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ANISOTROPY OF THE NUCLEAR MAGNETIC RELAXATION TIMES
INDUCED IN SOLID 3He BY MODULATION

OF THE DIPOLAR INTERACTIONS (*)

G. DEVILLE

Service de Physique du Solide et de Résonance Magnétique,
Centre d’Etudes Nucleaires de Saclay, B.P. 2, 91190 Gif-sur-Yvette, France

(Reçu le 5 novembre 1975, révisé le 9 février 1976, accepté le 16 février 1976)

Résumé. 2014 On présente des mesures de temps de relaxation magnétique nucléaire anisotropes
dans des échantillons d’hélium trois solide fabriqués à pression constante, qui ont été réalisées aux
fréquences de Larmor comprises entre 1,5 MHz et 5 MHz et lorsque le mécanisme dominant dans la
relaxation est la modulation de l’interaction dipolaire par l’échange ou le mouvement des lacunes.
Le calcul au second ordre fait par Harris dans le cas où la relaxation est dominée par l’échange est
étendu au régime pour lequel c’est le mouvement des lacunes qui l’emporte. On complète ensuite la
théorie en considérant l’effet de l’anisotropie du quatrième moment sur les densités spectrales.
Ce calcul fait ressortir une contribution anisotrope à T1 qui est fonction de la fréquence de Larmor.
Ce fait est en accord qualitatif avec nos mesures contrairement aux résultats plus simples obtenus
par Harris.

Abstract. 2014 Anisotropic nuclear relaxation times have been measured in solid 3He samples grown
at constant pressure, in the Larmor frequency range 1.5 MHz-5 MHz and where the main relaxation
mechanism is the modulation of the dipolar interaction by exchange or by motion of the vacancies.
The second order calculation made by Harris for the exchange induced relaxation regime is extended
to the regime where vacancy motion dominates. The theory is further refined by considering the
fourth moment anisotropy effect on the spectral densities. This latter calculation yields a frequency
dependent anisotropic contribution to T1 which agrees qualitatively with the data, unlike the simpler
results by Harris.
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1. Introduction. - Most of the NMR studies of
solid helium three have been performed with samples
grown by the blocked capillary method [1, 2, 3].
This simple method produces solids of well defined
molar volume but, as the crystallization is realized by
nucleation in bulk liquid, it is excepted to generate a
few single crystals which are probably randomly
orientated [4]. One is therefore justified in considering
these samples as powders and, in particular, perform-
ing the angular averages over all possible orien-
tations when calculating relaxation times. Actually,
most of the NMR expérimental results are in agree-
ment with such a hypothesis [5]. It is also known that
near its melting temperature, solid helium three
contains a large number of thermally excitated and
very mobile vacancies [6] which facilitate the atomic
motions and the solid exhibits an important tendency
to anneal [7]. An anisotropic transverse relaxation

time was reported for the first time to our knowledge
by Giffard et al. [8] who studied a sample grown
by the blocked capillary method : it was a body
centered cubic ’He crystal whose molar volume was
Vm = 20 cm’ and it exhibited an anisotropy

at the Larmor frequency m/2 x = 1.9 MHz and at the
temperature T = 0.89 K. In this experiment the

anisotropic feature was the only sign of the mono-
crystalline state of the sample. However, the K2 value
just as the T2 dependence on the magnetic field
orientation were consistent with the expected aniso-
tropic relaxation times [9] for a single crystal deduced
from the anisotropy of the second moment of the
resonance line [10].
The properties of solid helium have been extensively

studied in other fields : measurements of the thermal

conductivity [11], sound propagation [12,13,14] and
ionic mobilities [15], which require high quality
monocrystalline samples. New constant pressure
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growing techniques have been used in which the

temperature of the filling capillary is maintained

slightly above the melting temperature of the solid [11]
in order to avoid the blocking of the capillary. The
crystal is thereby grown under a temperature gradient
with a well defined solid-liquid interface. In many
experiments the growing and the crystal quality are
controlled separately by either direct observation [13]
or measurement of the optical birefringence [ 12] while
the crystal orientation is determined either by X
rays [13] or optical birefringence techniques [12]. The
latter techniques for determining the orientation of
the crystal are determined by the nature of the mea-
surements undertaken but, by no means, can they be
used for testing the crystal quality. For instance, a
sample could exhibit an excellent Laue photograph,
it could be perfectly transparent and yet still be

inadequate for a sound propagation experiment. This
result shows that the test of crystal quality depends
on the kind of measurements envisaged. The mono-
crystalline assumption is verified only through the
interpretation of the experimental results.
The aim of this paper is to present NMR relaxation

measurements carried out for ’He crystals grown at
constant pressure. Most of our numerous data show

large Tl and T2 anisotropies when rotating the

magnetic field with respect to crystal axis. Unlike the
work in references [12] and [13], we did not use an
additional method to test the crystal quality and for
this reason the NMR results can not be compared with
independent data. Nevertheless, the analysis of the
NMR relaxation features is consistent with a single
crystal assumption and we believe that most of our
samples were monocrystalline.

After a short description of the apparatus and the
crystal growing technique we present the experimental

’ 

results obtained in the Larmor frequency range
1’.5 MHz-5 MHz and in the two crystalline phases :
body centered cubic (bcc) and hexagonal closed

packed (hcp). The comparison of these results with
Harris’s theory [9] leads to a disagreement which is
shown to be partially lifted when the anisotropy of
the fourth moment is included in the dipole energy
correlation function.

2. Experimental techniques. - The apparatus has
been already described briefly in a previous paper [6].
As we did not use a ’He refrigerator, the lowest

temperature obtained in the present apparatus with
pumped ’He was about 1 180 mK. We used a coherent
pulsed NMR spectrometer operating between 1.5 MHz
and 5 MHz. The pulse sequences we used were either
a 90°-90° sequence in Tl measurements [16] or a

90°-180° or a multiple pulses sequence 90°-180°-
1800... 1800 [17] in T2 measurements. The data were
obtained with an accuracy of the order of 1 to 2 % for
Ti and 3 % for T2. The 4He concentration was less
than 250 ppm but no attempt has been made to
purify commercial ’He (Monsanto high purity grade
3He). 

The experimental pressure cell was built using
Kel-F. The sample chamber was cylindrical, having
its axis aligned vertically, and was 6 mm in diameter
and had a height of 10 mm, i.e. a 280 mm3 volume.
The pressure cell was thermally linked to the 4He
bath by a copper plug which terminated in a finger
at the bottom of the 3He sample. This copper finger
produced a cold point where the crystallization was
initiated. The 3He capillary entered the top of the cell
and was thermally isolated by a 10 mm diameter tube
which could be either pumped or filled with exchange
gas. The last 10 cm of the capillary could also be
heated by means of a 100 Q resistor. Both the tem-
perature and the temperature gradient were measured
with the help of two thermometric carbon resistors :
the first one, Rl, was inside the copper plug close to
the bottom of the cell and the second one, R2, was
close to the end of the capillary, at the top of the cell.
A feed-back system using R2 as the sensor was used
to monitor the capillary heating current when

necessary.

GROWING OF CRYSTALS. - The most important
process is to monitor the temperature gradient
VT oc ( T(R 1 ) - T(R2 )). The time evolutions of T(R 1 ),
T(R2) and VT during a crystal growth are shown
in figure 1. The approximative time scale shows that

FIG. 1. - Variations of the temperature and of the gradient-
temperature of the cell during a crystal growth. The values given are

indicative as they can vary slightly from run to run. T. is the melting
température of the solid at the chosen pressure. T(R2) is the upper
cell temperature (capillary temperature) and T(R1) is the temperature

of the bottom of the cell connected with the He4 bath.
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approximately 30 min is needed to grow a crystal from
liquid helium three. R2 is stabilized at about 20 mK
above the melting temperature T. while the bottom of
the cell is slowly cooled by pumping the 4He bath
until the NMR signal appropriate for the solid

appears. The signal for the solid is easily distinguished
from that of the liquid since near T., and in our
frequency range, the longitudinal relaxation time of
liquid ’He is of the order of 100 s while it is only
about 500 ms in bcc solid and 50 ms in hcp solid.
Thus, saturation of liquid signal with recurrent 900
pulses renders only the signal of the solid visible.
The increase of this solid signal observed on a memory
oscillograph gives a direct picture of the crystal
growth. When the solid signal appears, T(R1) is
decreased more slowly while T(R2) is lowered until it
almost reaches T.. After checking on the oscillograph
in order to ensure that the entire sample is in the solid
phase, exchange gas is introduced in the capillary
isolation tube; this lowers T(R2) suddenly below T.
and the capillary is blocked and the growth of the
crystal is completed. One can either anneal the crystal
for a short or a long time or begin the measurements.
Except for the electronic control of the capillary
heating, all the processes described above are manual ;
the values of T(R) or VT can therefore fluctuate

slightly from run to run but this feature has no conse-
quence on the crystal quality.

3. Relaxation theory in 3He single crystals. - In
the temperature range of our experiments

the mechanism dominating the solid ’He relaxation
is the modulation of the spin dipolar interaction by
motion [4] : atomic motion due to vacancies or spin
motion due to exchange interaction. The use of the
energy-baths model [2] has proved to be very success-
ful in accounting for the experimental results for the
spin lattice relaxation time Tl. This model has been
widely refined since and an up to date description can
be found in reference [3]. We adopt their terminology
for the motional relaxation regimes : the Z-VP

regime refers to the direct relaxation of Zeeman

energy by atomic motion when vacancies are numerous
while the Z-EP regime observed at lower temperatures
corresponds to the Zeeman-exchange cross relaxation.
A comprehensive study of these two regimes is reported
in references [18] and [19].

All the theories mentioned above apply to poly-
crystalline samples whose correlations functions are
rather simple. To our knowledge, very few papers deal
with spin relaxation induced by motion in single
crystals. The random walk model [20] proposed by
Torrey a long time ago as a description of the Z-VP
regime in polycrystals has been extended by Wolf [21,
22] to correlated diffusion mechanisms in single
crystals. We are aware of only one publication [9],
already mentioned in the introduction, dealing with

Z-EP regime in helium three single crystals. It gives a
simple account of the anisotropic features, although
it does not agree very well with our experimental
results. As its predictions will help us in analysing the
data, this theory is first reviewed and then we show
that it can be easily extended to the Z-VP regime.
The dipolar hamiltonian [23]

can be written as a scalar product of spins and lattice
tensor operators [18] :

Tij are spin operators :

As a result of the large zero point motion, the
distance r ij appearing in lattice operators is not the
distance Rij between crystalline sites i and j but the
thermal average of lattice operators can be written as :

where wij defines the orientation of vector rij, Qij
defines the orientation of vector Rij and ç(Rij) is a

renormalization function for the dipolar hamiltonian.
The reader will find in reference [18] a discussion of
the renormalization function. Let us postpone the
consideration of the effect of this function and take

ç(Rij) = l. The calculation is then widely simplified
and yields :

with
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Up to this point, there has been no need to specify
which of the Z-VP regime or of the Z-EP regime was
being considered as the information about spin motion
is contained in the correlation function rijki(t) to be
defined later. As a first step we present Harris’s
calculation in which it is assumed that the angular
dependence of gm(t) is wholly included in gm(0). We
will show later that this simple theory can easily be
extended to the Z-VP regime. Then, we drop Harris’s
assumption in order to take account of the anisotropy
of the correlation function Fijkl(t). This leads to a
frequency dependent Tl anisotropy which is in good
agreement with our data, contrary to the results

predicted by Harris’s simple theory. We shall make
more comments on this point when describing the
experimental data.

3.1 SECOND ORDER CALCULATION. - 3.1.1 Z-EP

regime [9]. - The motion is expressed in terms of the
exchange hamiltonian :

This last expression is m independent owing to the
rotational invariance of JC,,. There are two types of
terms : like terms such as rijij(t) or unlike terms as
rij:=kl(t) with different shapes as shown in figure 2.

For like terms, the correlation is maximum at time
zero and then decreases with a characteristic time of
the order of 1 /J while during the same time the
unlike terms reach a maximum value under the effect
of the exchange interactions. A straightforward
calculation yields

The Taylor expansion of the function go(t) can

easily be written in terms of moments of the absorption

FIG. 2. - Approximative shapes of the two kinds of terms of the
spin correlation function rijkl(t) when the exchange interaction
mechanism is dominant. For like terms, the correlation is maximum
at time zero and then decreases with a characteristic time of the
order of 1/V while during the same time the unlike terms reach a
maximum value under the effect of the exchange interaction. The
like terms rijik contribute to the second moment M2 and the fourth
moment M4 whereas the unlike terms only contribute to the fourth

moment as r ij 4- kl(O) = 0 .

resonant line whose Fourier transform is the free

precession decay signal G(t) [23]

Indeed, from :

one obtains the expressions for the second and the
fourth moments M2 and M4 :

if we keep only the J2 terms in the M4 expression.
Observing that rij*kl(O) = 0, only products of the

form Y2m*(Qij) Y2m(Qij) appear in 9m(0) which can be
written as [24] :

Expression (5) becomes :

which leads to the expressions :

where the SL coefficients are defined by the expres-
sions : 

PL(Qij) is the Legendre polynomial of order L. S2
and S4 can be written in terms of the direction cosines
yx, Yy and yz, of the magnetic field H relative to the
crystal axis. So which is proportional to M2, the
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second moment of the resonant line for a powder,
is usually written as

with

The calculation yields :
- for the bcc structure [9]

where yZ is the cosine of the angle between H and the
trigonal axis. For both structures, a is the nearest

neighbour distance between crystalline sites. Using (13)
and (14), we find new expressions for (11) :

From (15a), we obtain the following useful expres-
sions of M2 :
- bcc structure :

- hcp structure :

Following Harris, we assume that the spectral
densities Jm(w) have all the same shape and thus we
can write :

where ç(m) contains the informations relative to the

dynamics of spins motion and is independent of m
under our assumption. We keep the Q(w) expressions
already used for polycrystalline samples [25], [18] :

for hcp structure.

for bcc structure.

Here, we/2 1t is the exchange frequency defined in
both crystalline phases by :

Under the assumption made in this subsection, We is
isotropic and thus M2 and M4 appearing in (19) are
the second and fourth moments for a powder respec-
tively.

3.1.2 Z-VP regime. - The study of this relaxation
regime can be done either with a classical model

[20, 21, 26] where the motion is studied with random
functions or with a quantum model where the motion
is described by à hamiltonian. The quantum model is
performed in reference [19] in a very similar way to the
cross relaxation Zeeman-exchange study and leads
to a lorentzian spectral density :

For a single crystal we assume that the lorentzian shape
is conserved and we write :

which is exactly the expression (17) with :

The classical model also makes use of a lorentzian

spectral density assumption ; as in (20), we set :

The 03BB factor is equal to unity if we use, as in refe-
rence [3], the liquid like model similar to the model
proposed for liquids by Bloembergen, Purcell and
Pound [27] and henceforth referred to as the « BPP »
model. In that case, Tl minimum (for a powder) is
obtained at wtv = 0.615 and has the value :
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TABLE 1

Maximum values of the Tl and T2 anisotropy factors

according to the relaxation regime and the theory used to describe the motion responsible for the relaxation.
We attribute signs to K, and K2 which account for the relative variation of Tl and T2. In the fourth order
theory, Tl and T2 have either in phase variations or opposite phase variations, according to the ratio co/coe.

On the other hand, if we use the random walk
model [20] for diffusion, henceforth referred to as the
Torrey model, 03BB is a smooth function of W1:v’ A
minimum occurs in Tl for W1:v = 0.50 and has the

following value for the bcc structure :

As the expressions (23) and (24) differ by less than
10 %, both models lead to very similar values of M2
(see Table II).

In reference [3], eq. (A1. 15), the correlation function
rijij(t) is assumed to be exponential :

This yields eq. (20) directly without further assump-
tion.

Under our assumption (20), all the calculations
with gm(0) made for the Z-EP regime are still valid
for the Z-VP regime. We carry out the calculation for
both relaxation regimes, each of them being characte-
rized by the cp(w) expressions (formulae (18a) and
(18b) for the Z-EP regime and formula (21) for the
Z-VP regime).

Using formulae (15) and (17), we obtain the general

expressions of Ti and T2 valid for both regimes and
both crystalline structures :

We define the anisotropy factors Ki and K2 which
characterize the amplitude of Tl and T2 variations
with 0 :

(1/T1)iso and (l/T2)iso are the isotropic contributions
to the relaxation rates,

J(l/7B) and A(lIT2) are the différences between the
extrema of ( 1 / T1) or ( 1 / T2) when the magnetic field
orientation D varies through a 1800 interval.

They depend on the relative orientations of the
rotational axis through the term S4 (see formulae (13c)
and (14c)). The maximal values ’K1 max and K2 max cal-
culated at high frequency (wtv&#x3E; 1 or wlwe &#x3E; 1) are
reported in table I. We added the results of Wolf [21]



787

whose theory also predicts and isotropic relaxation at
high temperature when wTv,  1. The last part of
table 1 is calculated in the next subsection.

Let us note a consequence of formulae (25) : for both
crystalline structures Tl and T2 have opposite varia-
tions when the magnetic field orientation changes ;
in particular, Ti minimum is expected to correspond
to T2 maximum and conversely. Furthermore these
features do not change when the Larmor frequency
changes, apart from the compensation between Q(0),
(Q)(w) and Q(2 ro) at low frequency.

3. 2 FOURTH ORDER CALCULATION (Z-EP REGIME). -
In this subsection, we wish to refine Harris’s theory by
taking into account the angular variations of the

spectral densities Jm(co) at non zero frequency co. We
remove the simplifying assumption (17) and allow
ç(m) to depend on the magnetic field orientation.
The knowledge of the fourth moment of the resonant
line provides some information on the shape of gm(t)
(see eq. (8)). We limit the calculation to the Z-EP
regime.
The contribution of the exchange interactions to the

fourth moment has been given by Van Vleck [28] when
the interaction J is limited to nearest neighbours :

with

M4 is easily calculated if we take ç(Rij) == 1.

We have performed the calculations for various
values of 0 and using ç(Rij) = 1. The results can be
written under the same form as M2(0) showing the
angular dependence :
- bcc structure :

The notations are the same as those of eq. (16a) and
(16b). We note that the relative angular variations
AM4lM4 are not negligible at all and that M4/M2
has an angular dependence which contradicts Harris
second order theory. If we try to follow the same
method as used in the M2 decomposition, we meet

some difficulties : functions gm(o) contains terms

such as

which do not vanish (see Fig. 2b). Unlike g.(O),
gm(o) cannot be written as a sum of spherical harmonics
of order 0, 2 and 4. Nevertheless we can still do
this decomposition if we only consider like terms as
Fijij(0) and neglect the unlike terms Ïij*kl(0). rijij(0)
can be calculated using the definition of rijkl(t)
(eq. (6)) :

Jik and Jjk are the exchange interaction between spins
located on sites i and k or sites j and k. In this paper
we take Jik = J if sites i and k are nearest neighbours
and Jik = 0 otherwise as in the M4 calculation

(eq. (26)). A calculation very similar to the gm(o)
decomposition leads to the following expressions :

where Uo, U2 and U4 are calculated from

In the appendix we give some details of the calcula-
tion of Uo which contains the contribution M4olike of
the fourth moment in order to compare it to the

isotropic part M4 of the total fourth moment defined 
by (26). The unlike contributions to gm(t) are in
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general expected to be small and can then be neglected
as for example in the study of the relaxation induced by
vacancy motion (see ref. [21] and [26]). Some com-
ments on this assumption will be given later.

’ Now let us assume that the functions gm(o) including
1 the unlike terms, can be written in the same form as
the functions ¡j::e(o), keeping the coefficients of the
expansion (29) which are derived from the 3 j Wigner
symbols 

This equation defines V2/,VO and V41VO. From (27a)
and (27b) we have :

for the bcc structure.

for the hcp structure.

We deduce the expression of U,(O) and g2(O) : :

The expression

defines three anisotropic frequencies wm/2 1t whose
angular variations can be calculated with eq. (15)

j and (31). As the frequency dependence of J£e(w) has
been measured over four orders of magnitude [25],
we believe that this dependence is not appreciably
affected by the much smaller angular variations.
Thus we assume that the general form of cpze(w)

defined by eq. ( 18a) and ( 18b) is still valid but with
an anisotropic frequency cvm instead of the isotropic
one we. This yields :
- for the bcc structure :

- for the hcp structure :

The explicit expression of Jm(w) versus 0 is easy to
obtain. The values calculated with the upper and the
lower (V41 VO) boundaries show that the variations are
weak, due to the fact that the M2 and M4 anisotropies
partially cancel each other. Thus we are allowed to
make a first order expansion in (V41VO) or in (S41SO),
which gives clear evidence of the Larmor frequency
dependence of the Ti anisotropy. We give the results
for the Z-EP regime at high frequency, i.e. when

- bcc structure :

- hcp structure :

i

In these formulae, T01 or T02 is the isotropic part of
Tl or T2 and roe is the isotropic part of the frequencies
wm. defined above. The new feature predicted by the
theory is that the anisotropic contribution to Tl
is now frequency dependent and that it changes sign
when ro increases. In table I, we have reported K, Max
and K2 max as calculated from eq. (35) to (38). Compa-
rison with the data is done in the next section.

4. Expérimentai results. - Our data have been

obtained with about 60 ’He crystals including 25 bcc
crystals and 35 hcp crystals. Many hcp crystals had a
molar volume close to 19.4 cm3 ; this means that they
were grown in the bcc phase and then, during the
cooling, they underwent the phase transition bcc-

hcp [7], [29]. We might think that this transition had
some bearing on the crystal quality ; actually most of
these hexagonal crystals (about 90 %) exhibited an
anisotropic relaxation which was very similar to the
one of samples grown directly in the hcp phase. In
order to compare the methods of crystal growth, we
also studied four samples (2 in each phase) grown at
constant volume by the blocked capillary method and
annealed for 2 hours at 30 mK below the melting
temperature. Two of them (one cubic and one hexa-
gonal) exhibited an anisotropic relaxation compa-
rable to, although smaller, those of solids grown at
constant pressure, whereas no anisotropy was detected
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in the last two specimens. It therefore appears that,
although good crystals can be obtained by the blocked
capillary method, in agreement with reference [8],
the result is not as reliable as in the constant pressure
method : small crystals with slightly different molar
volumes may also be produced in the bulk liquid,
giving rise to a poor annealing.
We have tried to measure the thermalization time

of vacancies [6]. If we suppose that a vacancy has to
move to the crystal surface in order to become annihi-
lated (Schottky defect), we calculate that a waiting
time as long as 2 hours is necessary to observe the new
equilibrium vacancy population after a change of
temperature. We always observed a much shorter
thermalization time T th; this was determined by
measuring Ti rapidly after a sudden change of the
temperature. We can place an upper limit of the
value of Tm of the order of 1 s which was determined
by the order of magnitude of Ti and the experimental
limits, for instance, the time required to repeat a T,
measurement; actually, it was often unmeasurable
with-our apparatus. This leads us to think that vacan-
cies are annihilated on dislocation lines rather than
the surface [15]. In this connection we note that the
crystal quality, within the definition given above,
is not affected by these defects because the NMR
measurements are only governed by the relative
orientation of crystals axis and magnetic field. Within
the restricted sense of NMR, most of our samples
were perfect. This remark is no longer valid at very low
temperature and for very pure samples for which it
has been suggested that crystal defects may have
drastic effects on the relaxation of Zeeman energy
towards lattice bath [8]. We present below the detailed
analysis of the data of four crystals as typical examples
of the experimental features observed with our

60 crystals. We have chosen various domains of molar
volumes, temperatures and frequencies in order to

give a good account of the large set of data we obtained.

4.1 bcc DATA. - Most of the data have been
obtained for crystals having molar volumes close to
20 cm3 and for Larmor frequencies of 3 MHz and
5 MHz. In a large temperature range, the observed
relaxation regime is intermediate between the Z-VP
regime and the Z-EP régime ; it corresponds to the
simultaneous modulation of the dipolar hamiltonian
by vacancy motion and by exchange. The spectral
densities Jm(w) are then more complicated than the
expressions (18) or (20) standing for a well defined
regime. No complete study of the intermediate
regime has been made, nevertheless it has been
shown that the convolution of the spectral densities
Jvm’ (w) and Jme((o) accounts rather well for the tempe-
rature dependence of Tl and T2 [2], [30]. Figure 3
shows the data obtained at Larmor frequency
wl2 03C0 = 5 MHz, on a sample whose molar volume
was Vm = 19.72 cm’. In the inset (3a) we show the
Tl and T2 values measured at T = 1 190 mK, versus

FIG. 3. - Transverse and longitudinal relaxation times of a cubic
crystal. Vm = 19.72 cm3, w/2 7r = 5 MHz. (3a) shows the angular
variations of Tl and T2 at T - 1 190 mK. Open circles and the solid
curve represent the values of T2. Full circles and the broken curve
show the values of Ti. Curves are simply an aid to the eye. (3b)
shows the temperature behaviour of Ti and T2 for the two orien-
tations indicated by the vertical lines in (3a). D for T2 and a for Tl
correspond to 02 = + 45°. 0 for T2 and ib for Tl correspond to
01 = - 15°. The solid curves (T2) and the broken curves (Tl)
represent the best fits obtained using eq. (25) and a renormalisation
factor ’0 = 0.79 (liquid-like model), as explained in the text. This
yields (S41SO)9, = 0.31 and (S4/So)o2 = - 0.13.

the rotational angle 0 of the magnetic field H. (0 = 0
corresponds to the H direction during the crystal
growth.) We note that the opposite variations of Tl
versus T2 are in qualitative agreement with formulae
(25a) and (25b). The solid curve and the dashed curve
are not mathematical fits but are simply an aid to the
eye. [That will also occur in other figures showing
Tl or T2 as a function of 0 because, as will be seen
in the following discussion, a fit made from expres-
sion (25) and the explicit expression of S4(0)ISO is
too unreliable to be useful.]

In figure 3b we show the Tl and T2 temperature
variations for the same solid and for the two magnetic
orientations 61 = - 150 and 02 = + 450. In this

figure, the solid curve and the dashed curve are fits
obtained with eq. (25). We are not aware of any
published experimental values of Tl near the minimum
since the works of Goodkind et al. [31] and of Reich [1].
In order to calculate the right Ti minimum we have
to take account of the renormalization of the dipolar
hamiltonian; this is done by multiplying the second
moment M2 by a unique factor ço. According to the
model used to describe the motion of vacancies, two
different values of Ço are obtained, deduced from
either

in the BPP model,

in the Torrey model.
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Table II gives the Ço values we obtain using our data
and the previously published data [1, 30].
We see that the value of Ço are close to one another

and that they agree also with a determination [18]
obtained by integrating the relaxation rate TZ-1 é on the
Larmor frequency : 0.74  Ço  0.89.

TABLE II

Renormalization factor Ço for the second moment,
deduced from the experimental Tl minimum values,
according to the model used to describe the atomic
motion. In the BPP theory Ço = 1.05 W/T1 min Mi,
while in the theory due to Torrey Ço 1. 144 w/T1min M20.
In reference [18], a calculation using the sum rule

oo . .

The S4/So values are deduced from the low tempe-
rature values of T2 for each magnetic field orientation ;
this yields :

These values are then used to plot the Ti(T) curves.
The atomic jump time ir is supposed to obey an

Arrhenius law :

The best fit with the BPP formula (22) yields :

The physical meanings of io and W are discussed in
reference [6]. We believe that To is accurately measured
as it was obtained from a curve with a well defined
minimum and was reproducible from run to run.

This value does not agree with other published values :
io = 10.6 x 10-12 s at 30.4 MHz [31] and

at 80 MHz [6]. Thus, considering that these discre-
pancies are not likely due to differences in the molar
volumes, the experimental io might increase when
the Larmor frequency increases and casts doubts on
the validity of the simple lorentzian shape of JVm (w)
at high frequency. The value we/2 n = 2.8 MHz is
used to fit both Ti and T2 data and gives approxima-
tively the right low temperature relaxation times.
We see that the evolution of the T2 anisotropy with

temperature is fairly well described by eq. (25b) :
K2 rises to a maximum at low temperature when
ç(0) » qJ(w) &#x3E; qJ(2 w) and vanishes at high tempe-
rature when the spectral densities Jo, J, and J2
become equal. On the other hand, we note a dis-
agreement in the temperature range around 1 600 mK : ,

Flc. 4. - Variation of Tl and T2 with the direction 0 of the magne-
tic field measured at frequencies 3 MHz and 5 MHz, for a cubic
crystal Vm = 19.55 cm3, T = 1 180 mK. Open circles are T2 values
and full circles are Tl values. Solid curves and broken curve are

added to aid the eye.
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when the functions JI and J2 become much smaller
than Jo, the 3 effect [4], although reduced by the
exchange effect, yields an inflection in the theoretical
curves which is observed neither in the data nor in the
results available in the literature [2, 3]. The temperature
variations of Tl calculated with the convolution of the
spectral densities J§§(m) @ Jmze (w) agree fairly well
with the data, in contrast to the anisotropy factor Kl
calculated from eq. (25a) which is equal to 0.16 at
1 190 mK while the experimental value is

This kind of disagreement was observed in all bcc

samples studied at 5 MHz.
Figure 4 shows the anisotropic Tl and T2 in a cubic

crystal of molar volume Ym = 19.55 cm3 measured
at two Larmor frequency w/2 03C0 = 3 MHz and 5 MHz.
We observe again that the longitudinal and transverse
relaxation times have opposite variations with 0, but
the new interesting feature is that the curve Ti =f (0)
has a frequency dependent shape. Furthermore,
the anisotropic factor Ki varies from 0.08 at 5 MHz to
0.11 at 3 MHz, in disagreement with eq. (25a) which
predicts that Ki (3 MHz)  KI (5 MHz) because the
ratio J2(2 wo)J1(w) increases when the Larmor fre-
quency decreases. Now, let us apply the results of the
fourth order theory to the crystal of figure 4 :

- at 5 MHz

Eq. (36) yields :

while 1/T2 is still given by (35) ;
- at 3 MHz

while the expected ( 1 / T2) anisotropy is reduced by the
compensation between Jo(O) and J1(w).

Eq. (36) therefore provides a good account of the Kl
behaviour when w decreases : Kl increases but remains
smaller than K2. The same feature applies to the crystal
of figure 3 and may explain the discrepancy of the Tl
anisotropy fit at low temperature.

4.2 hcp DATA. - Figure 5 shows the anisotropic
relaxation times of a hcp monocrystal ( Vm =19.46 cm3)
measured at four Larmor frequencies :

FIG. 5. - Variations of Tl and T2 with the direction 0 of the magnetic field measured for the same hexagonal crystal Vm = 19.46 CM3
at the four frequencies 5 MHz, 3 MHz, 2.125 MHz and 1.5 MHz and at T =1180 mK. For each frequency data, open circles represent

values of 1/T2 and full circles indicate values of 1/Tl. The solid curves and the broken curves are simply an aid for the eye.
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The T2 features are in qualitative agreement with
formulae (37) or (25b) which predict no frequency
dependence for T2 apart from the decrease of K2
at low frequency due to the compensation between the
spectral densities. Let us make a short comment on
the shape of the T2(fJ) curve. Eq. (14c) shows that the
orientation of the crystal trigonal axis can be roughly
estimated by inspection of the curve T2(0). If we

call 0 the angle between the trigonal axis and the
rotational axis of the magnetic field, the direction
cosine J’z is : Yz = cos (0 - 00) sin 0, where 00 is an
arbitrary origine for 0. When 0 varies from - nl2
to n/2, S4(0) exhibits two maxima and two minima
if sin 0 &#x3E; 0.7 and only one maximum and one

minimum otherwise. Almost all our samples presented
T2(fJ) curves similar to that of figure 5 which corres-
ponds to sin ~# 1. It seems clear that hexagonal
crystals have a pronounced tendency to grow with
their trigonal axes perpendicular to the temperature
gradient (which is parallel to the magnetic field
rotation axis in our apparatus). This feature agrees
with more precise orientation determinations made by
Greywall with the use of X-rays [13].
The remarkable feature of figure 5 is the drastic

change in the curves T1 (03B8) when the Larmor fre-

quency varies : Ti and T2 have in phase variations
at high frequency, this is no more true at 2.125 MHz
and the T,(O) shape becomes more complicated at
1.5 MHz. This Ti behaviour was not expected by
the second order theory but the fourth order theory
allows K, to change sign when the frequency varies
(see formula (38)). As we did for the bcc sample,
we apply this last theory to the hexagonal sample of
figure 5 :

I/T2 has the expression (

while I/T2 is almost not affected.
The agreement with data is not quantitatively

correct as the experimental Ti and T2 do not have
opposite phase variations at 3 MHz; nevertheless
eq. (38) gives a good account for the decrease of Ti
anisotropy when Q) becomes smaller than 5 MHz.
We should mention some measurements made in

the temperature range covering the transition between
the Z-EP regime and the Z-VP regime. Figure 6 shows
the variations of the anisotropy of Tl for a hcp crystal
of molar volume Vm = 19.15 cm’ measured at

FIG. 6. - Variations of 1/T1 with magnetic field orientation for a
hexagonal crystal Vm = 19,15 cm3, measured at Larmor frequency
3 MHz, in a temperature range covering the transition from the
exchange induced relaxation regime (low temperature) to the

vacancy induced relaxation régime (high temperature). The solid
curve B(8) which passes through the data at 1180 mK is simply
translated for the other temperature data and illustrates the equa-

3 MHz when the temperature varies between 1 190 mK
and 2 415 mK. While Ki varies from 0.19 at 1 190 mK
to less than 0.04 at 2 415 mK, we see that a single
temperature independent curve A(0) accounts satis-
factorily for the 1 / T1 anisotropy throughout the
entire temperature range. We can thus write :

where B(T) stands for an isotropic but temperature
dependent variation of 1 / Ti. We might interpret A(O)
as the exchange contribution to the relaxation and
B(T) as the contribution due to vacancies ; but, when
considering all the approximations made in the fourth
order theory, we believe that the measurements

reported in figure 6 cannot lead to a clear understand-
ing of the transition between the two relaxation

regimes.
Actually, many experimental features are not

explained by the theory. In the Z-EP regime, the
expected K2max is equal to 0.283 while the measured
K2 at 5 MHz is always larger than 0.30 (in Fig. 5, it is
equal to 0.35). Furthermore, the theory does not
explain why the shape of the curve T,(O) varies
with w. For these reasons, we have not tried to obtain
a precise fit of the theory to experiment, using for
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instance eq. (37) and (38) to calculate T,(O) and
T2(0). Since the fourth order theory gives only a
qualitative account of the change of the anisotropy
of Tl with frequency, such a fit would not have been
very convincing and consequently it has not been

reported in this paper. We believe that the failure of
the theory to explain the change of the shape of the
curve 7B(6) arises when we assume that gm(0) can be
written in the same fonn as gmlke(0) (eq. (29) and (31)).
This means that we assume that gm(0) can be expanded
with Legendre polynomials of order 0.2 and 4, when
the exact form of gm(0) is certainly more complex.
Such an assumption should be removed in a refined
theory.

5. Conclusion. - The experimental data presented
in this paper show that it is possible to grow single He3
crystals using relatively simple techniques and to

study their anisotropic nuclear relaxation. Actually
this is not a new experiment as single He3 crystals
have been grown for a long time in other kinds of
measurements and nuclear relaxation has been exten-

sively measured since the beginning of the study of
solid 3He ; the essential new feature is NMR measure-
ments related to single crystals. In some ways our data
suggests that studies of the anisotropies are not very
useful in NMR experiments : all the previous features
calculated or observed with a powder still stand for a
single crystal and it is not important to know whether
the sample is a single crystal or not, at least in the two
relaxation regimes dealt with in this paper. On the
other hand, the positive outcome of this work is the
determination of the order of magnitude of the relaxa-
tion times anisotropies. Care has been taken not to
attribute some discrepancy in the analysis of the
results with uncertainties in the crystal quality; we
refer in particular to the determination of To which
varies by a factor 6 according to whether it is measured
at 5 MHz or at 80 MHz (see section 4). Our results
show that this feature cannot be accounted for by a
powder versus single crystal effect.
From the point of view of NMR, we have pointed

out the frequency dependence of the anisotropies of
the spectral densities J1 (w) and J2(2 ro) in both crystal- 

r

line structures. Nevertheless, our model which gives
only a phenomenological definition of the anisotropic
frequencies rom is too approximative to be correct
throughout a large frequency range : in particular,
eq. (33) and (34) are probably invalid for large values
of ro/roe. The application of the theory to the Z-VP
regime is also open to criticism and, apart from the
high temperature isotropy of the relaxation times,
its other predictions have not been verified satisfacto-
rily. Some further experiments might also be useful in
order to test the validity of the approximation usually
made in the study of the relaxation induced by
translational diffusion, which is to neglect the unlike
terms of the correlation function rijkl(t) (see ref. [21 ],
eq. (2.1) and ref. [26], eq. (8)). Under examination of
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the contribution of the exchange interaction to the
fourth moment, we see that M40like, as calculated in
the appendix, is 24 % and 37 % larger than M2total,
in the hcp phase and in the bcc phase respectively.
These differences are significant and the unlike terms
cannot be ignored in the study of the Z-EP regime.
In the Z-VP regime, the complete calculation should
be a difficult task and the modifications to the present
theory should probably be small because thé ani-

sotropy associated with the motion of vacancies
is small in the two phases. For the sake of comple-
teness, the M2 and M4 calculations could be repeated
with a nontrivial renormalization function ç(Rjj);
furthermore the anisotropy of the fourth moment
should be calculated including the contribution of the
next nearest neighbour exchange [18]. Our feeling is
that these refinements cannot be introduced within our

phenomenological model of section 3 but require the
framework of a new treatment of the relaxation
mechanism starting from the general expression of
gm(t) which should not use the phenomenological
expressions of qJ(w) such as (18a) and (18b). These
expressions are based on experimental values and
their validity has been recently contested by measu-
rements [32] in the bcc phase at high frequency.
Study of the anisotropy of the relaxation rates might
help to elucidate the physical origin of the difference
between the gaussian shape of the hcp spectral density
and the exponential shape of the bcc one.
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Appendix : Contribution of like terms to the fourth
moment when exchange relaxation b dominant. - The
fourth moment is expressed in terms of the four spin
correlation function Fijkl(t) :

We define as, M4 like, the quantity obtained when the
unlike terms Fij*kl(O) are neglected

Following the definition (6) of r(t), rij,ij is expressed
in terms of the exchange hamiltonian JC. :
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which is m independent (see section 3). We calculate
rijij(O) using m = 2

The first term gives zero, we get :

After straightforward calculations, eq. (A. 2) becomès :

and from (A. 1) we get :

We calculate the isotropic part Mo4like of M4 like
which is proportional to Uo defined in (30a) :

We write

We limit the exchange interactions to the n nearest
neighbours

The k summation in A gives 2 nJ2 excepted when k
is identical to i or j

where C6 [18] is the numerical coefficient defined

by ( 12b)

For the B evaluation, we need to consider the
isoceles triangles kij in which k is nearest neighbour
of 1 and j and thus the distance Rij obeys to :

We give for each crystalline structure the values of
the successive nearest distances Rij, the number m
of the corresponding sites j neighbours of site i, the
number p of isoceles triangles kij made with a pair ij,
the total number of triangles involved in the summa-
tion for each distance Rij being the product mp.

bcc structure

hcp structure

we obtain

Combining A and B results, we get the final expres-
sion of M2like :
- bcc structure

or

to be compared to

- hcp structure

or :

to be compared to
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