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Résumé. 2014 L’étude théorique de l’excitation de polaritons par effet Raman à l’aide de la méthode
à deux faisceaux est effectuée en écrivant les équations de propagation pour les champs associés aux
faisceaux laser, Stokes et aux polaritons. Le calcul est fait sans supposer a priori l’onde de polarisa-
tion transversale, et en tenant compte de l’ amortissement des vibrations du réseau cristallin. Ces
équations sont linéarisées par une approximation bien adaptée à la méthode à deux faisceaux, dans
laquelle les faisceaux laser et Stokes doivent être traités symétriquement. Nous montrons que l’onde
associée aux polaritons résulte de la superposition d’une onde libre, qui est amortie, et d’une onde
forcée pour laquelle on ne connait pas a priori de relation de dispersion. On définit la courbe de
dispersion des polaritons excités par effet Raman stimulé à partir des maxima de l’interaction observée
dans le cristal. Bien que l’amortissement existe, on observe que la courbe de dispersion des polaritons
est toujours très proche de celle obtenue en négligeant l’amortissement. 

Abstract. 2014 Polaritons excited by Raman effect with the two beam method are studied from a
theoretical point of view solving propagation equations for laser, Stokes and polariton fields. The
calculation is performed without any assumption on the polarization wave transversality and taking
into account lattice vibration damping. The equations are linearized by an approximation well
adapted to the two-beam method, in which the laser and Stokes beams must be symmetrically consi-
dered. We show that the polariton wave is the superposition of a free wave, which is damped, and a
driven one for which no dispersion relation is known a priori. We define the dispersion curve for
polaritons excited by stimulated Raman effect from the maxima of the interaction observed in the
sample. Although damping is present, the polariton dispersion curve is always found to be very
close to that obtained when damping is neglected.
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1. Introduction. - In a crystal, infrared-active lat-
tice vibrations strongly interact with light waves

when their frequencies and wavevectors are nearly
equal [1]. The associated mixed particles are known
as polaritons. If these optical vibration modes are
Raman active too, one can study polaritons by spon-
taneous or stimulated Raman scattering and get by
this way the polariton dispersion curve.

Since polaritons only exist in the vicinity of an
absorption band of the crystal, damping of lattice
vibrations is an important parameter when studying
polaritons. Theoretical studies which take this effect
into account have been published to describe several
kinds of experimental conditions : for spontaneous
Raman scattering, Benson and Mills [2] and, in a more
straightforward way, Barker and Loudon [3] show
that the polariton dispersion curve is accurately
described by the dispersion relation appropriate to
the case where damping is ignored; for stimulated
Raman effect, with the usual parametric approxima-

tion (in which the pump is undepleted), Shen [4] arrives
at the same conclusion.

In this paper, we discuss the definition of the dis-

persion curve for polaritons excited by the two beam
method (T.B.M.) which becomes wide-spread to

achieve stimulated Raman scattering [5, 6] or more
generally non-linear optic experiments [7-9]..In this
method, polaritons (or any other kind of elementary
excitations) are created by sending two light beams
into the crystal; the difference between their frequen-
cies is just equal to that of the expected polaritons.
A quantum calculation [10] shows that the excited
polaritons are in a Glauber state, i.e. coherent from
the very beginning of the interaction. This justifies
the use of Maxwell’s equations. But in this case, the
usual theory for stimulated Raman effect [4] is no

longer valid as the two incident beams must be
considered in a symmetrical way.

In order to define the polariton dispersion curve,
we first calculate the polarization wave electric field

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:01976003703022700

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphys:01976003703022700


228

without assuming it to be purely transverse, which is
the usual assumption. The expression thus obtained
accounts for longitudinal phonon modes as well as
transverse polariton modes (crystal anisotropy is not
included here but the same method can be generalized
to describe oblique polaritons [11]). The theoretical
results are discussed with respect to the specific
configuration corresponding to experiments we have
performed in quartz [12].

This study illustrates the difference between the

dispersion curves obtained from I.R. absorption and
those plotted from Raman experiments.

2. Polariton field and dispersion curves. - In order
to describe T.B.M., we consider a cubic non centro-
symmetric crystal and two coherent light beams, the
electric field of which are 81 and E2, with frequencies CO 1
and 0)2 (W1 &#x3E; co2) and wavevectors k, and k2.
Assuming that the medium is perfectly transparent
for the frequencies 0)1 and W2, k1 and k2 are real
quantities. These two light beams generate inside the
crystal a polarization wave at frequency W3 = W1 - W2,
which can be described by vibrationnal coordi-
nates qn (the optical modes are enumerated by the
superscript m) and by the electric field cartesian

components E3h’ obeying respectively the following
coupled equations [13] : 

where we use the convention that repeated coordinate
indices must be summed. F., e. and Mm are respecti-
vely the damping constant, effective charge and
reduced mass relative to the mth optical mode;
N/V is the concentration of unit cells in the crystal;
so is the vacuum dielectric constant, Eoo the crystal
high frequency permittivity.

cxm and Çhij are polarisability derivatives :

Let us assume that the fields 61 and &#x26;2 can be
expressed in the following form [14, 15] :

where e, is a unit vector. This implies that the fields
Ev (v = 1,2) keep a fixed (transverse) polarization as
they propagate in the nonlinear medium.
As the interaction occurs, the higher frequency

beam (E1) is depleted while the lower frequency

one (62) is amplified. Under these conditions, the

product ElE2 can be assumed constant [12] and this
approximation linearizes eq. ( 1 ).

Let qh and &#x26;3h have a space and time dependence :

We get for E3h the following equation :

where

k’ is given by :

with

k3 which is just equal to k1 - k2 is a real quantity.
The wave eq. (3) is solved by assuming that as the

two incident beams propagate in the x0y plane there
is no dependence on the z coordinate. Thus, we have
two coupled equations for E3x(r) and E3y(r), but the
equation for E3z(r) can be solved independently :

From these equations, we obtain for the W3 field
components solutions of the form :

with
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bh is known from a particular solution of eq. (6)-(8) :

with l # h and reminding that k3Z = 0.
Boundary conditions in the plane y = 0 lead to the

following expression for ah :

where K is the wavevector of a free wave radiated
outside the crystal at the polariton frequency w3.
These boundary conditions also imply that

Then kx and Kx are real quantities.
The polariton field given by (9) includes two terms :

i) the first one is proportional to e - j(kxx + kyY) in
which ky is complex. It represents a free damped wave,
with equal amplitude planes parallel to the crystal
boundary. This wave is similar to the free wave

propagating in an absorbing medium illuminated

by an electromagnetic radiation at frequency W3,
since its wavevector k is also given by eq. (5).

ii) the second term is proportional to e - j(k3xX + k3yY)
with k3 = kl - k2, and describes a wave which is
driven by the interaction between the two incident
beams inside the crystal. This wave keeps a constant
amplitude while it propagates through the medium,
and is the only one that can be observed in a T.B.M.
experiment, in which the crystal thickness is usually
very large with respect to the free wave damping
length.

It is worth noting that for the driven wave no
dispersion relation cv3(k3) has appeared in the cal-
culation, and that the relation given by eq. (5), which
is well known in I.R. dispersion theory, is only valid
for the free wave. Nevertheless, some authors still
admit that this relation describes Raman-excited

polariton dispersion, implying that either k or W3
(or both) is a complex quantity. But considering that k
is complex [16-20] and that polaritons propagate with
a wavevector k’ = Re (k) leads to a discrepancy,
as the dispersion curve w3(k’) presents turnarounds
inconsistent with the experimental results obtained
from Raman scattering. This is shown on figure 1
where the curve w3(k) is drawn in solid line. Several
experimental points clearly appears beyond the turna-
rounds, and in particular all the right-angle scattering
results.

FIG. 1. - Polariton dispersion curve in quartz : Solid line : I.R.
dispersion curve a)3(k’). Triangles : experimental points. Dashed
line : curve given by the undamped dispersion relation (18). Crosses :

A W2 peak position.

In order to avoid this difficulty, some other
authors [21-24] assume that k is real and(03 complex.
The curve obtained by plotting Re((03) versus k
produces no discrepancy with the experimental results,
but the application of relation (5) to the case of pola-
ritons excited by Raman effect is no better justified.
As we have already mentionned, the only wave to

be observed in a Raman T.B.M. experiment is the
driven one, for which no dispersion relation is known.
But it is obvious that the intensity of this wave varies
with the relative values of k3 and (03, and presents ’
peaks for specific values K3, Q3 of k3 and (03. It is then
consistent to define the polariton dispersion curve
from the maxima of bh 12 , by plotting Q3 versus K3.
The main features about polariton dispersion are

best appreciated by considering a diatomic crystal.
Substituting eq. (5) into 1 bh 12, the denominator

1 k2 2 I k3 - k2 12 becomes proportionnal to :

The two terms proportional to T 2 increase mono-
tonously with W3. As long as r is not too large (i.e.
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excluding overdamped media) the zeros of the deno-
minator are close to the zeros of :

and

Provided that the other factors in bh 12 do not vary
rapidly with frequency (this is usually the case), the
zeros of expression (15) account for peaks of bh 12
at a frequency Sl3L independent of wavevector K3
and thus correspond to longitudinal phonon modes.
In the same way, zeros of expression (16) occur for
the dispersion relation :

where no damping is present. Thus, the polariton
dispersion curve, defined from the driven wave square
amplitude peaks, is very well described by the undamp-
ed dispersion relation (17).

This is illustrated on figure 2 where we plot in a
03A93, K3) diagram the curve given by the undamped
dispersion relation (17) (dashed line) using GaP
parameters [25], the crosses corresponding to the

peaks of  bh 12 . For comparison, we also draw (solid
line) the I.R. dispersion curve 03A93 (Re (k)).

FIG. 2. - Polariton dispersion curve in a diatomic crystal (GaP) :
Solid line : I.R. dispersion curve Ú)3(k’). Dashed line : curve given
by the undamped dispersion relation (17). Crosses : peak position

of l bh l2.

These results show that the main frequency depen-
dence in 1 bh 12 is included in the term 1 k2 12 l k2 - k 2 2
which determines the polariton dispersion curve.

This also agrees with the theory given by Barker and
Loudon [3] for spontaneous Raman scattering.
Coming back to the case of multiatomic crystals,

we can still consider that the dispersion curve defined
from the driven wave amplitude peaks is very well
described by the undamped relation :

In order to verify this accurately, one must consi-
der specific configurations. This is done here foi

quartz which has been experimentally studied by
T.B.M. [5, 12].

3. Power variations of the incident beams. Applica-
tion to a quartz crystal. - From an experimental
point of view, the direct observation of the driven
wave, which needs far infrared detection is much
more difficult than measurements performed on the
incident beams, at frequencies belonging to the
visible range. Under these conditions, in T.B.M.,
interaction is usually characterized by the relative
attenuation of the higher frequency beam or the
relative amplification of the lower frequency one.

Let us calculate this latter quantity.
The lower-frequency beam 62 obeys the propagation

equation :

n2 is the refractive index and JNL the non linear

polarisation at frequency (02- Components of JNL are :

-j

where

Substituting (2) into (19) and assuming that the
field amplitude is slowly varying over a wavelength
yield the equation :

with

and

As we have shown for the polariton field, the equal
amplitude planes for E2 can be considered parallel to
the crystal boundary, i.e. E2 depends only on y.
Eq. (21) becomes :

Substituting (9) and (20) into (22), we get

with
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We have introduced here the notations Ahkl and
Bhkl according to the relations :

The intensity variations are given by the following
equation :

For a crystal thickness L, the net power variation is :

In eq. (25), the term Re (...) comes from the contri-
bution of the free wave to the power variation AW2.
As this wave is rapidly damped, this term is only
important for a very small crystal thickness. In most
cases, crystals used in this kind of experiments are
much thicker than the damping length and this contri-
bution is negligible compared with that of the driven
wave; the following simplified expression can then be
used :

In the same way, the higher frequency beam depletion
AW1, can be calculated, showing that Manley Rowe
relations :

are verified.
In eq. (26), the factor Bhkl appears again leading

for AW2 to a denominator proportional to

1 k2 l2 l k3 - k2 l2 which mainly determines the peak
position, according to the preceding section. As in
the case of l bh l2 the other factors in AW2 do not vary
rapidly with frequency. Peaks of AW2 then coincide
with those of the driven wave amplitude, and we can
define the polariton dispersion curve from the peaks
of AW2 - this definition is closer to the experimental
method - as well as from those of 1 bh 2.

In order to plot the theoretical dispersion curve
defined from the peaks of AW2, and to compare it
with that given by relation (18), let us consider the
case of quartz crystal with the geometry used in the
experiments we performed [5, 12]. Figure 3 shows the
scattering diagram : beams propagate in the x0y

plane (perpendicular to the optical axis) which is an
isotropic plane. The W1 frequency beam propagates
along Oy and is polarized along Ox ; the W2 frequency
beam propagates at a given angle 0 from Oy, allowing
non collinear phase-matching and its polarization
lies along Oz. Under these conditions, as quartz
belongs to the D3 class, crystal symmetry considera-
tions give as non-zero terms of the [a] and [03BE] tensors
in eq. (1) ayxZ and 03BEyxz and imply lyxz = - 03BExyz.
Furthermore, the elements of the tensor [03BE] being
frequency independent, obey Kleinman relations,

FIG. 3. - Scattering diagram.

so we get 03BEyxz = 0, which agrees with second harmonic
generation experiments performed in quartz [26].
On the other hand, some results given by Shen and
Bloembergen [27] may be generalized [28] and lead to :

In this case, we only observe purely transverse
polariton and longitudinal phonon modes.

For this specific configuration, the amplification
of the lower frequency beam is therefore given by :

The peak position of AW2 in a (D3, K3) diagram is
computed using numerical data from ref. [29] : results
are plotted on figure 1 (crosses) where we have also
reported the curve given by the dispersion relation (18).

It can be noticed that, even for a multimode crystal
such as a-quartz, the theoretical AW2 maxima are on
the curve deduced from (18) and so, the undamped
dispersion relation appears to be a very good appro-
ximation to describe the polariton dispersion curve
obtained by Raman effect.

4. Conclusion. - This theoretical description of
the excitation of polaritons by T.B.M. outlines the
difference between the dispersion curves observed by
I.R. absorption and by Raman scattering.
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When an I.R. wave is incident on an absorbing
crystal, a free damped wave propagates inside the
medium and the resolution of Maxwell’s equations
leads to the condition (5) between its frequency and
wavevector. This is very different from the case of

polaritons excited by the simultaneous presence of
photons (beam cvl) and photons (beam cv9 inside the
active medium, for in this case the interaction gives
rise to a driven wave, for which no analytical dispersion
relation is known a priori. This leads us to define a

dispersion relation K3(Q3) as that for which the
interaction presents a maximum intensity. A phase
matching condition can then be written as a wavevector
equality between the driven wavevector k 1 - k2 and
the wavevector K3.
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