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IMPURITY-INDUCED MAGNETIC COUPLING IN NARROW BAND
SEMICONDUCTORS

D. HONE (*) (**), P. LEDERER and M. HERITIER

Laboratoire de Physique des Solides (***), Université Paris-Sud, Centre d’Orsay, 91405 Orsay, France

(Reçu le 22 novembre 1974, accepté révisé le 7 février 1975,
accepté à nouveau le 30 juillet 1975 après consultation avec les auteurs)

Résumé. 2014 Nous étudions les propriétés électroniques de semi-conducteurs dopés à bande étroite.
Nous utilisons le modèle de Hubbard pour une bande à moitié remplie dans la limite des corrélations
fortes. Nous examinons de quelle façon la self-énergie de l’impureté dépend de la configuration
magnétique de l’hôte.
Nous trouvons comment varie le couplage ferromagnétique induit par l’état lié en fonction de

l’énergie de l’état lié et de la distance à l’impureté. La possibilité d’appliquer les méthodes mathéma-
tiques que nous avons utilisées à des problèmes d’interaction entre impuretés et lacunes dans des semi-
conducteurs conventionnels est discutée dans l’appendice.

Abstract. 2014 We consider the electronic properties of impure narrow band magnetic semiconduc-
tors, using the Hubbard model for nearly half filled bands in the strong correlation limit. We examine
the dependence of the impurity self-energy on the magnetic configuration of the host.
We find the energy and range dependence of the ferromagnetic coupling induced by the impurity

bound state. The results are related to experiments in Ca doped LaMn03 and In doped CdCr2Se,.
The relevance of the mathematical methods we use to problems dealing with vacancy impurity
interactions in conventional semiconductors is discussed in the Appendix.

LE JOURNAL DE PHYSIQUE TOME 36, DÉCEMBRE 1975,
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1. Introduction. - The physical properties of a
number of magnetic semiconductors depend rather
sensitively on the presence of a small concentration of
specific impurities. For example, CdCr2 Se4 doped
with In exhibits a sort of metal insulator transition [1].
LaMn03 is an antiferromagnetic insulator, which
becomes ferromagnetic and metallic when doped
with Ca [2]. A number of other doped magnetic
semiconductors exhibit large variations of the extrinsic
activation energies below and above the magnetic
transition temperature [3]. In those systems it is
essential to take into account the electronic structure
of the 3-d band, since the impurities introduce extra-
particles (or holes) which propagate in those bands [3].
Coulomb correlations play a central role in deter-

mining the magnetic and transport properties in such
narrow band systems. In fact the intra atomic corre-
lation energies are large compared to the bandwidth.
Thus we must study the strongly interacting electron
gas in order to understand the properties of the

compounds mentioned above. The effect of a point
scattering potential on the electronic structure of a
nearly half filled narrow energy-band has been inves-
tigated in the limit of infinite intra atomic Coulomb
repulsion [4]. This model exhibits the main electronic
features of a magnetic insulator, although it neglects
orbital degeneracy and superexchange effects which
lead to a magnetic coupling between spins. It was

found that the potential needed to localize a state

depends on the spin configuration. Thus, by varying
the spin configuration, one may pass from localized to
extended states ; the magnetic and transport properties
are intimately connected. Furthermore a localized
hole was shown to stabilize a ferromagnetic pola-
rization within a few atomic distances from the

impurity. The strength of this coupling, as well as its
dependence on distance were evaluated in a rough
way [4].

In the present paper, we present a more detailed
study of this coupling effect, although again in an

approximate fashion. We give an upper limit for the
strength of the coupling, and we present arguments to
show that the range of the coupling becomes large
when the bound state energy approaches the edge of
the band. For simplicity the main calculation is
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restricted to a square two dimensional lattice; it is
clear that the results are qualitatively valid for a three
dimensional lattice. Our work provides better theore-
tical tools to understand and to study doped magnetic
semiconductors ; also it is an example of calculations
where the use of generating functions, as explained
below, is seen to be helpful in a perturbation method
in a discrete lattice. For instance our calculation

applies to the problem of impurity activation energies
in a conventional semiconductor in the presence of
vacancies. The reason is that in this problem too, it
is crucial to evaluate the number of paths starting
from a point in the lattice, (i.e. the impurity center)
passing through another point in the lattice (i.e. the
vacancy site) which retum to the origin for the first
time (see Appendix).
An interesting implication is that the experimental

evidence obtained from the study of vacancy impurity
interaction in a conventional semiconductor should be
correlated with the magnetic coupling we study in
magnetic semiconductors in the same crystal structure.
The present state of the art (in particular the fact that
we are limited to two dimensional lattices for our

present calculation) does not allow us any quantitative
estimate at this stage. However it will be useful to do
this in the future.

In section 2 we describe the model and recall earlier
results abouth the single impurity problem. In section 3
we discuss the technique used for our calculation,
which is outlined in details in Appendix I. Section 4
is a physical discussion of our results. The application
to the problem of vacancy-impurity interaction in a
conventionnal semi-conductor is discussed in Appen-
dix II.

2. The model. - The model is that of a nearly
half filled tightly bound s-band, with infinite intra
atomic Coulomb repulsion between electrons of

opposite spins. Thus we have almost one electron
per atom, occupying unfilled atomic shells, with
wave functions which overlap those on neighbouring
sites.
The Hamiltonian is

where to is the impurity potential, t is the transfer

energy between sites. noa = c’ cOer. c is a creation
operator for an electron of spin J on site i. P projects
on the subspace of wave functions

were  0 &#x3E; is the vacuum and ai denotes the spin
configuration ul, U2, ... 1 UN. Transitions between these
states are conveniently regarded in terms of motion
on a svperlattice labelled by the indices (i, (xj.

In order to find the energy levels of this Hamilto-

nian, we study the Green’s function

where Q) is a complex number in general. The poles of

G/;(co) - (irxi 1 irxi)w

lie on the real axis and give the energy eigenvalues of
the states with

Using the identity

We can derive an expression for GfJPj(0153),

whence

with

where z is the coordination number.

Ap is the number of paths in which a particle starts
from (0 ao) in the superlattice and comes back to the
same site after p nearest neighbour steps without
passing (0 ao) on the way.

It was shown in reference [4] that the lowest energy
pole (i.e., the lower limit of the branch cut in the

thermodynamic limit : N --+ oo) in G"11(co) is obtained
when the spin configuration is ferromagnetic, a

generalization of a theorem due to Nagaoka [5]. In
the ferromagnetic configuration, all paths returning
to the origin restore the spin configuration; on the
contrary when the spin configuration is not completely
ferromagnetic, a number of paths which contributed
to the self-energy in the ferromagnetic state no longer
do so. Such is the case for closed loops which do not
leave the spin configuration unchanged (Fig. 1 ). On
the other hand paths which are completely retraceable
leave the spin configuration unchanged in all cases.
In fact the single particle density of states in the

antiferromagnetic (AF) configuration can be obtained
in an approximate fashion by retaining only Retra-
ceable Paths in the calculation of the Green’s func-
tion [6].

Suppose one studies the change in the bound state
energy when one flips a spin nearest neighbour to the
impurity in an otherwise completely ferromagnetic
configuration. If the bound state lies deep below the
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FIG. 1. - Upper row : spin configuration a) is left unchanged by
moving the hole once b) or twice c) around the smallest closed
loop. Lower row : spin configuration a) is altered by moving the
hole once b) on twice c) around the loop. It is restored by moving

it a third time.

band edge, the factor (- ztlw) in the series of eq. (4)
is small and it is a good approximation to retain only,
the lowest order terms in the change of the self-energy.
The leading term correspond to the smallest suppressed
closed loop as shown on figure 1. Thus the approxi-
mate change in the bound state energy from its value
for the fully ferromagnetic state to the value with one
spin flip at a site nearest neighbour to the origin is of
the order of

Similarly when the flipped spin is at a distance R = lao
from the impurity site.

Expression (5) is equivalent to a ferromagnetic
coupling between spins nearest neighbour to the

impurity. This effect is largest when the bound hole
sits nearest to the band edge. In that case, one must
carefully evaluate all suppressed closed loops, since
the correcting terms are all of comparable magnitude
when zt/E: ’" 1. Such an evaluation is complicated.
In the following we describe an approximate method
to deal with the path problem when the bound state
sits initially near the band edge.

3. Approximate method. - As was done previously
we shall consider the change in the bound state energy
compared to the completely ferromagnetic configu-
ration when a spin is flipped at a distance R = lao
from the impurity center.
The equation for the bound state energy in the

completely ferromagnetic configuration is

The equation for the bound state when one spin is

flipped a distance R away from the impurity center is

In eq. (7) the superscript i is the number of times a

path of p steps passes at the impurity site without

restoring the initial spin configuration, before it
returns to the original superlattice site.

It is essential to notice that eq. (7) has E’ as its
lowest root. The reason is simply that the spin configu-
ration  s.f.R. &#x3E; obtained by flipping one spin a

distance R away from the impurity center in an

otherwise ferromagnetic configuration has a small

overlap, of order llIN-, with the state

which we know has the eigenvalue EB.
Compared to the ferromagnetic A p , the new

numbers Ao may be smaller when i = 0, correspon-
ding then to suppressed loops of order p, or larger
when i * 0, corresponding then to added loops ; let us
separate out the negative parts bAp and the positive
one A(’) (i e 0). We can then write an identity relating
those two parts by using the fact that EB is a root

of eq. (7)

Substracting out eq. (6) we obtain the identity

Thus the effect of added paths passing out the impurity
site is to cancel out the effect of suppressed loops in the
trivial case of a rotation of the total spin of the system
away from the z axis.
We are interested in evaluating the change in bound

state energy when the total spin of the system is effec-
tively lowered. From what we know in the pure
magnetic insulator problem [6]. the main effect of

spin disorder is the suppression of closed loops
compared to the ferromagnetic case. In fact, for the
Antiferromagnetic configuration, the approximation
which consists in neglecting all closed loops (the
Retraceable Path Approximation) has been shown to
be relatively correct by comparing it with a moment
calculation based on the first 12 moments [6].

In the following parts, we shall assume that the
essential effect of the flipped spin is to suppress closed
loops which were present in the Ferromagnetic
configuration. We neglect all added loops, thereby
finding an upper limit for the energy change of the
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bound state. Thus the approximate equation for the
bound state when one spin is flipped a distance R
away from the impurity center is

Thus, writing EB = Eg + bEB, we obtain by substrac-
ting (8’) from (8)

where bAp = A p - A§.
We can express eq. (9) in a different way by using

the familiar Slater Koster expression for the Green’s
function of the impurity problem [4]

with 

where ek is the dispersion relation corresponding to
the transfer integral t in a given lattice. Putting eq. (10)
into (9) we obtain

Eq. (11) is the basis of our calculation for EB. The
denominator in (11) depends only on the energy once
the crystal structure is known. On the contrary, in
the numerator, the variation in the number Ap of
closed loops of given length pao depends on distance
as well as on energy. In particular ôAp = 0 for

p  (2 1 + 2) since the smallest closed loop passing
through the site of the flipped spin has (2 1 + 2)
steps. There are (z - 2) (1 - 1) loops of this size,
where z is the coordination number of the lattice

(number of nearest neighbours to a given site) giving
a contribution to the numerator of eq. (11) of

Thus the coupling decreases essentially exponentially
with distance 1 in this approximation. This result was
obtained in reference (4).

In the following part of this section we examine to
what extent higher order corrections modify either
the amplitude of the exponential, or, more impor-

tantly, the rate of exponential decay. We will examine
various approximations for corrections to eq. (12).
Eventually we will use a formulation in terms of

generating functions [7] which has the drawback of
mathematical complexity, but the advantage of being
fairly general for problems connected with path-
counting in a lattice.
We can consider first additionnal loops which

manifestly result in a spin configuration different
from the original one. These form a subset of the
(positive definite) contributions to the sum over p in
eq. (11) and provide, therefore, a lower limit to the
correction. For example one can include all paths
of the type shown in figure 2b by renormalizing each
step of the path in figure 2a as shown in figure 2c. The
result is to multiply EB/t in the exponent of eq. (10)
by a factor (1 - (tlE’)’), which increases the range
only by a small amount even for EB - zt. The
source of more important corrections is suggested by
considering the renormalization of each vertex in the
above paths by including the set of all completely
retraceable excursions from the vertex, which retum
to that vertex for the first time at the final step (see
Fig. 2d). The effect is simply to replace E’ by
EB - R(EB) in eq. (10), where

The superscript R on 1 ’(co), denotes the inclusion
of retraceable paths only [4, 6]. This does modify
the range of the exponential in eq. (10), but since the
solutions of cv - L ’(co) = 0 extend over a narrower
band than the ferromagnetic one, - zt  co  zt,
there are no dramatic changes even when EBO --+ - zt.
On the other hand we know that the inclusion of
closed loops in vertex renormalization (see Fig. 2e)
replace co by w - LF(W). Furthermore we have for
the bound state energy the equation

so that the exponential in eq. (10) becomes

which modifies significantly the range of the coupling
since to  zt. (In three dimensions to = 0.65 zt.)
This reflects the fact that the wave functions become
extended rather than localized at the band edge.
This discussion shows that the renormalization of
the coupling can be significantly altered by the inclu-
sion of a number of paths generated from the smallest
suppressed closed loop. However the class of paths
we considered above is clearly too restrictive. In the
following we consider a scheme based on generating
functions which provides an upper limit to the energy
correction. Clearly all suppressed paths must pass
through this position (which retum to the origin
only at the last step) then we include some which
restore the initial spin configuration. However we
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FIG. 2. - a) Smallest suppressed closed loop associated with
the flipped spin (indicated by 1) a distance R away from impurity
site at 0. b) Example of a class of suppressed loops. c) Elementary
line decoration of the loop shown on figure 2a. Iteration of this
along the path yields the class of corrections indicated in b). d) Typi-
cal vertex decoration with Retraceable Paths only. e) Typical

vertex decoration including closed loops.

argue that these constitute only some small fraction
of the total, particularly when the flipped spin is

relatively far from the origin, so that we expect this
technique to give a reasonable estimate of ôEB.

Generating function technique. - Let us define the
generating function [7] for a class of paths as

where A p is the number of paths of p steps for an
element of the class. In order to compute the renor-

malization in an exact fashion, one would have to
find the generating function [7] Tl(z) for paths which
leave the origin, pass the flipped spin any number
of times and retum to the origin once without restor-
ing the initial spin configuration. One would then
have to substract from T,(z) the generating function
for paths which pass the flipped spin and the origin
more than once and restore the spin configuration
after a number of travels through the origin. Such
paths are added to the self energy when the spin is

flipped. We have solved this problem approximately
in the following way : first we evaluate the generat-
ing function Rol(z) for paths which go from the

origin to the flipped spin, then find the generating
function for a first retum to the origin. This procedure
certainly yields an upper limit for the generating
functions, since it includes a number of paths which
should be left out : for instance paths such that the
last steps to the flipped spin are retraced ; such paths
leave the spin configuration unchanged. Similarly
some paths pass the flipped spin a sufficient number
of time to restore the spin configuration before

returning to the origin (Fig. 3).

FIG. 3. - Example of paths which should be omitted because
they restore the initial spin configuration. a) The last steps before
the flipped spin are retraced. b) The multiple loop passing the

flipped spin site restores the spin configuration.

Consider a simple cubic crystal. The dispersion
relation in the tight binding approximation is

Bk = 2 t(cos kx ao + cos ky ao + cos kz ao) .

 The desired generating function is directly related
to the well-studied Green’s function [11] :
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This corresponds to the Green’s function of the

unperturbed problem when the spin configuration
is ferromagnetic

where (lmn) is a lattice point and

The bandedge defines

When co is outside the band of width 12 t, Glmn()
is purely real and we can expand the denominator
so that

Any term resulting form expanding the bracket on
right hand side of this equation can be cast in the
form eiq.R(p) where R(p) is a vector joining the origin
to some point in the lattice which can be reached in
p steps. e±"’-- corresponds to a step in the positive
(negative) x direction, e:tiqyllQ corresponds to a step
in the positive (negative) y direction, etc... Therefore
one can write, when (1, m, n) -# (0, 0, 0)

where C p(lmn) is the number of ways of going from
the origin (0, 0, 0) to (1, m, n) in p steps [11], without
restrictions, i.e. it may, include paths with many
returns to the origin or many passages through the
final site.

In Appendix I, we derive an expression for the

generating function Tl (z) in terms of the Green’s
function G’mn(w) (eq. (15)). In Appendix II we trans-
form G,mn(w) to express it in terms of special functions,
which yield analytic expressions in the two simple
limits : a) bound state very near the band edge, i.e.
shallow hole limit, or b) deep bound state, or deep
hole limit. Unfortunately we have not been able to
find analytic expressions for the shallow hole case 
in three dimensions. Although the procedure we
use is independant of the dimension of the lattice,
the explicit result we exhibit below is quantitatively
valid for dimension two only. We expect it to be

qualitatively valid for three dimensions.

4. Results and discussion. - 4 .1 DEEP HOLE LIMIT.
- In this limit the bound hole energy is low compared
to the band edge :

Then we expect perturbations expansions to

converge well, and renormalization effects to vanish ;
indeed, as shown in Appendix I, one finds back the
results of reference [4].

4.2 SHALLOW HOLE LIMIT. - In this limit, the
bound hole energy becomes nearly equal to the band
edge energie, i.e.

(as stated above explicit results are obtained for a
two-dimensional (square) lattice.) When e - 0, the

bound state merges into the band and becomes infi-

nitely extended; its radius varies like (1/B)1/2. At the
same time the bound state amplitude goes to zero
on each site as its spatial extent becomes infinite.
One finds

where y is Euler’s constant.

This expression exhibits two interesting properties
of the coupling :

a) As the bound state moves near the band edge,
the amplitude of the coupling decreases, irrespective
of the distance, as e/(In e). This is due to the decrease
of the bound state amplitude per site as its spatial
extent grows. In other words, since the bound state
spreads over a larger and larger volume, local pertur-
bations are less and less effective to change its energy.

b) The range of the coupling increases as 1/,,/20 e,
i.e. proportional to the inverse square root of the
activation energy. This, again reflects the growing
spatial extent of the bound state as it moves near
the band edge. Expression (31) also indicates the

presence of a logarithmic term In’ 4/lq which is
related to the range of the coupling.

’ We have no indication for ôEB when 1 fi &#x3E; 1 so

that the gaussian behaviour in expression (16) is

only interesting in so far as it allows a comparison
with the exponential behaviour in eq. (5’). Eq. (16)
exhibits the important effect of the renormalization
of the paths : not only does it alter the amplitude
of the coupling in a significant way ; it changes also

’ the exponential behaviour to a gaussian one, at least
for 1 /8 ê  1.

- Angular dependence of the coupling. - We can
easily find the angular dependence of the coupling
by considering a spin tilted at an angle 0 from the z
axis and asking what the average energy of that
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state is compared with the ferromagnetic state.

Supposing we know the ground state wave function
for the completely ferromagnetic case pF F &#x3E; and
the ground state wave function for the state

i.e. tf sf R &#x3E; we can write the wave function describ-
ing a state with a spin tilted at angle 0 :

Then the average energy of that state, compared
with the ferromagnetic ground state, is

5. Discussion. - We believe that our results may
help to understand the interesting situation which
àrises in Ca doped LaMn03. Matsumoto [2] has

observed that in this compound, which is antiferro-

magnetic at low concentrations of Ca, there seem

to arise ferromagnetic clusters (magnetic polarons)
around the Ca impurities. At first those clusters are
uncoupled and the material exhibits no net magnetiza-
tion in zero field. At a concentration Co &#x3E; 0.1, the
material becomes ferromagnetic, as if a percolation
limit had been reached, allowing all clusters to form a
macroscopic ordered ferromagnetic state. For the
critical concentration Co, the size of the clusters may
be estimated to be about two lattice spacings. It

must be remembered that our model is too crude to
account for a macroscopically ordered ferromagnetic
state, since Izuyama’s theorems [12] apply irrespec-
tive of the number of impurity centers, i.e. the ferro-

magnetic state for our Hamiltonian has zero exchange
stiffness coefficient. Therefore in LaMn03 doped
with Ca, additional mechanisms not contained in
our model must be invoked to account for the stabiliza-
tion of the ferromagnetic state for C &#x3E; Co. However
we do account for the formation of ferromagnetic
clusters around impurities. It has been argued [2]
that this could also be interpreted as a double exchange
mechanism, the mobile hole favouring ferromagnetic
alignment of spins at sites where it has a finite ampli-
tude. At present we cannot rule out this explanation.
However there is no doubt that the kinetic polaron
effect we invoke is present too, with sizeable interaction
strength. It is quite possible that both effects coexist
there, the double exchange mechanism accounting
for the long range ferromagnetic order for C &#x3E; Co.
The situation is somewhat different in CdCr2Se4 [1]
doped with In. This compounds is a paramagnetic
insulator above Tc = 77 K. The impurity activation
energy is EB - 0.2 eV for T &#x3E; Tc. Below Tc, In doped
CdCr2Se4 is ferromagnetic, and the activation energy
drops to zero, so that the conductivity becomes
metallic. The interpretation [3] relies on the theory

of impurity states in Mott insulators given in refe-
rence [4] : the band edge moves towards the impurity
energy level. With decreasing temperature, eventually
absorbing the level somewhere below the ferromagne-
tic ordering temperature. In this interpretation, the
ferromagnetic transition is driven by some exchange
field which is not taken explicitly into account in
the theory of the electronic structure. Our theory
predicts that an additional ferromagnetic coupling
is operative in the neighbourhood of In impurities,
with a range which becomes infinite when the impurity
level collapses into the band. Experiments investigat-
ing the neighbourhood of In impurities in CdCr2Se4
would help in checking the validity of our analysis.
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APPENDIX 1

Let us define

Then define iR., as the generating function for paths
going from 0 to 1 without passing i on the way. Similarly
i,RO, is the generating function for paths going form 0
to 1 without passing i and j on the way.
Then it is clear that

This equation simply expresses the fact that the most
general path from 0 to 1 is the sum of paths going
from 0 to 1 without passing the origin on the way,
plus all paths going through the origin any number of
times.
We are going to compute the upper limit for bEB

by summing all paths from the origin to the flipped
spin and back again without going to the origin in
the middle. This is an upper limit since it includes

paths which do not change the spin configuration :
for instance paths which pass many times through
the flipped spin and manage to restore the spin
configuration in the end. Or paths such that the last
step to the flipped spin is immediately retraced.

In order to find the generating function correspond-
ing to this upper limit, we must find the generating
function 01R10.
Now, obviously

Furthermore
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so that

Therefore

The total generating function is

In order to improve on this evaluation, one should
subtract all paths which do not change the spin
configuration. An important class of such paths is

represented in figure 3. The simplest to evaluate is
the class of totally retraceable paths. The generating
function for such paths is

One can approximate the contribution of all paths
of the type shown in figure 3a by noting that the sum
of all paths such that the last step to the flipped spin
is retraced is of the order of

in particular, when the bound state energy is near
the band edge, y - 1 /z, so that the total correction
is

1. Calculation of the renormalized coupling. -
Let us now proceed to the actual calculation. Our
aim is to evaluate the various elements in eq. (7)
with the help of the generating function T( y), suitably
corrected by eq. (A. 6).

In order to find T(y), we shall first transform

G’mn(Y) to express it in terms of known functions,
then study those expressions for appropriate limits,
especially when the bound state energy is very close
to the band edge.

Consider

(we have set ao = 1) write

Then

Now

where Jl(s) is a Bessel function of order 1. (See for
example ref. [8].) We have

Since the integrand has periodicity 2 x, we can write

whence

In particular, if 1/2 = with Ç &#x3E; 0

Eq. (A. 7) is in general quite difficult to handle except
numerically. However, it turns out to be enormously
simplified, and to lead to tractable analytical expres-
sions, in a two dimensional space. For that reason,
the remainder of this paper applies strictly to a



1257

2-dimensional problem. Let us recall that the problem
is meaningless in one dimension, since all paths are
then retraceable. The possibility of closed loops
which do not restore the initial spin configuration
arises in 2 as in 3 dimensions. The number of such

paths of a given length increases, of course, from 2
to 3 dimensions. Qualitatively one expects at least

equally strong influence of impurities (e.g., effective
ferromagnetic coupling) in 3 dimensions as in 2.

In two dimensions, one can use the identity [8]

where Q (x) is a Legendre polynomial of the 2nd
n 2

kind

Thus we are going to investigate the renormalized
coupling for a flipped spin located at R = lao with
lx = l  = 12. It is quite obvious that the asymptotic
results one obtains for this site are also valid for
lattice sites such that

since all possible paths have an even number of steps.

Now we need = - i+ n with n = 0+ to getNow wc need = 2 y with n = 0+ to et

E y2p B(l, 2 p).
p

Thus we have

2 B - / 
- 

2 B y /

Since we are dealing with bound states, we always
have y2 = (tlEBO)2 (1/4)2 . Thus the argument of

Q 1 i - 1 2 is always smaller than or equal to1--i ( 1/8y2 )
- 1.

In that range of values for the argument of Q, - 2 111-2
we can use the following expression [9]

where F is a hypergeometric function [9].

Then using the identity :

- Shallow hole-limit.
In this limit, the bound hole energy becomes nearly

equal to the band edge energy i.e.

In that case

B /

It is convenient to define the small parameter

11 is proportional to /Ê(l + 0(s)).
We can now use the asymptotic expansion [10]

where #(x) is the digamma function.
We keep only the first few terms, using exact

results for #(n) for small n and the approximation
(1 - -1 - n) = In 1 for large 1 and small n.
Then

where y is the Euler’s constant.
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This expansion is useful for ln  1. From eq. (A. 12)
and (A. 9),

As expected this expression diverges when n --+ 0
for fixed 1, as it should since the bound state then

merges into the band, and its spatial extent then
becomes infinite.

In order to obtain the full expression for the renor-
malized coupling, one must also evaluate the energy
dependent terms in eq. (A. 5), i.e. R,,(y).

In two dimensions we see easily that

This logarithmic divergence is linked to the dimen-
sionality two in the tight binding approximation.

In the final expression, eq. (9), there also appears
an energy dependent term

In the two dimensional case considered here

This divergence simply expresses the fact that the
bound state amplitude goes to zero on each site as
its spatial extent becomes infinite.

Finally we obtain

Provided we keep in mind the condition ln  1,
we can rewrite eq. (A. 15) as

- Deep-hole limit.
In this limit, the bound hole energy is very low

compared to the band edge, and

Then we can approximate

and we obtain straightforwardly

as was obtained previously [4].
Eq. (A. 17) simply means that renormalization

becomes unimportant in the deep hole limit.

APPENDIX II

Consider a semi-conductor, well described within
the usual one-electron theory of solids, where the
valence band and the conduction band are treated
in the tight-binding approximation. Then introduce
an impurity which creates a bound state in the gap.
The bound state energy is a solution of the equation

where the same notations as in the body of this paper
hold.
Now suppose a vacancy is created at a distance

R = lao from the impurity center. Assume that the
vacancy simply amounts to annuling the transfer
matrix element t between the vacancy site and the
nearest neighbour sites. (This is not quite correct,
since in a number of semi-conducting compounds,
the vacancy seriously distorts the lattice, thereby
changing the value of t over a noticeable range (12).)
Then we can ask :

1) How is the bound state energy changed by the
vacancy ?

2) How is the vacancy creation energy changed by
the presence of the bound state ?
The answer to the first question may be of interest

when a very accurate energy definition of the bound
state is needed with respect to the edge of the valence
(or conduction) band. This answer is given by the
calculation described in this paper. Indeed, the
modification of the self energy of the bound state
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is due to the variation bAp of the number of walks
from the impurity and back for the first time in p

steps. All paths passing through the vacancy are

suppressed (including retraceable paths). Thus we
can evaluate the change in the bound state energy
with the same method used in this paper. The generat-
ing function for ail paths passing through the vacancy
is

In this problem this expression is exact and no correc-
tion need be made since retraceable paths are included
in this expression, as they should.

In the deep hole limit, the smallest suppressed path
is the completely retraceable one, so that the energy
change is given by

as can be seen from eq. (11).

In the shallow hole limit, an expression similar
to eq. (A. 16) holds in a square two-dimensionâl
lattice, i.e.

The answer to the second question is, in this model,
identical to the first : the change bEB is the change of
energy of the system formed by the vacancy and the
impurity.

This question is of interest in the discussion of

vacancy-impurity interaction problems, even though
the model used here is very crude. In particular we
have ignored dangling bonds, lattice distortions, and
Coulomb interaction between impurity and va-

cancy [13], so that we can only discuss qualitatively
the kinetic effect due to the suppression of all the
paths passing through the vacancy site.

In this appendix, we shall not go into this matter
in more detail. A complete paper is in preparation,
with comparison with experiments in Si.
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