AO 1 +
A2 02 + ... (with A = J(J + 1)). They present, in the
main the following advantages [7] :

i) They are independent of J.

ii) For a given r, the functions 01(r), 02(r), 03(r)...
decrease in absolute values as the constants B, Dv,
HrJ’ ...

iii) The computation of O,j is reduced to that of
computing ip, 0, and 02 only (and probably 4&#x3E;3);
it is greatly simplified when J has to vary.
The aim of this work is to derive simple analytic

expressions for the rotation harmonics for the com-
monly used numerical potentials (R.K.R. potential
and Q.M. potential). These expressions are simply
related to the coordinates of the turning points of
the given potential. The- derivation of these new

expressions is presented in section 3. This section is
preceeded by the presentation of the rotation Schroe-
dinger equations (section 2); it is followed by some
examples of the numerical application along with a
discussion of the results (section 4).

2. Rotational Schroedinger equations.

For a given vibrational level v, the radial Schroedinger
equation can be written :

where :

The energy Ez is usually represented by [8]
00

with

We already know that the wavefunction gii(x)
can be written :

By substituting the above expressions for gii(x)
and Fi(x) into the radial equation 1 (which must be
true for any A), we deduce the following set of equa-
tions [7] :

The first of these equations is nothing but the radial
Schroedinger equation for pure vibration (A = 0).
The other equations are the rotational Schroedinger
equations; they are inhomogeneous equations differ-
ing only by their second members. One of these
second members is well defined by the solutions of
the preceeding equations, i.e. the solution 00 qlo
of the first equation.

It has been shown [7, 9] that : i) any solution § of
equations 5 is continuous at any point as well as the
wavefunction q/,, or t/J 0 = cP 0; ii) all the functions
§(x) obey the same boundary conditions as the wave-
functions tk,, and’" 0 :

3. Rotation harmonics for numerical potentials.

3.1 The rotational Schroedinger equations 5, may be
represented by :

with

and

By using the equivalence between the linear diffe-
rential equation 7 and the corresponding Volterra
(second kind) integral equation [10], we find :

00 B
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where the series 9 is absolutely and uniformly conver-
gent [11].

These formulas represent the solution Oi (i = 0,
1, 2,...) of any of the rotational Schroedinger equa-
tions 5. It is enough to replace in (7) or (9) s(x) by the
convenient value given by (8).
These formulas can be used for any diatomic

potential without restriction.

3.2 When the potential U(x) is given by the Dunham
function :

the related energy factor Fi(x) can also be represented
by a polynomial. We write by substituting into (3)
the above expression for U(x) :

with : 

with :

On being the coefficients of the expansion
1 N1 

N1 is the number of terms retained :

with :

For the Dunham potential, and under the condition
I x I  1, the solution 00 of equation 5.0, can be
deduced from equation 9 with s(x) = 0, and we
find [13] :

0

with

For this case, the function y(x) in equation 9 stands

for 0,(x). The function Ho(x) is a series, as well as,
H1(x), H2(x), ... and their sum 0 1 (x) :

with

We generalize for Oi(x), and we write :

When I x &#x3E; 1, we divide the x-axis into small
intervals and we apply, for the Dunham potential
function, the method detailed below.

3.3 The numerical potential U(x), as considered

here, is determined by the coordinates of its turning
points (and/or other points) with suitable interpola-
tions and extrapolations; these interpolations (and
extrapolations) are (or can be reduced to) polynomials.
For this potential, we divide the x-axis into intervals

7p = [xp, xp+ 1] where xp and xp+ 1 are the abscissae
of two consecutive turning points. For this interval
we take :

On this interval the expressions for the functions
j¡, Si and Oi can be determined in the same way used
above for the Dunham potential; the results are

similar with slight differences. We summarize these
results as follows :

Ni 

where xp is the origin of the interval Ip.



1260

We start at the origin x = 0 with interval Io(xp =0),
and with trial values of l/Ji(O) and 0’(0). We deduce
the values of Oi (and ql§) at the end of the interval :

These values of Oi and 4&#x3E;f are taken now as the
origin of the second interval. We can use the same
relations to get the values of the same functions at
the origin of the third interval, and so on... we can
reach like this the values of Oi(x) and 4&#x3E;l(x) (i &#x3E; 0)
at any point x.

3.4 The analytic expressions of the functions Oi(x)
given above for a given numerical potential have no
physical meaning, unless the values used for eo, el,
e2, ... are the eigenvalues Ev, Bv, Dv, ... of the potential
for the given vibrational level v, and unless the ini-
tial values Oi(O) and 0’(0) (for i &#x3E; 0), generate the
eigenfunctions of the rotational Schroedinger equa-
tions 5.
The problem of the determination of the eigen-

values along with that of the initial values has been
solved recently for any potential [14]. We give, in the
following an outline of the solution of this problem
applied to the numerical potential.
We know that the general solution of one of the

rotational Schroedinger equation 7 can be written [ 15] :

where a(x) and P(x) are two particular solutions of
the homogeneous equation with :

a(x) being a particular solution of the inhomogeneous
equation.
By comparing the expression of y(x) given by

equation 17 to that given by equation 9, we deduce
that the functions a(x), P(x) and Q(x) are given by
equation 9, in which we take :

Thus the expression of the ith harmonic is :

In order to make oi(x) obey equation 4, one can
always write - without any loss of generality - for
the unnormalized wavefunctions t/1;.(x) and t/1o(x) :

1 1 .

and

The functions Oi(x) become :

In order to determine the initial value (k’(0) along
with the eigenvalue eo (included in fo(x)), one can
use a trial value eo and compute the functions a(x)
and P(x). From the boundary conditions (6)-(6’),
one can have : I

AlI_B 1 

The continuity of 00(x) at x = 0 implies

The value Fo of the parameter eo satisfying this
« eigenvalue equation » is the eigenvalue of equa-
tion 5.0 for the given potential. The initial value

§1(0) of the « eigenfunction » 00(x) is given by :

Once the eigenvalue eo and the eigenfunction
00(x) are thus determined, el and 01(x), e2 and
02(X), ... are successively determined in the same
manner.

This method can be applied to the numerical

potential. The functions a(x), P(x) and ai(x) are

derived from equation 9 in the same manner pre-
sented above for the derivation of c/Ji(X) given by
equations 16. These equations give the expressions
for a(x), f3(x) and Gi(X) in which we take :

4. Numerical application.

The aim of the numerical application presented here
is to give some examples of the computation of the
rotation harmonics Oi(x) from the analytic expres-
sions derived in this paper.
For this purpose, we consider the same potential

function used already [7] to compute the harmonics
Oi(x) with the Runge-Kutta difference equations
of the 5th order [16]. This potential is the Morse
function used by Cashion [17], that we treat like
a numerical potential by taking several points (turn-
ing points or others) and by using polynomial inter-
polations.
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We compute first the eigenvalues eo, e1, j2 along
with the initial values 0’(0), io’(0), 0’(0) by using
the method outlined in § 3.4 and detailed in refe-
rence 14. The results are used to compute the func-
tions 00(x) = t/Jo(x), 01(x) and 412(X) given by the
analytic expressions (§ 3.3). In table I, we give the
results at several points (x = 0.1, 0.2, 0.3, 0.4, 0.5 A)
and for several vibrational levels (v = 0, 10, 20).
The last level is a few cm-1 from the dissociation.
At each x the vibration-rotation wavefunction is

deduced from its expression t/Jo + Ao, + À2 02 (with
J = 1, A = 2) and compared to its value t/J;. computed
directly from the Schroedinger equation 1 by using
the method described in [13] and [18].
We notice that the agreement between the directly

calculated vibration-rotation wavefunction t/J;. and
2

£ Ài Oi is satisfactory to the 7th (or the 8th) signi-
i=O

fiant figure.
In table II, we compare the new results to those

obtained by using the Runge-Kutta difference equa-
tions with a mesh size h = 0.005 A [7]. The agreement

2

between tk,, and £ Ài §; is much more satisfactory
i=O

with the expressions of the rotation harmonics deriv-
ed here, than with the Runge-Kutta numerical treat-
ment.

In table III, we finally give (for v = 10) the values of

Table I. - Values of the rotation harmonics for some
values of x of a numerical potential [17] (v = 0,10, 20).
The sum of the harmonics is compared, at every point
and for every v, to the vibration-rotation wavefunction
#i(x) [,1 = 2] computed directly from the Schroedinger
equation.

Table II. - Values of the rotation harmonics for some values of x of a numerical potential [17] (v = 0, 5, 10).
The results of the present work (P. W.) are compared to those obtained by the Runge-Kutta (R.K.) difference equa-
tions. The wavefunction 4/,z(x) is also compared to the sum of harmonics (A = 2) for both methods.

0"’B1 i 
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Table III. - Values of the sum of harmonics #o + Ao, + A2 P2 (lst line) for some values of x of a numerical
potential [17] (v = 10) and for some values of A, compared to the wavefunction 41,1(x) (2nd line). The mean value Ã
of the difference in absolute value for the five considered points is given in the last line.

2

Y_ A’ Oi and 4/., at several points and for several
i=O

values of A. We notice that the difference

increases, at a point x, with A. The mean value J
for the five points considered here increases like À. 3.
This means that when J increases, we need higher
harmonics (03, ... ) to obtain a desired accuracy. This
result confirms the validity of the present method.

5. Conclusion.

The problem of the determination of the rotation
harmonics was considered for the case of a numerical

potential.

It is proved that when the interpolations in the
potential are polynomials, the rotation harmonics
are simply expressed by polynomials where the coef-
ficients are simply related to the coordinates of the
turning points of the potential.
The harmonics are calculated by using these new

expressions for many examples and compared to

the values found by a direct numerical integration
of the rotation Schroedinger equations. The vibra-
tion-rotation wavefunctions deduced from the har-
monics is better approached by using the expressions
found in the present work (up to eight significant
figures) than by using numerical integration.
The details of the numerical treatment of these new

analytic expressions of the rotation harmonics will
appear in a forthcoming paper.
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