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A symmetric theory of collisions

B. G. Giraud and M. A. Nagarajan (*)

Division de la Physique, Service de Physique Théorique, CEN Saclay, B.P. 2, 91190 Gif sur Yvette, France

(Reçu le 14 novembre 1979, accepté le 15 février 1980)

Résumé. 2014 Au lieu des matrices T03B203B1 usuelles, dont la définition varie quand les partitions liées aux voies 03B1 et 03B2
changent, il est possible de définir un opérateur T unique. Les amplitudes de transition physiques deviennent alors
des résidus de pôles pour des éléments de matrice bien choisis de cet opérateur T. Les problèmes soulevés par le
mouvement du centre de masse, le principe de Pauli et l’alternative post-prior sont simplifiés par la nature symé-
trique de cet opérateur T. La théorie peut être reliée à un principe variationnel afin de faciliter le calcul pratique
des éléments de matrice T.

Abstract. 2014 Instead of the usual transition operators T03B203B1, whose definitions change when the partitions corres-
ponding to 03B1 and/or 03B2 change, it is possible to define a unique T-operator. The physical transition amplitudes are
then recovered as residues of poles of specific matrix elements of the T-operator. Problems raised by the centre-of-
mass motion, the Pauli principe and the post-prior alternative are simplified by the symmetry of the T-operator.
The theory can be related to a variational principle in order to allow for practical calculations of the matrix elements
of the T-operator.
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1. Introduction. - Familiar theories [1] of rear-

rangement collisions for a transition from a channel a
to a channel fl consist, as a first step, in splitting the
total nucleus-nucleus interaction V Y Vij in the

ij

form Ua + Va where Ua is the sum of the binding
interactions of the incoming projectile and the target
and Va is the residual (prior) interaction. A similar
splitting of V into Up and Vp, the binding and post
interactions respectively relevant to the final channel,
is also considered. A second step of the theory consists
in defining the post (prior) transition operator

where G(+) is the total Green’s function

This is clearly a theory which would gain some ele-
gance if the channel labels and partitions do not need
to be introduced explicitly. For an attempt in this

direction, one may note that both Va and Vp are
equivalent to (E - H) when they act upon states

(*) Daresbury Laboratory, Daresbury, Warrington WA4 4AD,
U.K.

of their respective channels at the on-shell energy E.
Then Tpa. reduces [2] to

which appears more symmetric, although a little

confusing.
It is tempting to consider the global T-operator

T = V + VG(+)V , where only the total interaction
appears. Such an operator is defined without the need
of any preliminary channel specification, and it is
felt that it may contain all the information relevant
to the various transition operators Tpa.. It has indeed
been shown by Weinberg [3] that the calculation of
the total Green’s function G(+) yields a complete
solution of the many-body problem and it is seen
that the information contained in T should be as

complete as that given by G.
It should be pointed out that the point raised in

the preceding paragraph has been considered in great
detail by Lehmann, Symanzik and Zimmermann [4]
(LSZ) in the description of interacting fields. Non-
relativistic versions of the LSZ formulae have been
discussed by Redmond and Uretsky [5] and Ballot
and Becker [6]. A many particle scattering in second
quantized representation has been derived by Vil-
lars [7].
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In the particular case of the three-body problem,
the singularities of the global T-operator have been
discussed by Fadeev [8] and by Osborn and
Kowalski [9]. The effect of exchange has been dis-
cussed by Bencze and Redish [10].

In this paper, our purpose is to show that the

global T-operator provides a complete theory of
collisions. In section 2, we discuss the symmetry pro-
perties of the global T-operator. We also define the
antisymmetrized matrix elements of this T-operator
in the barycentric frame. The vertex functions are
defined in section 3 for the various subsystems which
can form bound states. The relation between the global
T-operator and the channel T-operators is discussed
in section 4. We rederive in section 5, with a new
approach, the familiar result that the matrix elements
of the channel T-operator are residues of the matrix
elements of the global T-operator. The nature of the
residues and the method of their evaluation are dis-
cussed in section 6. This is illustrated in section 7, by
a specific example. In section 8, we present a varia-
tional formalism for the elements of the global T-
operator. The final section, section 9, presents the
conclusions and summary of our work.

2. Symmetry properties of the global T-matrix for-
malism. - The N-nucleon Hamiltonian H = K + V
is the usual sum of kinetic energies and two-body
potentials

modified, however, by the subtraction of the centre-
of-mass kinetic energy or the addition of a centre-of-
mass harmonic binding. The first choice for the
modification makes H a pure internal Hamiltonian.
The second choice adds to this internal Hamiltonian
a harmonic oscillator for the centre-of-mass.

In both cases the centre-of-mass is decoupled from
the physical (internal) dynamics. The second choice
may be preferable, for the physical spectrum is shifted
by discrete amounts (3/2 + n) tzro, n = 0, 1,..., oo,
while the first case makes the spectrum of H in the
N-body space equal to the physical spectrum, but
with an infinite degeneracy due to -4he spectator
centre-of-mass states.
Whatever the choice made in eq. (2.1) the Hamil-

tonian contains at most two-body operators and is

symmetric. We call V the sum Y Vij and K the rest.
i&#x3E;j

We define the bare and complete resolvents

and the global T-operator

where W is a parametric energy. As long as W is
complex the resolvents are well defined and T obeys
the usual integral equation

It is obvious that all these operators V, K, Go, G and T
are symmetric.
We now consider the kets ki ... kN ) defined by

the wave function

with the constraint Y ki = 0 and (1ï/Mw) 1/2. It
i

is trivial to check that k 1 ... kN &#x3E; is an eigenstate
of K. The eigenvalue is the usual kinetic energy,
increased by ’ hw if necessary. We also notice that
a priori nothing prevents to take kl ... kN as complex
vectors. The point of interest is that no matrix ele-
ment of K, V, H, ..., T, nor any operator function of
these operators will ever connect k ... kN &#x3E; to any
state with a different centre-of-mass wave packet.
The problem of Galilean invariance is thus a priori
solved if matrix elements k’ ... k’ N [ T k1 ... kN &#x3E;
are correctly evaluated.

In the following we consider antisymmetrized
matrix elements

where k, resp. k’, is a short notation for (k1 ... kN),
resp. (k’ ... kg) and the antisymmetrizer A is defined
by

the permutation S exchanging the coordinates r ... rN.
It is clear that the consideration of T(k’, k) takes
fully into account the Pauli principle and eq. (2.6)
could as well be written in second quantization. It
will be shown in the next sections that the singularities
of this highly symmetric function, T(k’, k), are easily
related to physical scattering amplitudes between
fermion clusters.

3. Vertex functions. - It is not uncommon that the

spectrum of H contains, below continuous thresholds,
discrete eigenvalues En corresponding to bound states
(PN of N nucleons. Since T = V + V(W - H)-1 V,
the behaviour of T (k’, k), when W - En for an
arbitrary choice of k and k’, is obviously that of
a simple pole. The vertex function is then defined by
the residue
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Alternately a contour integral in the W-plane about
the ENn pole gives the same residue. This question of
vertex functions has received already much attention
in the literature and we shall consider these vertex
functions as known in the next sections.
More precisely, in order to investigate a collision 

of two nuclei adding up to N nucleons, we shall
assume that all vertex function for N’  N have
been tabulated in advance, or can be derived (at least
approximately) by suitable approximations to the
calculation of T(k’, k) in eq. (3.1). In the same way,
we assume that all necessary energies E:’ are known
when N’  N (of course the poles of r(k’, k) may
have to be shifted b y 3 nw to recover the physical
energies, but this kind of precaution will be under-
stood in the following).

4. Connection with channel T-matrices. - We are
interested in a transfer collision with two-body initial
channel a with nuclei A’ A" and final channel fl with
nuclei B’ B". The total physical energy is E = Ea + E:,’
where Ea is the energy available in the channel above
the threshold energy Em = Em’ + Em"A", sum of the
self-energies of the nuclei in their eigenstates labelled
by m’ and m". In the same way E = Ep + Ef, where
Ep is the kinetic energy available in the final channel
and Et the self-energy of the channel. 
The nucleons numbered 1 to A’ are considered

arbitrarily to belong to nucleus A’ and those from
(A’ + 1) to N to nucleus A". We split V into Va
and Ua, where Va contains all potentials Vij such
as i &#x3E; A’ and i  A’. In other words V,,, is the prior
interaction and Ua is that interaction considered to
be internal to the initial channel.

In the same way for the channel fl we give labels 1
to B’ to nucleons inside nucleus B’ and labels (B’ + 1)
to N to nucleons inside B" and we obtain the post
potential Vp and internal potential Up.
A straightforward but slightly tedious manipula-

tion of eq. (2.3) gives the two potential identity [11] 

where

It may be pointed out that, while the limit of eq. (4.1)
when W - E + ig demands precautions because Ql,
Tp(1. and Q(1. may be simultaneously singular, this

eq. (4.1) is a strict identity as long as these operators
are non singular ( W complex). One recognizes then
that Q,,, Ql become Moller operators on the energy
shell and Ts;ior, TS:st are the usual T-operators relating

to the specific partitions induced by the above des-
cription of the channel a and p.

If now we consider in channel fl a permutation X
difi’erent from the identity (1), let 11 be the label of
the particle replacing particle l, i2 that of the particle
replacing particle 2 and so on. Assigning i 1 ... iB,
to nucleus B’ and IB’+l ... iN to B", we define new
operators Vp, Up, dpl, To« accordingly. It is clear
that Tprx will give an exchange T-matrix element
while Tprx will give a direct process matrix element.
Thus eq. (4.1) generalizes for each partition into

To conclude this section it can be stressed that the

splitting of V into channel internal and residual
interactions connects the global T-operator to the

familiar Moller operators and T-operators relating
to specific channels and partitions.

5. Double pole singularities. - Because of the sym-
metry of T, the number T(k’, k) also reads

where we let now the permutations exchange
k’1 ... kg into k’1... kN. We will then study the singu-
larities of the non antisymmetrized matrix elements
T(k’, k) occurring in the right-hand side of eq. (5.1).
We first study T(k’, k), corresponding to the iden-

tity (2) for S’. With particle labels 1 to A’ inside
nucleus A’ and labels (A’ + 1) to lV inside A", we
combine k I .. - kA" into (A’ - 1) Jacobi momenta K,,,
internal to A’, then kA’+ ... kN into (A" - 1) Jacobi
momenta KA" internal to A" and finally find a relative
momentum ka in the channel (the total momentum
has already been constrained to vanish, see after

eq. (2.5)). The ket I k &#x3E; then reads I K(X k(X &#x3E; in an
obvious short notation. A similar reduction of ki ... kB,
and k’ +1 ... kN into Jacobi momenta defines as well
a final channel momentum kj and internal momenta K’.

It is now convenient to consider T(k’, k) as a func-
tion of k and kp only, namely to freeze W, K(X and Kp,
and take advantage of eq. (4.1) to get the form

According to eqs. (4.2) this also reads

(1) Notice, however, that rearrangement within a cluster is

equivalent to an identity operation.
(2) Same footnote as for T.
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where Ea = h2 k2a/2 ,ua, in an obvious notation, is the
kinetic energy available in the channel a with the

partition under consideration and Ha is the corres-

ponding internal Hamiltonian. With W complex
nothing prevents us from adjusting ka so that

the channel self-energy considered at the beginning
of section 4. The residue of the pole is, obviously,

where cpr:" is the product of the two bound-state wave-
functions wfl and M" of the nuclei in the channel.
Accordingly the vertex function w£ I va I K,,, &#x3E; is

the product of the vertex functions for the two nuclei,
 cP  I U A’ I K A’ &#x3E; and  (p A"’ I U A" I K A" &#x3E;.
We can stress here that i) W is complex, with a

slight positive imaginary part and thus the physical
limit has not yet been taken, then ii) the magni-
tude ka is positive, with a slight positive imaginary
part, but the difference W - Jï2 k’;/2 Jlrx can be taken
as a purely real, negative number close to Ern, thus iii)
Q. is having real energy denominators. The limit,
eq. (5.4), thus disentangles the pole of Drx from the
cuts of Tprx.
A similar argument concerning the limit obtained

with k’ gives the result

Here again k§ has a slight positive imaginary part
which can be adjusted so that the energy denominator
induced in Q by (W - tz2 k’p2/2 Jlp - Hg) be real.
The vertex function  Kp I Up I (P# &#x3E; is again assumed
to be known from section 3.
The two limits present in eq. (5.5) may be commuted

and present a priori no difficulty other than technical.
More important is the investigation of the limit of
the right-hand side of eq. (5.5) when the positive
imaginary part s of W = E + is, with E the physical
energy, is made to vanish. It is obvious that the vertex
functions bring no difficulty and thus we concentrate
on the T-matrix element. It reads, in a short notation

where k’ and ka. indicate the orientations of kp and ka.
A crucial property of this number T( + iE) is that

it is a completely on-shell matrix element, as seen by
the exact square root links between W and the complex
lengths of k’ and ka. On-shell matrix elements are

usually considered only for real values of the energy,
but their analytic continuation away from the real
axis should normally be possible in a non vanishing
domain. We thus consider that there is sufficiently
reasonable evidence that the limit of T(iE) when 8 --&#x3E; 0
is the desired physical amplitude [12].
To summarize this section we consider that the

double limit, eq. (5.5), taken for W complex, and
followed by the limit where W becomes real, is a

way to extract physical amplitudes from the global
T-matrix formalism.

6. Sorting out of the residues. - The argument
leading to eq. (5.5) is mainly based on the identity,
eq. (4.1 ), which leads to identification of the residue
as a matrix element of TaP. Other identities like eq. (4.3)
are available, however. It is important to check that
different partitions in the particle labels do not lead
to additional singularities modifying the interpreta-
tion of the residue of T(k’, k).
Let il, ..., iB, be a distinct (3) numbering for the

nucleons of nucleus B’ and iB,+ 1... iN the corres-
ponding numberings for B". For the given set of labels
k’ ... k’ the reduction of kf1 ... kfB, to Jacobi
momenta KB, and that of k’B, + 1 ... kiN to KB" define
a new channel momentum k’. It is trivial to see that
in general kp =1= k’* It is therefore in generale possible
not to bring simultaneously k’ and k’ on-shell and
thus the only residue occurring in the right-hand
side of eq. (5.5) is indeed that shown by this eq. (5.5).
This point is shown in more detail by the illustrative
example of section 7.
A risk of wrong identification of the residue occurs

also in relation with three-body channels. Let y be
such a channel, characterized by nuclei C’, C" and C"’
and the corresponding quantum numbers n’, n", n"’,
with the self-energy En = Ec,’ + Ec,,’ + Efil?’ . Any
partition {i} of nucleons 1 ... N between C’, C", C"’
defines internal Jacobi momenta Kc,, i-cc,,, KC"’ and
channel relative momenta kc’c" and kc,,c,,,. It is trivial
to check that, for a set of momenta k’ ... kN which
makes kp on-shell, the momenta kc’c" and k’,,c,,, will
in general not correspond to the situation where the
three-body channel y is on-shell. The residue in the
right-hand side of eq. (5.5) has therefore no contri-
bution from an identity such as the generalization of
eq. (4. 3) to three-body channels. The same argument
and conclusion hold for channels 6 with more than
three bodies. More details can be found in the illus-
trative example of section 7.

To summarize this argument the singularity of
T(k’, k), when this part of the global T-matrix ele-
ment is made on-shell according to the limit used in
eq. (5. 5), is restricted in general to that transition Tpa
described by eq. (5.5). The key point of the argument

(3) Again here a distinct numbering means a true exchange
between the channel nuclei.
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is that the number of all other partitions and channels
is in general finite. On can thus choose (K’, k’) and
(Ka, k(X) so that all the other internal and channel
momenta (K’, k’) and (xy, ky) resulting from the
reduction to the other Jacobi momenta are off-shell.

It is now necessary to consider the other terms

 k’ I T I k &#x3E; contained in I(k’, k), eq. (5. 1). The
labels k’, k of T being the same as those of its first
term T(k’, k), we use again the same reduction to
Jacobi momenta and consider T as a function of the
same k’, ka only. Again we consider the limit of

when kp and ka are made on-shell in the same way as
in eq. (5. 5). Let S’be the permutation of final momenta
which characterizes a term k’ [ T [ k ) . If one uses
eq. (4. 3) to analyse the behaviour of that term, it is
clear that the permutation 5’ which leads to eq. (4. 3)
has to be equivalent to 5" if the resulting momenta
(K’, k’) must remain K’ and kp.
More precisely, since S’ exchanges momenta and

exchanges the particles, the Jacobi and channel
momenta are not changed when 5’ and (T’ are equi-
valent. The term k’ [ T [ k ) diverges therefore in
the same way as the first term T(k’, k). The corres-
ponding residue then contains the same vertex func-
tions and an on-shell matrix element of that exchange
T-operator Tp0152 defined by the permutation 5.
On the other hand if 5’ and (T’ are not equivalent,

the channel and Jacobi momenta are those obtained

by replacing S’ by the identity and 5’ by 5"-’ 5. It
has already been seen that in general the new channel
momentum kp is different from k’. It thus cannot go
on-shell simultaneously with k’, and no contribution
to the pole is found.
We have thus proved that in general the on-shell

limit of 9B, eq. (6.1) is

where T( + is) is the on-shell element of the T-operator
defined by S. In other words the physical amplitude
can be completely derived from the global T-matrix
element T(k’, ka).

7. An illustrative example. - We consider here a
system of 5 fermions and assume, for the sake of

simplicity, that there is only one bound state in each
of the two, three and four-body systems. The corres-
ponding self-energies are labelled E2, E3 and E4 res-
pectively. We are interested in a collision where a
projectile of two nucleons drops one nucleon on the
three-nucleon target. The various channels of interest
are, in an obvious notation

where we have also shown the number of non equi-
valent partitions for each channel.

Because of the constraint Y k. = E ki = 0, the
i i

global T-matrix element T(k’, k) is a function of
50 independent variables, including W. We define

and retain only k, to k4 as independent variables.
In the same way we retain only k 1 to k’4 and define
k’ = ki. We then freeze W, and the combinations

The on-shell conditions read

and

This defines in the 48-dimensional space k, - - - k4,
k’1 ... k’ a locus of dimension 44. Let it be the nucleon
mass. Any additional on-shell condition, for a break-
up channel y for instance in the partition 1 + 2 + (345),

reduces in general the locus given by eqs. (7.3) to a
smaller locus of dimension at most 42. For, obviously,
eq. (7.4) is not a consequence of eqs. (7. 3). It is there-
fore always possible to choose K1... K’3 so that the
resulting point in the locus defined by eqs. (7.3) lies
away from that defined by eq. (7.4). Because only
scalars are involved the orientations Îcrz, Îcp are comple-
tely free.
Any additional choice of channel and partition

generates a condition analogous to eq. (7.4). The
intersection of all those loci with the locus defined

by eqs. (7.3) remains of dimension 42, for the number
of loci is finite, as shown by the table (7. 1). It is
indeed smaller than 10 + 15 + ... + 1 = 36.

This proves that the choice of momenta which
induce on-shell properties for two channels only and
exclude on-shell properties for any partition of any
other channel is bound to succeed.
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Returning now to the problem of partitions in the
only two channels which remain on-shell, it is clear
for instance that if particles 1 and 2 are permuted in
the channel fl, the corresponding i’ becomes k2. The
on-shell condition

can then trivially be made incompatible with eqs. (7.3)
by a suitable choice of the xl, x2, K3’
Although very tedious in practice, this procedure

shows that the proper identification of the singula-
rities of the Moller operators Q is feasible.

8. A variational principle. - We want now to esti-
mate T(k’, k). We first consider completely off-shell
conditions. Namely we select i) W complex and ii)
all momenta k, k’ so that no equation like eqs. (7.3)
be satisfied, for any channel and partition.
Furthermore we take great care that T should

contain no contribution from disconnected graphs.
For that purpose, k and k’ are chosen so that any ki
is never equal to any kJ, nor any sum (k. + kk) to
any sum (kj + k’l) and so on. This is again always
possible, and compatible with off-shell conditions.

In order to evaluate T(k’, k) for complex values
of k’, k one may think first of evaluations for real
values of these vectors, followed by an analytic
continuation. It is interesting to point out that,
when W is complex, all the real values of k, and k’
are off-shell since the conditions such as eqs. (7.3)
to (7.5) are polynomials with real coefficients

except W.
For real values of k we thus consider the wave-

packet

where I p &#x3E; = p1 ... PN &#x3E; is a ket like that defined by
eq. (2.5) with real momenta p and the weight func-
tion r, of finite extension L1, is suitably normalized
by the proper coefficient À(L1). It is clear that the

wave-packet I kA &#x3E; will induce an average of purely
off-shell situations around k. The finite extension L1
is chosen to prevent any dangerous, unconnected
contribution to creep in through the wave-packets.
The matrix element of the global T-operator

is then an average of purely off-shell matrix elements.
The global off-shell T-operator T(W), with W
complex, is a priori regular for all off-shell momenta,
in a neighbourhood of (k’, k). The off-shell matrix
element between plane waves is then the limit

obtained when the packets r are shrunk to zero width.

The technical advantage of the matrix element
T(k’, k, A) is that the bra and ket are square inte-

grable. The functional

is then in principle easy to calculate for any square
integrable trial functions x, x’. The stationarity
conditions of F with respect to x and x’ then read

As long as W is complex they guarantee that x and x’
are square integrable.
The stationary value of F is thus

In the limit J --+ 0 the matrix element

vanishes as soon as k’ and k are not strictly identical,
which is indeed the case. According to eq. (8.3) this
limit of F’ gives therefore the completely off-shell
element t(k’, k) between real plane waves.

It can be concluded that the variational principle
based on F, eq. (8.4), followed by the limit, eq. (8.3),
gives a possible calculation of the off-shell elements T
if a sufficiently large class of trial functions x and x’
can be used.

Alternately one may use a variational principle
based on the functional

which is obviously related to that of Lemmer and
Hiifner [13]. But this functional F’ is not symmetric
and will not be discussed here.
The last step is the analytic continuation of the

off-shell elements T(k’, k) from real to complex off-
shell values of k, k’. Let k, k’ be such complex off-shell
values. As later k and k’ will be made on-shell, it is

interesting to choose k and k’ between the domain
of real momenta and the smooth hypersurfaces
defined by the equations of energy conservation.

Indeed the complex domain of k, k’ makes a space
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of dimension 12 N - 12, the real domain of these
vectors makes a subspace of dimension 6 N - 6 and
the quadratic loci defined by eqs. (7.3) to (7.5) for
instance have no real points for W complex. There
is thus always a path starting from the real domain,
terminating on-shell and with all its intermediate

points off-shell.
A folding operation with p, p’ real and k, k’ complex

on such a path

followed by the suitable limit A --* 0 provides then
T(k’, k). We point out here that all the paths starting
from p, p’ and arriving at k, k’ remain in the regularity
domain of off-shell matrix elements as p and p’ are
integrated upon. Here r can be a truncated Gaussian,
the analytic continuation of which is trivial.
A short cut combining the use of wave-packets and

analytic continuation consists in setting k and k’

off-shell and complex directly in eq. (8.1) and carry
the steps up to eq. (8.6) or (8.7). For obvious reasons
of mathematical caution we have first described in
this section separately the wave-packet limit and the
analytic continuation. It is clear, however, that one
may expect analyticity properties of the fully connected
part of T(k’, k) in the neighbourhood of an off shell
and necessarily connected configuration of momenta
(k’, k) if the interactions Vij are sufficiently short-
ranged.

9. Discussion and conclusion. - Once the global
T-matrix operator has been defined, there are three
major steps in the calculations derived from the

present theory. The first consists in the calculation
of off shell matrix elements for complex energy and
momenta. This is provided by a variational principle
between wave-packets and normalized trial functions,
an a priori safe procedure. It should be noted that the
variational principle suggested here is different from
the one formulated for the channel transition ampli-
tudes [14]. The accuracy of the variational calculation,
however, obviously depends on the richness of the
space of trial functions like in all variational

approaches. The limit from wave-packets to plane
waves is taken after the variational calculation, which
is the correct approach.
The second step consists in the selection of specific

channel amplitudes by a limit to on-shell, still in the
complex domain. Although the identification of the
nature of the singularities which occur in this on-
shell limit is difficult, we have gone a long way towards
showing that the other channels can be prevented
from contaminating the residue. This is obtained by
proper selections of the Jacobi momenta which do
not go on-shell. While the complete investigation of

all possible channels contaminations is a priori
tedious, it has been proved that it is in principle
possible. Furthermore the equations of on-shell limit
can be written in terms of the single particle momenta,
thus making the theory perfectly symmetric. We have
proved that the identification of channels is easily
compatible with the Pauli principle. The Galilean
invariance of the procedure is also explicit.
The last step is the limit for a real energy of the

residue obtained by the second step. As long as the
energy is complex the resolvent is that regular ope-
rator which converts normalizable states into norma-

lizable states. As + is --.), 0 the limit of the totally
on-shell amplitude extracted as a residue is then

identified with the usual physical amplitude Tfi;) with
outgoing boundary conditions. A more detailed ana-
lysis of this limit is necessary in order to confirm the
identification with the physical outgoing amplitude.
It is already gratifying at this stage of the theory to
have a well defined, unique limit prescription.
The main problem in this theory is the practical

calculation of the matrix elements of T. While this
calculation can be related to more traditional theories
of coupled channels and may be guided by a varia-
tional principle, some more practical investigation is
clearly needed. The connected kernel methods [15]
developed by various authors would very likely
improve our understanding of numerical algorithms.
It can be noted that Slater determinants can be used
as trial functions in the variational principle. This
may relate the theory with Hartree-Fock-like approxi-
mations.

While the theory is still formal, its main interest
lies in its perfect symmetry. Only symmetric operators
such as the total potential or kinetic energies appear.
Specific channels are recognized, rather than intro-
duced a priori. The recognition of the channels is

accomplished through a prior calculation of the
cluster binding energies, Em, Ef. This demands only
diagonalization of the full Hamiltonian for smaller
numbers of particles and for a few of their bound
states. In particular, the use of the global T-operator
demands that the channel states appear directly from
the analytic properties of the total Green’s function.
This stresses the importances of consistent approxi-
mations in the evaluation of transition amplitudes.
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