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Résumé. 2014 L’expression analytique de ra&#x3E; pour des atomes dans un degré d’ionisation arbitraire est obtenue
dans le cadre de la théorie de Thomas-Fermi, compte tenu des corrections dues à l’échange et à l’inhomogénéité
de la densité électronique. La contribution des électrons fortement liés à la valeur moyenne ra&#x3E; est obtenue
lorsque - 5/2 a  - 1/2. La dépendance des coefficients du développement de ra&#x3E; en Z-1 est donnée explici-
tement en fonction du nombre d’électrons.

Abstract. 2014 Analytical expressions of ra&#x3E; for an atom. with arbitrary ionization degree are found within the
Thomas-Fermi model including the corrections for exchange and inhomogeneity of the electron density. The
contribution of strongly bound electrons is obtained for the expectation values of ra with 2014 5/2 a  - 1/2.
The Z-1 expansion coefficients of ra&#x3E; as a function of the electron number are given in an explicit form.
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1. Introduction. - In spite of the fact that in recent years considerable success has been achieved in the
description of the atomic structure within the Hartree-Fock method, interest to the studies of atomic properties
with easier methods is still increasing. Especially attractive in this respect is the Thomas-Fermi (TF) model of an
atom [1], which provides analytical relations of the physical properties of atomic systems with natural parameters,
namely : the electron number N and the nuclear charge Z.

The goal of this work is to obtain accurate analytical estimates of the expectation values of t4 within the
statistical theory including the strongly bound electron contribution.

Consider a system of N electrons at distances ri (I  i  N ) from the nucleus. The expectation value of the
position operator 14 is defined by

where 4J(rl ... ri ... rN) is the wave function of the system. The range of a depends on the wave function behaviour
at zero and at infinity and is given by the expression

The main part of  e &#x3E; for some a may be obtained within the simple statistical TF model following below.

2. Simple Thomas-Fermi model. - The TF model of atomic systems is based on the assumption that the
electron charge in an atom is distributed continuously with the density p(r).

In the TF model p(r) is related to the dimensionless atomic potential ’P(x) [1]
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Here x is the dimensionless radius defined by the expression :

T(x) is the solution to the dimensionless TF equation

with the boundary conditions

where xo is the ion boundary. For a neutral atom xo - oo. Here and below atomic units are used.
Using (3) it is easy to obtain the expression for the expectation value of the operator 14 in the TF-model :

From equations (4) and (5) one may see that both potential T(x) and xo depend on the parameter N/Z alone.
As Lieb and Simon [2] have shown, the TF-model is asymptotically exact in the limit N - oo. Therefore,

equation (6) gives asymptotically exact estimate of(l) in the range of a where the integral in the right-hand side
exists. For a neutral atom, equation (6) immediately gives the asymptotic dependence of  e &#x3E; on Z

where A(a) is calculated numerically using the universal function W(x) [3] :

Incorrect description of the electron density near the nucleus (p(r -+ 0) , r- 3/2 ) and at the periphery of a
neutral atom (p(r -+ oo) - r-’) in the TF-model restricts the validity of expression (6) to the following range :

This range includes four moments of the electron density a = - 1, 0, 1, 2. The zero moment is the normalization
integral, ( r2 ) and  r-l &#x3E; give the diamagnetic susceptibility and the nuclear magnetic shielding constant.
The first estimates of these moments were reported as early as in [1, 4]. More exact recent values of
A(a) at a = - 1,1,2 are presented in table I. The analysis of the Hartree-Fock data has shown that the asymptotic
relation ( r2 ) Z - I I’ = 43.240 may be obtained at Z far beyond Periodic Table whereas the asymptotic

describes the Hartree-Fock values for Ne and Rn within 25 % and 10 %, respectively.
Now we return to expression (6) for an atom with arbitrary N/Z. Since the positive ion radius in the TF-

model is finite, the range of validity of equation (6) is extended to :

Table I. - Values A(a) and AR(a).
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Therefore, it is possible to estimate all electron density moments for an ion but  r-’ &#x3E; within the TF-model.
It has been shown in [5] that the solution of the TF-equation for an ion may be expressed as :

where À = (1 - N/Z)I/2 xÕ/2. The functions ({Jk(X/XO) are determined from the hierarchy of the differential
equations in a closed form (see Appendix).

Using the boundary condition at x = 0

we obtained the N/Z series expansion of À. (consequently, of xo) at N/Z  1. Here we give some of the first terms
of xo(N/Z)

Combining equations (b), (8) and (9) yields the expansion of ( r TF at small N/Z for arbitrary a( - 3/2  a  oo) :

The expression of AQ(a) for arbitrary a was obtained in [6], and the derivation of A 1 (a) for the integer a is given in
Appendix. An equation similar to (11) can be obtained for A2(a) as well. Being bulky, it is omitted here, and we
present only numerical estimates of A2(a) alongside Ao(a) and A1 (a) for a = - 1, 1,2,3,4,5,6 (Table II). It may be
seen from table II that for a &#x3E;, 2, the Ak(a) grows rapidly with a which restricts the validity of (10) by small N/Z.

To improve the estimate (10) for ions with N/Z ’" 1, we examine ( ra )p for a weakly ionized atom.
We express ’P(x) with NIZ - 1 as :

where Y’o(x) is a solution of the TF-equation for a neutral atom and W,(x) is a correction function being the
solution of the equation obtained in [7]

Table II. - Values 1
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An asymptotic form of Y’o(x) and IF, (x) at x &#x3E;&#x3E; 1 is given by :

where c
Substitution of (12) into (6) yields :

For - 3/2  a  3, expression (14) may be given by :

The main contribution to the second and third integrals in (15) gives the range of x near xo. Allowing for only
the first terms in expansions (13) and the relation xo a-- 10.2(1 - N/Z)-1/3 for weakly ionized atom [8], we obtain
the asymptotic estimate of these integrals :

Equation (16) is based on the first-order correction function and gives only the approximate estimate of C(a).
To find accurate values of C(a), an infinite number of correction functions should be considered. Thus, accord-
ing to (1 5 ) and (16)

- , 

At a &#x3E; 3, the substitution of xo(N/Z) and asymptotic (13) into (14) gives :

at a = 3

Expressions (17) and (18) determine approximately the singularity type at NIZ --+ 1. It seems therefore useful to
express e &#x3E;TF at a &#x3E; 3 as (N/Z  1) :

where F(NIZ) is a function without singularities at N/Z = 0 and N/Z = 1. For a  3, the convergence of
series (10) can be improved using the Pad6-approximants. Equations (10) and (17) through (19) define the expecta-
tion value P as a function of N and Z at a large electron number.

3. Improved TF-models. - Expressions (7) and (10) for expectation values can be noticeably improved with
allowance for the quantum corrections due to exchange and inhomogeneity of the electron density within the
TF-model.

Numerical values of  t4 &#x3E; with the exchange interaction correction are usually obtained on the basis of the
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Thomas-Fermi-Dirac (TFD) equation [9]. The main difference between the TFD and TF-models is that a neutral
TFD atom is limited by xo  oo. Therefore, e &#x3E; may be evaluated at a &#x3E; 3.

The analytical dependence of the exchange contribution on N and Z may be conveniently obtained by the
first-order equation with respect to the exchange parameter, p = 1(6 nZ)- 2/3 [10] :

Using expression (20) for the electron density, we may re-write (6) as :

Here xex = Xo + å1 x is the boundary radius with the exchange interaction included.
The analysis of  ra &#x3E; through (21) for a neutral atom was made earlier [10]. Let us repeat the main conclu-

sions of this work. If a  3, then ( t4 &#x3E; for a neutral atom can be expressed as the sum of two parts :

where

x,,. - Z’1’ is the boundary radius of a neutral atom [10]. Allowing for the asymptotic behaviour of V’e- -- - 27/x,
one observes that  14 &#x3E;e. with - 3/2  a  1 may be expressed by :

where A,,.(a) is calculated numerically with the universal functions WTF(X) and We.(X) :

For a = - 1, Aex( - 1) = 0.454 37
At 1  a  3 the qualitative relation

follows from (23). Aex(a) can be evaluated only approximately.
At a &#x3E; 3, equation (22) does not hold because integrals (6) and (23) are divergent. Returning to (21), we obtain

the asymptotic

For ions, equation (22) is valid with any a in the range - 3/2 ( a ( oo. The correction function ’Pex(x) for an ion
is expressed as :

Some of the first xk(y) were found in [6] from the inhomogeneous second-order equation hierarchy.
Using the boundary condition at x = 0, we have found (see Appendix)
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Substituting (27) into (21 ) and including (28) show that ( P &#x3E;ex may be expressed as :

We have found for arbitrary 

The function A ex (a) for the integer a has been also obtained analytically (see Appendix); the numerical
values of AoX (a) and A 1 ex (a) for a = - 1, 1, ..., 6 are given in table II. As can be seen from table II, the inclusion
of the exchange interaction increases the expectation value  r-’ &#x3E; and decreases all other r4 ). The exchange
interaction effect grows with a.

The electron density inhomogeneity may be easily included within the Kompaneets-Pavlovsky (KP)
equation [11] :

Here WKP(X) is the function which includes all first-order corrections with respect to fl, i.e. the effects of the

exchange interaction and inhomogeneity of the electron density. Equation (31) has been obtained assuming a
weak inhomogeneity and is not valid near the nucleus and at the periphery of an atom.

The expression for  r" &#x3E; in the KP-model coincides with (21) if W,,,, -+ TfKp and xex - xKP where
XKP = Xo + A2X is the boundary radius in this model.

We have found that the solution of the KP-equation may be expressed by ’PTF(X) and W,,.(x). Indeed, substi-
tuting

into (31 ) shows that (32) is the particular solution of (31 ) with the boundary conditions :

Using the asymptotics of PTF(X) and Pex(x) gives that the asymptotic behaviour Wp(x - aJ ) = - 29/x for a
neutral atom only differs from W(x - oo) by a factor. Then, from the boundary condition

it follows

and therefore the asymptotic estimate  r’ &#x3E; at a &#x3E; 3 (26) holds including the inhomogeneity of the electron
density.

As with the TFD model at - 3/2  a  3, we represent Y4 &#x3E; in the form :

where
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The main contribution to the integrals in the right-hand side of (34) gives the range of x near xKP. Allowing for (33)
and the asymptotics of WTF(X -+ oo) and Ve.(X --+ oo), we have obtained that at 1  a  3, the estimate of
 14 )Kp has the form of (25).

The leading part of the correction for the exchange and inhomogeneity includes the non-analytical depen-
dence on xKP in determining r &#x3E;KP :

Then, according to (33)

At - 3/2  a  1, the second and third integrals play a leading part in (35) and the first one is the small correction.
These integrals slightly depend on the upper limit that may be therefore extended to infinity. Then,

where

The symbol denotes that the divergent part of the third integral in (35) appearing at - 3/2  a  - 1/2 is
omitted This divergent part is due to the incorrect description of the electron density near the nucleus and must
be substituted by the correct contribution of strongly bound electrons. The same approach will be applied to the
ionized atoms. Since at a = - 1 the second integral in (38) is equal to zero, we have :

Now consider r") for the ions. In this case expression (34) is valid at all a &#x3E; - 3/2. Using expressions (8),
(27) and equation (32), it is easy to obtain WKp(x) for the ions :

Substituting (40) into the boundary condition at x = 0

yields

likewise A, x was derived. Combining expressions (40), (41), (28) and (21) we obtain that the contribution due
to the exchange interaction and inhomogeneity of the density for N interacting electrons may be expressed as :

Expression (42) is of the same form as (29) and the improvement concerns only the coefficient values. We have
obtained the analytical expression of AKI (a) for integer a which is however omitted to save space and only the
numerical values of AKI (a) and AKP(a) (Table II) are given here.
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Comparison of AfP(a) with Ak x(a) easily shows that the electron density inhomogeneity correction is a small
part of the exchange one (below 2/9) for all considered values of a.

For a = - 1

at any k.

Equation (42) gives the correct estimate of  r" &#x3E;KP only for N interacting electrons. The exact result for
non-interacting electrons can be easily obtained from the summation over states within quantum theory.

4. Strongly bound electrons. - The estimate of  e &#x3E; at - 3  a  - 3/2 and the essential improvement
of  ra &#x3E; at - 1/2  a  - 3/2 can be obtained with the quantum effects near the nucleus taken into account.
A correct treatment of the strongly bound electron contribution has been recently suggested by Schwinger [12].
Following Schwinger, we delete from semi-classical integral (6), the incorrectly described contribution of strongly
bound electrons with the energy below (e). With the electron interaction neglected, it is possible to calculate
their contribution by summation over the states of  ra &#x3E;,,, for a hydrogen-like ion :

where n’ is the maximum value of the main quantum number of strongly bound electrons n’ = (Z 2/ - 2 B )1/2 ;
n’ may be a non-integer; the symbol [ ] denotes an integer part of the number.

The contribution of the bulk electrons is calculated using the TF-model. It is natural that the contribution
of strongly bound electrons, once taken into account by equation (44), must be deleted from the TF-contribu-
tion. Assuming that they are located at 0  x  x. where x. = 2 n’2(Z/l)-1 = - 2 Z(sy) - ’, it is possible to
express the TF-contribution as a sum of two parts :

In the second integral, the part to be subtracted is a quasi-classical analog of (44) ; the electrostatic potential
VFTF(X  1) is expressed as tJ1TF(X) = 1 + TT’F(o) X’

The partial integration of the first integral in (45) and the evaluation of the second one up to the terms

The second right-hand term of (46) - (n’)2a+ 3, is cancelled by one part of the strongly bound electron
contribution (44). For the integer a = - 1 and a = - 2, it can be easily shown by direct summation over n
and 1 using the expressions of  e &#x3E;,,, from [13] that

Approximating the stepwise function [n’] according to [12] by the continuous function [n’] = n’ - 1/2,
one can easily see that throughout  e &#x3E; = ( 14 )sb +  r’ &#x3E;TF the terms depending on n’ are cancelled out.
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Table III. - Expectation values  r-l &#x3E; and  r- 2 &#x3E; for a neutral atom (Hartree-Fock values are given in brac-
kets [15]).

In a similar way, for arbitrary - 5/2  a  - 1/2, we may express (a :A - 3/2)

The value Aq(- 2) obtained in [14] is presented in table I along with Aq(- 1). Equation (48) includes two terms,
namely, quantum and TF ones. At a &#x3E; - 3/2, the latter coincides with expression (6) obtained previously.
The TF-term, in its turn, may be supplemented with the corrections for the exchange and inhomogeneity of the
electron density. We will now consider the cases when it is legitimate.

At - 5/2  a  - 3/2 the quantum contribution _ Z-a is the main one and ( e &#x3E;TF - Z(’ -a)13 is a
correction for it. The inclusion of  r4 &#x3E;,,x or ( e )p is not valid since these terms are of the order of Z (I -a)13’
which is lower than the terms _ Z -a - (2/ 3) neglected in deriving (48). So, the expectation value ( e &#x3E; in the
range - 3/2 &#x3E; a &#x3E; - 5/2 will be determined from :

For a neutral atom,  e Bp has form (7), and for an ion expression (10) is valid. The values A(a) and Aq(a)
are presented in tables I and II. In particular, for a neutral atom [14]

In table III the values of ( r-’ &#x3E; from (50) are compared with the Hartree-Fock results [15]. It is seen that the
error rapidly falls as Z increases, and at Z - 100 it reaches 1 jo.

At - 3/2  a  - 1/2, ( ,-a &#x3E;TF is the main term, the quantum term is the first correction for it and

 e Kp is the second correction. In this range of a, we can include all three contributions considered in the
form :

In particular, combining (48) and (39), we obtain the asymptotic formula for a neutral atom with three exact
terms

A comparison with the Hartree-Fock data [15] shows that formula (52) can be used for rapid and reliable
estimation of  r-l ) beginning with Z - 10 (Table III).

Finally, at a &#x3E; - 1/2, the quantum contribution gives a higher-order correction than ra )KP and can be
omitted. Thus, at a &#x3E; - 1/2, ; e &#x3E; is determined by (34).

Equations (49), (51) and (34) express the expectation values e &#x3E; as functions of a and the ionization degree
within the TF-model with the exchange interaction, the inhomogeneity of the electron density and the strongly
bound electron contribution included.

5. Relation with Z -1 perturbation theory. - As is known [16],  t4 &#x3E; for light atoms may be calculated
from Z -’ expansion
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Exact Bo(a, N) can be obtained by summation over the hydrogenlike ion states. The asymptotic function
BO(a, N ) at a &#x3E; - 3/2 is given within the TF-model as in [6] :

It has been recently shown [17] that the asymptotic expression of Bo(a, N ) within the hydrogen-like model
fully coincides with (54).

For a  - 1/2, the asymptotic estimate of Bo includes the strongly bound electron contribution :

and at a  - 3/2, the second term in (55) becomes the leading one. Accurate calculation of the coefficients
Bk(a, N) at k &#x3E; 0 is very difficult and has been made only for He isoelectronic series. Expressions (10), (29)
and (42) give not only the structure but also a reliable estimate of Bk(a, N) :

Comparing the asymptotic Bo(a, N) from (54) and (55) with the exact ones, we have found that for a &#x3E; 0
there exists an oscillatory part of the relative order N - 1/3 and for a  0 its relative order is N - ’1’ (Fig. I ).
We propose that the behaviour of the oscillatory contribution to Bk(a, N ) with k &#x3E; 1 is similar.

An important property of the Z -1 expansion coefficients follows from expression (56) : the

ratio rapidly tends to the constant given by the TF-model at N - oo. In figure 2 the B21NB, = f(a, N) ratios
are given with the corrections for the exchange and inhomogeneity of the electron density. It is seen that for the
considered values of a the effects due to quantum corrections are essential for N  10 only. We expect that
within the TF-model the ratios of Z -1 expansion coefficients are reproduced better than the coefficients them-
selves.

The most accurate coefficients in Z -’ expansion can be obtained for the expectation values in the range
- 3/2  a  - 1/2 as follows from (51). For example, for ( r-1 ), combining (48), (10) and (42), we obtain :

The comparison of ( r-’ &#x3E; from (57) for Ar isoelectronic series with the Hartree-Fock results [15] shows
that the quantum mechanical ( r-’ &#x3E; are well reproduced by expression (57) over the whole range of N and Z
even for unclosed electron shells (Table IV).

Values of  e &#x3E; for ions at - 5/2  a  - 3/2 are described by equation (49). Since in (49) the corrections
Z -a - (2/3) are not included, its accuracy is lower than that of (57). However, in this case a reliable estimate of
( e &#x3E; may be also obtained (see Table IV).

Fig. 1. - The ratios of Bo(a, N) from (54)-(55) to exact ones
as a function of N : 1, a = 2; 2, a = - 1.

Fig. 2. - The B2/NB1 as a function of N 1, a == 2 ; 2,
a=4; 3, a = 6.
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Table IV. - Expectation values  r-l &#x3E; and  r-2 &#x3E; for Ar isoelectronic series (Hartree-Fock values are given
in brackets [15]).

For positive exponents the validity of formulas (34), (54) and (56) is limited by two factors. First, because
of the small number of terms in Z -1 expansion with quickly increasing coefficients these expressions can be
used only for multicharged ion properties. This disadvantage is also inherent in Z - ’ expansion with exact
coefficients already at N ~ 10 and can be overcome using expression (19) or Pad6-approximants of series (53).

The other disadvantage is peculiar of the TF-model and results from the absence of oscillatory contributions
to Bk(a, N) in expressions (54) and (56).

6. Conclusion. - To conclude the paper we repeat the main results of this work :

1) the expectation values of e are studied as a function of a and the ionization degree within the TF-model;
2) the analytical expressions for the corrections due to exchange and inhomogeneity of the electron density

are given;
3) it is shown that the inclusion of a strongly bound electron contribution provides a reliable estimate of

( e &#x3E; for negative exponents at - 5/2  a  - 3/2 and essentially improves it at - 3/2  a  - 1/2 ; .

4) analytical dependences of the Z -1 expansion coefficients of  e &#x3E; on N and a are obtained.

Acknowledgments. - The authors are grateful to Dr. L. Bartolotti who has kindly sent them the Hartree-
Fock expectation values.

Appendix. - Substituting (8) into TF-equation (4) and setting the coefficients equal at equal powers of À.
give a hierarchy of the equations [5] :

We present the first q&#x3E;k(Y) :

The subsequent (Pk(Y) values have the same structure. Further, we will need

From the condition we get the expansion

Substituting (8) into (6) and taking (A. 2) and (9) into account, we obtain :
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Equation (A. 3) can be expressed :

where

Jo(a) = F(512) F(a + 3/2) F -’(a + 4), where r(x) is the gamma function; J, (a) was calculated using the
recurrence relation :

Upon calculations, we have :

The substitution of (A. 5) into (A. 4) gives equation (11). In particular,

The values of A2(a) are calculated from the numerical estimates of J2(a).
In order to obtain the functions £B1 (x) (N, Z) and AiX(a) with the exchange included in the first order, the

function/i(y) - 1 1 - 3 and 0 = y are necessary [6].x1 

Using the boundary condition at x = 0

and bearing in mind that we find the relation of L11 x with xo and N/Z :

The N/Z series expansion of (A. 6) including (9) and setting the coefficients equal at equal powers of N/Z give (28).
One can see from (21) that when the exchange is taken into account in the first order with respect to fl, the

following additional contribution to ( ?4 &#x3E; appear : .

1) a contribution due to xo - xo + A,x and A --, A + AA
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2) a contribution of - #

Upon appropriate calculations, we have :

where Aöx is determined from relation (30),

with J 1 (a ) from (A. 5). For example,
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