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Abstract

This paper evaluates the use of pin and cycle accurate
SystemC models for embedded system design exploration
and early software development. The target system is Mi-
croBlaze VanillaNet Platform running MicroBlaze uClinux
operating system. The paper compares Register Transfer
Level (RTL) Hardware Description Language (HDL) sim-
ulation speed to the simulation speed of several different
SystemC models. It is shown that simulation speed of pin
and cycle accurate models can go up to 150 kHz, compared
to 100 Hz range of HDL simulation. Furthermore, utilising
techniques that temporarily compromise cycle accuracy, ef-
fective simulation speed of up to 500 kHz can be obtained.

1 Introduction

Introduction of embedded processors into Field Pro-
grammable Gate Arrays (FPGAs) exposes mainstream de-
signers to a new field of CAD: hardware and software de-
velopment of application specific embedded systems. This
creates a conflict between two verification worlds. Soft-
ware developers are accustomed to high-speed Instruction
Set Simulators (ISS) with full visibility and controllability
to the system, whereas hardware engineers use Hardware
Description Language (HDL) simulators. Currently the lat-
ter is the only option provided for complete system simula-
tion, which is clearly too time consuming as illustrated later
in this paper.

This paper examines the usefulness of SystemC mod-
elling to alleviate the gap between embedded software
and hardware verification methods. Previous related work
include, amongst others, SystemC modelling of an IP
forwarding chip [1], AMBA bus architecture [2], multi-
processor SoC platforms [3], and virtual in-circuit emu-
lation [4]. This paper presents several different SystemC
models of a complex embedded system executing uClinux
operating system. It is shown that there can be 8-fold differ-

ence in the simulation time depending on the used SystemC
model.

The rest of the paper is organised as follows. Section 2
introduces the target system and the used SystemC tools.
Section 3 briefly looks in to the HDL RTL simulation of
the system. Sections 4 and 5 presents the cycle and non-
cycle accurate SystemC models and simulation speed re-
sults. Section 6 highlights some of the drawbacks and future
improvement possibilities with SystemC modelling. Finally
section 7 concludes the paper.

2 Target System

The target system is uClinux [5] running on MicroBlaze
VanillaNet [6] platform depicted in Fig. 1. Both the hard-
ware version of the platform and the Linux port are cre-
ated by John Williams [7, 8]. Publicly available third party
platform and application was chosen to facilitate compar-
isons with our models. uClinux is a derivative of Linux 2.0
kernel intended for microcontrollers without Memory Man-
agement Units (MMUs). The MB VanillaNet platform is
targeted to Insight/Memec V2MB1000 Virtex2 evaluation
board and the range of peripherals reflects this.

All the simulations are carried out using IBM IntelliSta-
tion Z Pro with 3.06 GHz Intel Xeon processor with 2.5 GB
RAM memory, running Red Hat 8 operating system with
Linux 2.4.18-14 kernel. Each SystemC simulation result is
an average of 50 data points: 10 different phases over 5 ex-
ecutions of the Linux boot sequence. From obvious reasons
the RTL HDL simulation results are not from Linux boot
sequence, but from a simpler program execution.

2.1 SystemC Tools

All the SystemC development tools used within this
project are Free Open Source Software (FOSS). SystemC
class library, including the source code is free and available
to the public via SystemC portal [9]. In addition to standard
Linux C++ development and shell tools, GTKWave wave-
form viewer and Data Display Debugger (DDD) were used.
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Figure 1. Target platform: MicroBlaze VanillaNet

The availability of full set of FOSS development tools to
carry out project with this magnitude indicates that the fi-
nancial threshold for adaptation of SystemC form the tool
cost point of view is negligible.

3 RTL HDL Simulation

The RTL HDL simulation is carried out in Mentor
Graphics ModelSim SE 6.0 without any trace waveform.
The used HDL model is generated by Xilinx Embedded De-
velopment Kit (EDK). As seen from Fig. 2, which contains
the results from all the presented models, the HDL simula-
tion can be run with the speed of 167 Hz. With this simula-
tion speed, it would take 1 month and 15 days to complete
uClinux boot sequence.

4 Pin and Cycle Accurate Models

The SystemC models presented in this section are pin
and cycle accurate models of the target system components;
peripherals, buses and the MicroBlaze. This means that the
all the signals between the components that are present in
the RTL HDL model are also present in the SystemC mod-
els. Furthermore, the waveforms of these signals in these
models are identical. The difference is that pin and cycle
accurate model does not model all the signals and register
transfers inside the components. For example, multi cycle
operation can be carried out in zero simulation time and
then the result delayed for required amount of cycles. In
general this means that the components’ internal description
can be done using standard C++, whilst SystemC is used for
the component interface. Naturally, SystemC must be used
also for concurrent elements to maintain the cycle accuracy
within the interface. A notably large component is the Xil-
inx MicroBlaze ISS, which is standard C++ implementation

wrapped in SystemC module.
The UART models connects to the pseudo terminal

(PTY) interface on the underlying Linux operating system.
By using this interface, it is possible to connect to the model
using standard terminal software, such as minicom. The
SystemC model of Ethernet MAC is a proxy that imple-
ments only the OPB interface and peripheral control regis-
ters.

4.1 Initial SystemC Model

In the initial SystemC model, sc [in|out] rv ports
are used in all the system components and sc signal rv
signals are used to connect the ports. Within modules, na-
tive C++ types are used, whenever possible. The main rea-
son of using resolved signal and port types is to enable HDL
co-simulation in ModelSim. It is well known that these data
types are slower to simulate than unresolved ones. How-
ever, the simulation speed of this type of model is already
61 kHz – 360 times faster than RTL HDL simulation.

4.2 Native C++ Data Types

The fist optimised model utilises native C++ data types
for signals between system components. When using these
data types, HDL co-simulation is no longer possible. In
addition, multiple drivers of a same signal are no longer
detected. The use of this optimisation is facilitated by signal
declaration and manipulation macros and inline functions.
These constructs makes is possible to turn the optimisation
on and off during compilation time without changes to the
source code of the models.

As it can be seen from Fig. 2 this optimisation provides
132% speed improvement compared to the previous model,
yielding simulation speed of 141.7 kHz.
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Figure 2. Results. Bars for simulation speed (CPS/[kHz]) with values on the left and line plot for
simulation time [min] with values on the right.

4.3 Threads vs. Methods

SC THREAD is a SystemC process that can have mul-
ticycle behaviour. When multicycle behaviour is not re-
quired, more lightweight process – SC METHOD – can be
used. Methods are faster to simulate than threads due to re-
duced scheduling complexity. In this model, 3 out of 17 pro-
cesses in total are changed from threads to methods. It can
be seen that this yields modest 2% speed improvement.

4.4 Reduced Port Reading

In SystemC, ports are implemented as C++ objects. Ev-
ery port operation, e.g., read and write, will inflict a chain
of function calls due to request-update nature of the concur-
rency kernel. Listing 1 illustrates how port reading can be
reduced, when port value is required several times within
single process execution. The first code snippet uses the
value of input X two times if the value is not 2. By utilis-
ing local variable to store the input value, only one reading
of the port is required. Naturally, this technique can only
be utilised, when reading of the port is not blocking opera-
tion and does not consume port item, as can be the case for
example with sc fifo.

In this model, 6 input port reads occurring every cycle
were reduced to 3. This yields 2.5% speed improvement.
As in this model there are about 70 port read operations ev-

Listing 1. Reduced port reading
/ / M u l t i p l e p o r t r e a d s
void i n p u t m e t h o d ( ) {

i f ( i n p u t x . r e a d ( ) != 2 ) {
z = i n p u t x . r e a d ( ) + i n p u t y . r e a d ( ) ;

}
}

/ / Reduced p o r t r e a d s
void i n p u t m e t h o d ( ) {

unsigned i n t l o c a l X = i n p u t x . r e a d ( ) ;
i f ( l o c a l X != 2) {

z = l o c a l X + i n p u t y . r e a d ( ) ;
}

}

ery cycle, slightly depending on phase of execution, reduc-
ing port reading has potential for notable speed improve-
ment. Especially, it can be noted that hardware description
style to check of reset condition on every cycle is not the
most efficient way of writing SystemC code. Instead, the
variables should be initialised for example in the construc-
tors, or global variable, not a port, used for reset detection.
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Listing 2. Reduced port reading

/ / S e p a r a t e t h r e a d s f o r o p e r a t i o n s
void t h r e a d 1 ( ) {

whi le ( 1 ) {
z = x+y ;
w a i t ( ) ;

}
}
void t h r e a d 2 ( ) {

whi le ( 1 ) {
answer = z + 4 2 ;
w a i t ( ) ;

}
}

/ / S e p a r a t e f u n c t i o n s f o r o p e r a t i o n s
void c o m b i n e d t h r e a d ( ) {

whi le ( 1 ) {
d o f u n c t i o n 2 ( ) ;
d o f u n c t i o n 1 ( ) ;
w a i t ( ) ;

}
}
void d o f u n c t i o n 1 ( ) {

z = x+y ;
}
void d o f u n c t i o n 2 ( ) {

answer = z + 4 2 ;
}

4.5 Reduced Scheduling

In pin and cycle accurate modelling vast majority of Sys-
temC processes, i.e., threads and methods, are scheduled
every clock cycle. The models presented in this section
reduces scheduling with two techniques explained in sec-
tions 4.5.1 and 4.5.2. These techniques has potential to
yield speed improvement through two factors: 1) reduce
the computation in SystemC scheduling engine and 2) re-
duce the overall computation of a process. The first factor
is present in both techniques, the second one only in the
latter.

4.5.1 Combination of Concurrent Elements

In RTL HDL description it is common practise to declare
separate process for every state of processing in order to
make the code more understandable and modular. In Sys-
temC, although separate processes – methods or threads –
have identical sensitivity, every process is scheduled sepa-

rately. As SystemC is based on C++ it is natural to per-
form the computation in functions that are called from pro-
cesses instead of performing the computation inside process
directly. The difference is that the functions can be called
from a single process without compromising the readability
and modularity of the code. As these models are not tar-
geted for hardware implementation, synthesisability of the
function calls is not an issue, unlike in RTL HDL models.

Listing 2 demonstrates this optimisation in practice. The
upper code snippet has two separate processes, in this
case threads, for computation. In the lower snippet, the
computation is done inside functions that are called from
combined thread(). It is good to note the order of
function calls. do function2() must be called before
do function1() in order to achieve identical behaviour
regardless of whether SystemC signals or native C++ data
types were used for variables. The computation is usually
rather more complicated than in this example and identify-
ing the correct sequence of operations becomes increasingly
difficult as complexity increases. This limits the applicabil-
ity of the optimisation.

In this model, 3 synchronous single cycle threads are
combined to a single thread. As can be seen from Fig. 2
this yields 3% speed improvement. This illustrates that the
scheduling in SystemC kernel is notable part of the execu-
tion. In addition, asynchronous processes that are poten-
tially scheduled several times within a single clock cycle,
should be avoided whenever possible.

4.5.2 Multicycle Sleep of Processes

In some cases, processes (methods and threads) do
not need to be invoked every clock cycle in order to
achieve the desired functionality. For example in the tar-
get system, the underlying PTY interface of the UART
model is capable of receiving characters much faster
than our model is able to fill the transmission buffer.
Therefore, instead of scheduling the transmission pro-
cess to execute every cycle, the process can sleep for
several cycles between executions. In SystemC, this
can be done using wait(time, sc time unit) and
next trigger(time, sc time unit) methods for
threads and methods, respectively.

This optimisation can be applied in relatively rare occa-
sions and the benefit greatly depends on amount of com-
putation done in each time the process is scheduled. In the
case of UART interface module, the transmission will cause
system calls, that have relatively long and host system load
dependent execution times. In order to reduce system calls,
and thus speed distortion of the results, this optimisation is
utilised in all of the presented models.
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4.6 Summary of Pin and Cycle Accurate Models

Unoptimised pin and cycle accurate SystemC model pro-
vided simulation speed of 61 kHz, which already provides
around 360 times speedup compared to RTL HDL simu-
lation. Mainly by utilising native C++ data types instead
of multi-valued SystemC data types, 152.5 kHz simulation
speed was obtained. The last three optimisation techniques
had relatively small impact, 7.6% altogether, to the overall
simulation speed. On the other hand, utilisation of these
optimisations is simple and the tradeoffs are minor. There-
fore, these techniques should be considered more as good
modelling style guidelines than optimisation methods.

5 Non-Cycle Accurate Models

The models presented in this section uses optimisation
techniques that does not preserve cycle accuracy. All the
optimisation can be turned on and off during run time of
the simulation. This makes it possible to quickly simulate
section of the execution that is already known to work prop-
erly to a section that requires cycle accuracy. In general, it
is possible to miss some errors in the system, when these
optimisations are utilised.

5.1 Instruction Memory Activity Suppression

Vast majority of the OPB bus activity is MicroBlaze in-
struction fetches from SDDR RAM. In this model, the in-
struction fetches are suppressed by a new module called
memory dispatcher. This module can directly access the
memory models inside the peripherals. The benefit of pro-
viding the instructions via memory dispatcher are twofold:
there are no longer arbitration conflicts between MicroB-
laze data and instruction side OPB and even more impor-
tantly, it takes only one cycle to fetch the instruction instead
of the minimum of three. As can be seen from Fig 2, the
improvement in CPI is around 35%, whereas the execution
time goes down 64% – from 1 hour 9 minutes to 24 minutes.

Clearly, this model compromises cycle accuracy in sev-
eral ways. However, the operation of the memory dis-
patcher can be turned on and off at run-time.

5.2 Main Memory Activity Suppression

With this model, the whole main memory peripheral –
SDDR RAM – is handled by the memory dispatcher. Again,
the speedup is due to two factors. As in previous model, the
number of cycles required for memory operation is reduced.
Furthermore, as the memory peripheral is completely han-
dled by the memory dispatcher, is no longer necessary to

schedule the memory peripheral. Therefore, when the mem-
ory dispatcher is enabled, memory peripheral’s attachment
to the OPB can be removed.

5.3 Further Reduction of Scheduling

In the two previous models, the main speedup was due
to simplification of frequently occurring peripheral transac-
tions. In the target system, the uClinux has very small num-
ber of transaction with FLASH memory, GPIO, and Ether-
net MAC peripherals. However, these peripherals’ address
decode unit is scheduled every clock cycle. This unneces-
sary scheduling and address decoding activity can be sup-
pressed by explicitly accessing the peripheral only when the
address is within the correct range.

As can be seen from Figure 2 this optimisation reduces
the boot time to 12 minutes, providing additional 15%
speedup. The danger of this optimisation is that it is no
longer possible to detect some corner case bugs in the sys-
tem, as for example peripheral taking over the bus when not
allowed.

5.4 Interception of Kernel Functions

Final model utilises interception of two low level C-
library functions. The Linux boot execution spends 52%
on two functions: memset and memcpy. The former sets
a memory region to a certain byte-value and the latter per-
forms byte-wise copy of non-overlapping memory region to
another.

The interception of the function is carried out by the Sys-
temC MicroBlaze ISS wrapper. First, the wrapper detects
jump to either function and reads function parameters from
the MicroBlaze registers. Then the function is executed in
native C++ on the host computer in zero simulation time.
Finally, the wrapper modifies the ISS registers to have the
same values than after normal function execution. In both
of the cases only one instruction – the loop check branch –
is different compared to the normal execution.

With this optimisation, the CPI is actually lower, as il-
lustrated by Fig 2, because of extra computation required to
perform the captures. As roughly half of the instructions are
executed in zero time, it is not surprising that the boot-up
execution time is also halved from 12 minutes to 6 minutes.
Effectively this boot time corresponds to simulation speed
of 578 kHz. This optimisation is very application specific
and does not only compromise cycle accuracy, but also the
ISS execution statistics will be distorted.

5.5 Summary of Non-Cycle Accurate Models

The optimisation techniques yielding non-cycle accurate
models provide up to 10 000 times speedup compared to
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RTL HDL simulation. All the techniques considered within
this study can be turned on and off during the simula-
tion. This makes it possible to quickly simulate portions
of the code that are already known to function correctly and
then return to cycle-accurate model for portions that require
more detailed examination. However, it must be noted that
although the optimisation can be turned on and off, the sys-
tem will not be in exactly identical state compared to fully
cycle accurate simulation. For example, interrupts will oc-
cur in different phase of the execution, resulting different
program counter traces. In general, this is a problem only
in most pathological cases as for example interrupts should
function correctly regardless of the phase of execution.

6 SystemC Drawbacks and Solutions

This section outlines some of the drawbacks of SystemC
modelling experienced within this project.

The major drawback for software development is that
standard software development tools are debugging the soft-
ware of the model, not the software running on the model.
For example, the code that is being traced is SystemC
source code, not the source code of the uClinux. One pos-
sible solution to this problem would be to provide debugger
interface, for example to GDB, from the SystemC model.

There is no linter available for SystemC. In other words,
the SystemC semantics that is build on top of C++ syntax,
is not checked within the compilation process. The effect
of this is that illegal semantics that are syntactically correct
will not produce compiler errors or warnings. In these oc-
casions, the programs will cause a run-time error, which are
usually harder to locate than compile-time errors. In addi-
tion, standard C++ compiler will produce undecipherable
error messages, when the illegal use of SystemC semantics
yields and syntactical error within the SystemC library.

Interaction with other software environments and native
C/C++ and SystemC can be troublesome. This is due to two
reasons. 1) main() function of the SystemC executable of
within the SystemC kernel and thus not easily modifiable
by the programmer. This implies that SystemC kernel is
the top-level entity in the system and all the functionality
must be executed within SystemC components. 2) There
is no standard way of creating SystemC events from non-
SystemC sources. Significance of this is that SystemC pro-
cesses cannot be made sensitive to anything that is not im-
plemented with SystemC channel types. For example in the
case presented in the paper, it would have been useful to be
able to be sensitive to the MicroBlaze ISS output variables,
which are implemented in native C++.

7 Conclusion

Pin and cycle accurate SystemC modelling provides
high-speed alternative to RTL HDL simulation of reconfig-
urable embedded systems. This paper demonstrated the us-
ability and speed of SystemC model simulation by booting
up uClinux on SystemC model of MicroBlaze VanillaNet
platform. The speed of cycle accurate SystemC models
range from 60 kHz to 150 kHz. Models that have capability
of turning cycle accuracy on and off during the simulation
can achieve simulation speed of up to 280 kHz. However,
due to techniques used, the effective simulation speed can
be up to 578 kHz. The speedup compared to RTL HDL sim-
ulation ranges from 360x to 10 000x, depending on the used
SystemC model. Due to higher simulation speed, SystemC
modelling facilitates early embedded software development
and enables rapid and easy architectural exploration.
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