
HAL Id: hal-00181863
https://hal.science/hal-00181863

Submitted on 24 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Formal Verification Methodology for Checking Data
Integrity

Yasushi Umezawa, Takeshi Shimizu

To cite this version:
Yasushi Umezawa, Takeshi Shimizu. A Formal Verification Methodology for Checking Data Integrity.
DATE’05, Mar 2005, Munich, Germany. pp.284-289. �hal-00181863�

https://hal.science/hal-00181863
https://hal.archives-ouvertes.fr

A Formal Verification Methodology for Checking Data Integrity

Yasushi Umezawa, Takeshi Shimizu
Fujitsu Laboratories of America, Inc., Sunnyvale, CA, USA

yasushi.umezawa@us.fujitsu.com, takeshi.shimizu@us.fujitsu.com

Abstract

Formal verification techniques have been playing an
important role in pre-silicon validation processes. One of
the most important points considered in performing
formal verification is to define good verification scopes;
we should define clearly what to be verified formally
upon designs under tests. We considered the following
three practical requirements when we defined the scope
of formal verification. They are (a) hard to verify (b)
small to handle, and (c) easy to understand.

Our novel approach is to break down generic
properties for system into stereotype properties in block
level and to define requirements for Verifiable RTL.
Consequently, each designer instead of verification
experts can describe properties of the design easily, and
formal model checking can be applied systematically and
thoroughly to all the leaf modules.

 During the development of a component chip for
server platforms, we focused on RAS (Reliability,
Availability, and Serviceability) features and described
more than 2000 properties in PSL. As a result of the
formal verification, we found several critical logic bugs
in a short time with limited resources, and successfully
verified all of them. This paper presents a study of the
functional verification methodology.

1. Introduction

Logic verification has become more important but
difficult to complete with increasing size and complexity
of system on chip (SoC) designs. Powerful formal
verification methods have been playing an important role
in pre-silicon validation processes. On the other hand, it
is still not realistic to verify all the functions of a SoC
designs by formal verification methods because it requires
lots of effort to describe design properties strictly in
formal language. Even if such models are successfully
developed, model checking for complex designs may be
beyond the power of available tools and computing
resource, resulting in fail. Therefore, hybrid verification
methodologies using both formal verification and logic

simulation have been discussed and proposed
[1][2][3][4][5][6][7][8].

One of the most important and difficult points
considered in hybrid verification methodology is to define
a good verification scope of formal verification; i.e. what
to be verified with formal verification techniques and
what to be left for conventional validation with logic
simulation. Needless to say, the goal of the project is to
verify the design and minimize the verification effort, but
not to apply formal verification methodology. Thus, the
following three practical requirements should be
considered when the formal verification criteria are
defined.

• Properties defined in the formal verification scope
are hard to validate thoroughly in conventional logic
simulation. If such properties are solved formally, it
significantly increases the validation coverage.

• The problem size of the properties is suitable for
available formal verification tools. Description of the
properties in formal language should be simple, and
it should not take much time in model checking, so
that we could insist superiority and efficiency
against conventional logic simulation methods.

• The purpose and the methodology of formal
verification should be well documented and shared
by the design and verification team. It is important
to deploy the formal verification systematically in
the design flow.

In a development project of a component chip for
server platforms, we considered to apply formal
verification techniques from the viewpoint described
above. The component chip has strong requirements for
RAS features and they should be verified thoroughly
before tape out.

In the following sections, the requirements and the
overview of the target design are mentioned. In section
three, design properties that are derived from the
requirements are described in detail. In section four the
design flow for verification is shown. Section five
contains the result and analysis of the formal verification
activity. Section six is our conclusions.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

2. Target Design Overview

We have been developing a component chip for
servers. Table 1 shows the overview of the chip
implementation.

The chip requires so-called ‘main-frame class’
reliability so that it supports enhanced RAS features to
detect soft errors in the chip and permanent failures of a
component. All the internal data paths, registers, state
machines, and counters are protected by parity bits. When
a parity error is detected, the error must be logged and
reported according to the severity of the error. The
requirements in implementation level are summarized as
follows.

• Parity protection in data paths.
• Parity protection in key control structures, such as

FSM and counters.
• Illegal state detection for FSM and counters.

As a result of initial investigation, we found more than
1300 checkpoints for data integrity derived from the chip
specification. It is not realistic to verify this huge number
of checkpoints exhaustively and efficiently by logic
simulation, simply because it will consume too much time.

This is the initial motivation for us to set the scope of
formal verification as data integrity checking. The
advantages are summarized as the following. First, the
description of the properties for integrity check is easy
and simple because the properties are broken down into
module level. Thus, each designer can easily describe the
properties, and model checking can be applied locally at
each leaf module, as described in the later section.
Second, the properties are data-centric and exhaustive
search is needed. Formal model checking is right to use
for the purpose. Also, it is possible to model the property
in a simple and comprehensive description.

For the above two reasons, we could expect significant
increase in productivity with formal model checking.

Table 1. Chip implementation

Item Implementation

Chip die size 12.8 x 12.5 mm2

Technology 0.11 um CMOS ASIC

Logic size 3.5M gates

Core frequency 250MHz

3. Properties in Leaf Module Level

We reached the following three properties for data
integrity verification in leaf module level after breaking
down the system level properties in the previous section.

Note that we used user-written properties, and automatic
assertion extraction was not performed.

• Ability of error detection.
• Soundness of internal states.
• Output data integrity.

Figure 1 shows abstraction of each module. In the
following sections, each property above is explained
based on the abstraction. The state A in the figure is for
internal FSM and protected by odd parity. EC/ED can
inject errors arbitrary into the state A. The state B is for
data path and protected by odd parity.

Three properties should be described and verified
against all non-structured modules or leaf modules. A
leaf module should be small enough for formal
verification tools so that Divide-and-Conquer approach is
the key to success for verification goals. A leaf module
can be excluded if it has no internal state and no data
paths with parity protection. Other important properties
can be verified with formal verification as well, but that is
not mandatory criteria.

Note that we picked up Property Specification
Language (PSL) [9] for property description because it is
in widespread use as an industry standard and supported
by several formal verification tools.

Figure 1. Typical leaf module

3.1. Ability of Error Detection

The first property is for error detection. The design
property is to check if all the illegal values are detected
and reported at each integrity check point. Figure 2
shows a PSL code for this property, referring to the
typical leaf module in Figure 1. In the PSL code, Check1

I: Primary Inputs
O: Primary Outputs
EC: Error Injection Control
ED: Error Injection Data
HE: Hardware Error Report

Check1

FSM

I

O

ED

HE

Check2

ƒ

EC

A

B

A: Control State
B: Data Path

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

and Check2 are corresponding to pCheck1 and pCheck2
respectively. Here we have two data integrity check points.

• Check1: HE (Hardware Error Report) is true in the
next cycle when EC/ED is driven and the injected
value through ED is illegal. EC should be defined
for each FSM and counter, but ED can be shared
between FSM and counters.

• Check2: HE is true in the next cycle when I is illegal.

This property means that Check1 and Check2 in
Figure 1 should fire when an error is injected.

Figure 2. PSL code for checking ability of error
detection

3.2. Soundness of Internal States

The second property is for soundness of internal states.
The design property is to check if the integrity of internal
states holds as long as the integrity of primary inputs
holds.

• HE should not be asserted when no error is injected
and integrity of I holds.

This property means that Check1 and Check2 in
Figure 1 should not fire in normal operation. Figure 3
shows a PSL code for the property. Two properties
(pIntegrityI and pNoErrInjection) are assumed, and one
property (pNoError) is verified.

Figure 3. PSL code for checking soundness of
internal states

3.3. Output Data Integrity

The third property is for output data integrity. The
design property is to check if the integrity of primary
outputs holds as long as the integrity of primary inputs
holds.

• The integrity of O should hold when no error is
injected and integrity of I holds.

This property means that primary output O in Figure 1
should not have parity error in normal operation. Figure
4 shows a PSL code for the property. Two properties
(pIntegrityI and pNoErrInjection) are assumed, and one
property (pIntegrityO) is verified.

Figure 4. PSL code for checking output data
integrity

4. Design Flow for Verification

This section describes the design flow of formal
verification we adopted. Figure 5 shows the overall
design flow at the front-end side. The logic designers are
in charge of releasing Verifiable RTL, which is explained
in section 4.1, test scenarios for functional verification,
and properties or specification of data integrity. A
dedicated engineer was assigned for formal verification.
The verification engineer creates PSL codes based on the
specification of data integrity, performs model check, and
makes feedback the results to the logic designers.

4.1. Tasks of Logic Designers

First of all, the logic designers need to release the
Verifiable RTL code. The Verifiable RTL code should
satisfy the following requirements.

• Simple error injection method against every integrity
check point is well-defined through primary input
ports.

• Error injection should be controlled independently
per entity for integrity checking.

 vunit M_soundness (M) { // soundness check
 property pIntegrityI = always (Î);

// I should be odd parity
 assume pIntegrityI; // -- assumption for I
 property pNoErrInjection = always (~EC);

// Error injection is disabled
 assume pNoErrInjection; // -- assumption for EC
 property pNoError = never (HE);

// then no error is reported
 assert pNoError; // -- check it formally!
 }

vunit M_edetect (M) { // check error detection ability
 property pCheck1 = always ((EC & ~(^ED)) -> next HE);

// ED should be odd parity
 assert pCheck1; // -- check it formally!
 property pCheck2 = always (~(Î) -> next HE);

// I should be odd parity
 assert pCheck2; // -- check it formally!
 }

 vunit M_integrity (M) { // integrity check
 property pIntegrityI = always (Î);

// I should be odd parity
 assume pIntegrityI; // -- assumption for I
 property pNoErrInjection = always (~EC);

// Error injection is disabled.
 assume pNoErrInjection; // -- assumption for EC
 property pIntegrityO = always (^O);

// then integrity of O holds
 assert pIntegrityO; // -- check it formally!
 }

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

Figure 5. Design flow

RTL can be Verifiable by adding one line of code per
such entity. The error injection ports should be tied to
zero in the upper layer module because it is not used in
real silicon. Figure 6 shows an example of such
Verifiable RTL code in verilog.

The second task of logic designers for formal
verification is to release the specification of data integrity.
It can be either in text format or described as PSL codes.

4.2. Tasks of Verification Engineer

Three tasks are assigned for formal verification
engineer.

First task is to develop PSL codes if the integrity
specification is written in text format. For portability of
the codes, we tried not to use tool dependent features in
the process.

The second task is to perform model checking and
debugging. We also consider the size of the properties in
this process. When a property turned out beyond the
power of available tools, for example time out happens
during execution; the property can be divided for making
small corns. Figure 7 shows an example of how to divide
a property. The original property in Figure 7 (1) is for the
output data integrity of Data D; i.e., the integrity of Data
D should hold as long as the integrity of Data A, Data B,
and Data C holds. The property is manually divided as
shown in Figure 7 (2). The followings are the details of
the divided properties.

− the integrity of Data A’ should hold as long as
the integrity of Data A holds

− the integrity of Data B’ should hold as long as
the integrity of Data B holds

− the integrity of Data C’ should hold as long as
the integrity of Data C holds

− the integrity of Data D should hold as long as the
integrity of Data A’, Data B’ and Data C’ holds

The last task is to feedback the results of property
checking to logic designers for bug fix and verifiability.

Figure 6. An example of Verifiable RTL code

Figure 7. Partitioning a property for “Divide-and
Conquer” approach

 module A (...); // wrapper module
 ...
 B B_in_A (
 ...
 .I_ERR_INJ_C (2’b00),
 .I_ERR_INJ_D (4’b0000),
);
 endmodule

 module B (...); // leaf module
 input [1:0] I_ERR_INJ_C;
 input [3:0] I_ERR_INJ_D;
 ...
 reg [3:0] cs, ns; // for FSM (including parity)
 reg [3:0] cnt, cnt_n; // for counters
 ...
 always @(posedge CK or posedge RESET)
 if(RESET) cs <= 4’b1_000;
 else if(I_ERR_INJ_C[0]) cs <= I_ERR_INJ_D;
 else cs <= ns;
 always @(posedge CK or posedge RESET)
 if(RESET) cnt <= 4’b1_000;
 else if(I_ERR_INJ_C[1]) cnt <= I_ERR_INJ_D;
 else cnt <= cnt_next;
endmodule

Parity check
A

Parity check
B

Parity check
C

Data A

Data B

Data C Check
point D

Time-
out

Parity check
A

Parity check
B

Parity check
C

Data A

Data B

Data D

Data C

Check
point A

Check
point B

Check
point C

Check
point D

Data A’

Data B’

Data C’

(1)

(2)

Data D

Test
Bench

Test
Scenario

RTL

Property PSL

Simulation
Formal

Verification

Test
Results

Test
Results

Designer

Verification
Engineer

(Function)

Verification
Engineer
(Formal)

Physical
Compiler

Placed
Gate

Back-end

Feedback Feedback

�

�

�

�

�

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

6. Results

We used a commercial formal verification tool and an
in-house formal verification engine. The commercial
formal verification tool is capable of handling PSL
properties and verilog RTL codes, equipped with various
formal solver algorithms.

The in-house formal verification engine is a powerful
solver for properties with UMC (unbounded model
checking) based on POBDDs (Partitioned reduced
Ordered Binary Decision Diagrams) and its related
algorithms as well as combined forward and backward
traversal for OBDD-based invariant checking. [10]

6.1. Verified Properties

We described 2047 PSL properties in total and all
properties were verified successfully as shown in Table 2.
The table shows the module names, the number of sub-
modules, the number of logic bugs found by formal
verification, and the number of PSL properties for each
target category. Note that the number of properties in
Table 2 is only for assertions. It takes about 20 hours to
verify all the properties on a typical Linux workstation
with single CPU and single license.

The break down of the properties in number is as
follows; 1306 properties are for checking ability of error
detection, 200 properties are for checking soundness of
internal states, 520 properties are for checking output
data integrity, and 21 properties are for checking other
features. We found 7 logic bugs in formal verification.
This is about 5% of total logic bugs. The following
sections describe the detail of each logic bug, the design
impact, and the side effect of the error injection
implementation.

6.2. Logic Bugs Found by Formal Verification

This section describes the detail of each logic bug. We
found 7 logic bugs in formal verification. Table 3 shows
the type of property and difficulty of finding the logic
bugs by logic simulation.

After the detail analysis of results, B1, B3, B5 and B6
were turned out to be difficult to detect by logic
simulation. The details are shown below.

B1) When a non-zero-value is written into a reserved
field of a register, the internal parity of the register is not
maintained correctly. Consequently, it causes an internal
parity error. It is very difficult to find this type of logic
bug by logic simulation because the scenario to hit this
condition is very complicated.

B3) Although a signal comes from a macro is not
guaranteed immediately after release of reset, the logic
assumes a certain value with the signal. Therefore, a false
parity error is logged and reported. The logic bug was not
found by logic simulation because the behavior model of
the macro cell was wrong. Actually, this is a problem of
logic simulation environment, so it is impossible to find it
by logic simulation.

B5, B6) An address decoder has ninety-one valid
cases when decoding 8-bit address spaces. Parity
calculation in the data path is wrong specifically for two
cases out of ninety-one cases. The parity error is not
always detected because it depends on the data pattern, so
it is very difficult to detect it by logic simulation since it
needs exhaustive data pattern.

In summary, at least four of seven logic bugs are
difficult to detect by logic simulation, whereas they can
be easily found by formal verification.

Table 2. Number of verified properties

Type of Property Module
Name

of
Sub

of
Bug P0 P1 P2 P3 Total

A 19 3 204 23 113 15 355

B 2 0 25 23 82 0 130

C 13 1 43 20 38 0 101

D 3 1 70 46 137 6 259

E 58 2 964 88 150 0 1202

Total 95 7 1306 200 520 21 2047

P0: Ability of Error Detection
P1: Soundness of Internal States
P2: Output Data Integrity
P3: Other Properties

Table 3. Classification of logic bugs

Defect
ID

Type of Property
Can be found by
logic simulation

easily?

B0 Soundness of Internal States Yes

B1 Soundness of Internal States No

B2 Soundness of Internal States Yes

B3 Ability of Error Detection No

B4 Output Data Integrity Yes

B5 Output Data Integrity No

B6 Output Data Integrity No

6.3. Design Impact and Side Effect

This section describes the design impact and the side
effect of the error injection implementation. Since the

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

logic for the error injection remains in the netlist as
shown in Figure 1, we checked the design impact in
terms of area increase and timing delay using several
modules. Basically, the design impact is caused by a
selector added shown in Figure 1.

Table 4 shows the area increase caused by
implementing the error injection feature, and the area
increase is less than 2%. Note that module name in Table
4 corresponds to Table 2.

Table 4. Area increase caused by implementing
the error injection feature

Module Name Area Increase

A 1.4 %

B 0.4 %

D 0.2 %

The timing delay of the selector is about 200 ps that
are about 4 % of total delay when frequency is 250MHz.
This timing delay was acceptable for the target chip and
caused no timing closure issue.

In summary, the penalty caused by implementing the
error injection feature is almost negligible in terms of
area increase and timing delay.

One unexpected and good side effect is that those
remaining gates can be used as spare logic gates. We
performed ECO (post-route fixes) six times and we used
these remaining gates twice.

7. Conclusions

We have applied formal verification method when we
developed the component chip for servers with rich RAS
feature. There are three reasons why we adopted formal
verification.

• The target chip requires main-frame class reliability
so that there are huge check points for data integrity.
It is difficult to verify the data-centric properties
exhaustively and effectively by conventional logic
simulation.

• The description of the properties for integrity check
is easy and simple because the properties are broken
down into module level.

• The methodology above is clear for logic designers
to release Verifiable RTL

Four logic designers and one verification engineer
have developed more than 2000 PSL properties. Since the
properties are written for leaf modules, it was easy to
develop properties rather than logic simulation patterns.

As a result, we found seven logic bugs. Four of seven
logic bugs were difficult to detect by logic simulation.
Thus, it is shown that formal verification is powerful and
effective.

We also investigated the design impact of
implementing the error injection feature, and we found
that the penalty was almost negligible in terms of area
increase and timing delay.

What was novel in our approach was to break down
properties for RAS features into three stereotype
properties. Such framework enabled us to deploy formal
methodology systematically and thoroughly over all the
leaf modules. Each designer designed Verifiable RTL and
described properties quite easily, although it was a very
difficult task to complete verification for huge number of
integrity checkpoints. As the result of our methodology,
we conclude that significant increase of productivity is
achieved.

8. Acknowledgement

We thank Takashi Miyoshi, Yoichi Koyanagi, Akihiko
Okutsu, and Takuya Saze for their contribution of
developing properties. We also thank Jawahar Jain and
Christian Stangier for their support of using the in-house
formal verification engine.

9. References

[1] K. L. McMillan. Fitting Formal Methods into the Design
Cycle. In Proceedings of DAC, 1994

[2] R. P. Kurshan. Formal Verification In a Commercial
Setting. In Proceedings of DAC, pp 258-262, 1997

[3] D.L. Dill. What’s Between Simulation and Formal
Verification ? In Proceedings of DAC, 1998

[4] D.L. Dill. Embedded tutorial: formal verification meets
simulation. In Proceedings of ICCAD, 1999

[5] P.H.Ho, et al. Smart Simulation Using Collaborative
Formal and Simulation Engines. In Proceedings of
ICCAD, pp 120-126, 2000

[6] Tom Schubert. High Level Formal Verification of Next-
Generation Microprocessors. In Proceedings of DAC, pp
1-6, 2003

[7] Maher Mneimneh, et al. Scalable Hybrid Verification of
Complex Microprocessors. In Proceedings of DAC, pp 41-
46, 2001

[8] Xi Chen, et al. Utilizing Formal Assertions for System
Design of Network Processors. In Proceedings of DATE-
04, pp126-131, 2004.

[9] PSL Language Reference Manual, version 1.01, 2003
http://www.eda.org/vfv/docs/psl_lrm-1.01.pdf

[10] J. Jain, Breaking Barriers of BDD-based Verification by
Partitioning, IWLS 2004

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

