
HAL Id: hal-00177353
https://hal.science/hal-00177353

Submitted on 7 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model design using hierarchical web-based libraries
Fabrice Bernardi, Jean-François Santucci

To cite this version:
Fabrice Bernardi, Jean-François Santucci. Model design using hierarchical web-based libraries. 39th
ACM/IEEE DAC (Design Automation Conference, Jun 2002, New Orleans, United States. pp. 14-17.
�hal-00177353�

https://hal.science/hal-00177353
https://hal.archives-ouvertes.fr

Model Design Using Hierarchical Web-Based Libraries

Fabrice Bernardi
University of Corsica

UMR CNRS 6134
Corte, France

bernardi@univ-corse.fr

Jean-François Santucci
University of Corsica

UMR CNRS 6134
Corte, France

santucci@univ-corse.fr

ABSTRACT
Design tools can be profitably associated with libraries of
reusable modeling components that will make the descrip-
tion and also the validation of the models much easier. Fur-
thermore, applications of today and tomorrow will be in-
creasingly based on three fundamental technologies: Object
Orientation, Client/Server and Internet. We propose in this
article an object-oriented architecture for the definition of
Web-based hierarchical models libraries. The originality of
our approach lies in the facts that it is based on : (i) a
notion of genericity of use, (ii) notions like inheritance and
abstraction links between the stored models and (iii) Web-
based storing and consulting libraries procedures.

Categories and Subject Descriptors
J.6 [Computer Applications]: Computer-Aided Design;
D.2.11 [Software]: Software Engineering—Software Archi-
tectures; D.2.13 [Software]: Software Engineering—Reus-
able Software

General Terms
Design, Management

Keywords
models reuse, models libraries, Web-based access, abstrac-
tion hierarchy

1. INTRODUCTION
The design of complex manufactured systems is a task

requiring a lot of time to be achieved. One way to speed
up this task is to develop methodologies for deriving and
for using reusable design components. Recently a set of re-
search work has been oriented towards this direction. We
can highlight for example : (i) that components represent
over 70% of product cost in the EDA industry[15] ; (ii)
a multi-company project called ECIX (Electronic Compo-
nent Information Exchange) and presented in [5]. In the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2002 June 10-14, 2002, New Orleans, Louisiana, USA
Copyright 2002 ACM 1-58113-461-4/02/0006 ...$5.00.

same time, computer simulations have been becoming in-
creasingly complex and require efficient system simulation
framework [14]. Furthermore, increasing size and geograph-
ical separation of design data and teams has created a need
for network-based design environments [6]. Usually, De-
sign tools are profitably associated with libraries of reusable
modeling components that will make the description of the
models and also their validation much easier [4]. Storing
models in a common generic library has several benefits.
First, the genericity of this storage service can be offered
to various modeling and simulation environments. Second,
a common library allows environments to share information
so they can interact each other, and third, modeling com-
ponents can be shared by several users. This last point is
the most important since it allows a design team enabling
an efficient collaborative work.

Applications of today and tomorrow will be increasingly
based on three fundamental technologies [13]: Object orien-
tation allowing applications to be viewed in terms of natural
objects; Client/Server allowing application components to
behave as service consumers (client) and service providers
(server); The Web allowing to access resources located all
around the world. A Web-based access is a very interesting
perspective for a generic modeling components library, since
it allows an user-friendly remote access using a simple Web
browser. We describe in this article an object-oriented archi-
tecture for the definition of Web-based hierarchical models
libraries. The libraries are based on a hierarchical organi-
zation of concepts relating to the class of applications. The
leaves of the hierarchical structure represent the elements
which can be used in model descriptions. Information con-
cerning the elements can be placed at the appropriate level
in the hierarchy, thus, eliminating needless repetition when
the elements are being defined. The originality of our ap-
proach lies in the facts that it is based on a strong notion
of genericity of use, and notions like the inheritance and ab-
straction links between the stored models. We describe how
managing inheritance between stored models can improve
their classification and their accuracy, and how the abstrac-
tion hierarchy allows to describe a same model at various
detail levels.

The paper is organized as follows. Section 2 presents the
foundation of our work: the component-oriented hierarchical
modeling and simulation process. Section3 introduces the
notion of models library with all its inherent specificities.
Section 4 discusses our approach for the construction of a
Web-based access to a models library. Finally, section 5
concludes this paper and provides some perspectives of work.

14

2.3

2. COMPONENT ORIENTED MODELING
AND SIMULATION PROCESS

We introduce in this section the basic concepts of the hier-
archical components-oriented modeling and simulation pro-
cess : (i) the abstraction hierarchy, (ii) the notion of model-
ing component and (iii) a complete modeling and simulation
process.

2.1 Abstraction Hierarchy
One of the most difficult tasks in the field of modeling

and simulation of complex systems is to choose a good level
of detail. In all Domains, models are built at a precise ab-
straction level. The abstraction level of a model determines
the amount of information which is contained in the model.
The quantity of information in a model decreases with the
abstraction levels: a model described at a low abstraction
level will contain more information than a model described
at a higher abstraction level [2].

Determining the correct abstraction level refers to select-
ing the quantum of information that must be included in the
model to help address the modeling goals. So, well defining
the abstraction level is an important step in modeling, and
is often done very early in the modeling process described in
section 2. A model described according to several abstrac-
tion levels is said a ”hierarchical model”.

2.2 Notion of Modeling Component
Since many years, reusable modeling components appear

to be the ideal paradigm for implementing simulation models
[15, 11]. We define a modeling component as a model that
can be described following various abstraction levels, pre-
senting well-defined communication interfaces (called ports)
and that can be reused in various contexts.

2.3 Component-Oriented Process
We introduce in this part a theoretical modeling process

that can be applied to all component-oriented modeling pro-
cesses. This process can be divided in eight steps given in
Figure 1. The first step (box 1) is to formalize the prob-
lem: presentation, objectives to be reached, validation cri-
terions,. . . The second step (box 2) is to identify the compo-
nents to be used. Starting from this identification, compo-
nents are : (i) selected in a models library, or (ii) built from
scratch (box 3). Once all the components are well defined,
the newly created ones are stored in a models library for fur-
ther retrieval (box 4). The next step is to build the global
model with the previously selected or defined components
(box 5). The main advantage of this modeling process lies
in this step, since it consists only in interconnecting com-
ponents. Once the global model is well-defined and seems
acceptable, the simulator is build and the simulation is per-
formed (box 6). The next step (box 7) concerns the vali-
dation of the model defined in box 5. If the validation step
presents good results, the model can be used (box 8), oth-
erwise it is necessary to go back and perform changes either
in the components identification (box 2), in the components
selection (box 3) or in the global model building (box 5).

3. DESCRIPTION OF A MODELS
LIBRARY

When we deal with CAD (Computer Aided Design), a
modeling component is most of the time a software compo-

Problem Formulation

Components Indentification

Components Selection or Building

Storage of the Non Previously Existents
Components in a Models Library

Model Building Using the Components

Simulator Generation and Simulation

Model Validation

Use of the Model

OK

Wrong

Is Components
Identification good ?

Is Components
Selection Good ?

Is Component
Interconnection good ?

New Models
can be built by
interconnecting
existing ones

1

2

3

4

5

6

7

8

Figure 1: Components Oriented Process

nent written in a given language and presenting some input
and output ports. This component is used in a software
framework (called modeling and simulation environment)
able to handle it. A persistent model is a model that can ex-
ists before being used in the context of the environment, and
that can exists even after its use. We define a models library
as an object-oriented architecture, allowing a model designer
to store and retrieve persistent models, directly reusable in
their own modeling and simulation environment.

3.1 Basic Concepts
A models library is structured according to two paradigms:

the application domains and the abstraction levels. Further-
more the three following requirements should be taken into
account : a models library must allow the storage indepen-
dence from the considered application domain, must man-
age an inheritance hierarchy between the stored models, and
must manage the abstraction links between the stored mod-
els. The notion of library we introduce here is different from
the one commonly used in the Computer Science. We can
compare it to the notion of Object Database [9], since we
want to store directly reusable models rather than software
functions or objects used for well-defined tasks. One of the
most important objectives of a models library, as defined
in this paper, is to be independent from the storage mode.
That means that a library must be able to store fundamen-
tally different models coming from fundamentally different
modelling and simulation environments. This independence
implies that we must dissociate the contents from the for-
mat of the stored models, and also that the communication
interfaces of a library with the external applications must
be identical for all kinds of models.

We define, in order to be as precise as possible, two no-
tions: “context-in” and “context-out” models. A context-
out model is an abstraction of a model. It presents a struc-
ture allowing it to be stored in a models library. A context-in
model is a context-out model extracted from a Library and
formatted so as to be directly reusable in its environment.

In order to avoid a repetition of properties inside same
kinds of models, a models library must deal with an in-
heritance between the stored models. This inheritance be-
tween a parent model and its children allows to store these
shared properties inside special models (called parent mod-
els), dramatically simplifies the children models, and facil-
itates the maintenance of the whole Library. Furthermore,

15

this inheritance hierarchy inside a library provides all the
classical benefits of object inheritance: automatic proper-
ties transmission and methods overloading if components
are described using algorithmic functions. The importance
of a good models library is that the model designer can be
supplied with reasonable alternatives [12]. The choice be-
tween these alternatives can be strongly facilitated if the
inheritance hierarchy is structured in a smart way.

3.2 Elements of a Models Library
Building a Models Library is as creating a high level rep-

resentation of the models and their relations. In order to
meet the requirements stated above, we define five kinds of
objects to be stored in a Library object.

Domain elements allow performing a classification between
theoretical domains of the stored models (Ex: DEVS Simu-
lation [16], High Level Synthesis, VHDL Test).

Application Domain elements allow performing a classifi-
cation between the application domain inside a given domain
(Ex: Microelectronic, Energetic,. . .).

Classification Intermediate Model elements, belonging to
an Application Domain, allow the creation of a classification
hierarchy between the storage objects. This kind of model
is not a storage model.

Inheritance Intermediate Model elements, which are stor-
age models, allow the share of characteristics with its chil-
dren through an inheritance mechanism.

Finally, Model File elements represent context-out mod-
els. It is the basic storage element of the Library.

Library

Domain

ApplicationDomain

ClassificationIntermediateModel

ModelFile

InheritanceIntermediateModel
Contains

0..1

0..*

0..1

Contains

0..*

Figure 2: Links Between Elements

Figure 2 presents how are organized the links between
these elements.

4. WEB-BASED ARCHITECTURE
We present in this section our approach for the defini-

tion of an architecture allowing to access the storage engine
through a network or the Web. In the first part we introduce
the basics of the Web-based architecture while the second
part exposes the Remote Access package, the key of Web-
based approach we have defined .

4.1 Basics of the Approach
The Web can serve as an operating system, and as a dis-

tribution channel for applications [7]. The main character-
istics of the Web are: ease of navigation and use, ease of
publishing content, new distribution models and enabling of
a network-centric computing paradigm. Our Libraries Ar-
chitecture is built on a core storage engine, and provides a

set of interfaces enabling a remote access. This is one of the
main features of our approach since it allows a design team
to work on the same models stored on a storage server.

The basic idea is that the storage engine is running on
a server and that the client access the models using a Web
browser or directly from the environment upon a local net-
work or even over the Internet, following the classical 3-tiers
architecture. Clients do not need to know how the models
are stored on the server, they should only access them for
consulting, adding or removing them. We wanted to provide
to a final user the easiest way to access the models libraries
remotely. We found that the best approach was to use a
Web browser since people are more and more aware of this
kind of software even if they are not computer specialists.

This approach but appears viable only in the cases where
the user wants to consult or manage a library. This thought
led us to develop another complementary approach: if the
final user wants to use the models library inside a modeling
and simulation environment, we provide the computer spe-
cialist in charge with the environment the capacity to con-
nect it with the storage engine using a set of simple APIs.
The reader can note that we built these APIs in order to
hide all the complexity of the storage engine.

4.2 The Remote Access Package
One of the main advantages of our libraries architecture

is that it is independent from the format of the model. The
storage engine included in the package Models Library con-
tains two servers, a server acting as a file transfer server,
and another one able to process instantiated and compiled
objects. The Remote Access package uses a combination
of these two servers in order to allow a remote access to
the storage engine through interfaces defined in the Storage
Engine package. These two servers use very simple com-
munication protocols and two different connectors between
the storage engine and the modeling and simulation envi-
ronment.

Connector EnvironmentStorage Engine

Opening Connection

Connection Established
Awaiting Object Name

Sending Object Name

Awaiting Object

Sending Object

Full Reception OK

Close Connection

Connection Closed

Model Received

Ready to Process
Process Model

Retrieve Model by Name

Figure 3: The Simple Model Object Transfer Pro-

tocol, SMOTP

The Simple Model Object Transfer Protocol (SMOTP,
Figure 3) is used by the server in charge with the process-
ing of previously instantiated and compiled models. Since
these kinds of objects already contain all the characteristics
of the associated modeling component, the transfer protocol

16

is very simple. When the connection is opened, the dialog
between the connector and the storage engine consists only
in transferring the name of the model and the associated
object.

The Simple Model File Transfer Protocol (SMFTP) is
used by the server in charge with models provided as descrip-
tion or sources files. The main difference with the SMOTP
lies in the fact that the abstraction level must be specified,
since it usually does not appear in the model file. However,
these protocols are very similar and very simple. That was
our objectives since we had in mind to keep the efficiency of
the storage engine.

4.3 Software Realization
The implementation of the whole software packages has

been performed using the Java language, and we used the
servlet/Java Web Start approach for the remote part of our
work. There are many advantages in adopting such an ap-
proach [8]: first, servlets are persistent since they are loaded
once by the Web server and can maintain services between
requests; Secondly, servlets are fast since they are loaded
once, they offer much better performance than over CGI
approaches; Lastly, servlets are platform-independent and
extensible since they are written in Java and since they can
take advantage of all the Java benefits.

We use a set of interfaces contained in the Storage Ac-
cess package as a kind of “connector” between them. The
main advantage of this approach is that modifications on
the servlets or on the storage engine can be performed in-
dependently, since the Storage Access will not change.

In our current implementation, context-out models can be
of three types: Compiled Java objects, Java sources files or
C++ sources files. The Library Storage engine can deal with
these three types and their own specificities. If the modeller
wants to store compiled Java objects, the engine creates a
Proxy object for each model to be stored. This Proxy is built
from the ”.class” file using a de-serialization mechanism. In
order to avoid replication, the engine uses a single-instance
architecture: there is only one instance of a model that lives
in the server (this was inspired by the J2EE EJB model [1]).
A modeller can also store source files in the Library. Our
engine is able to deal with Java and C++ source files using
some mechanisms based on the XML language, a text-based
language allowing to dissociate the contents from the format
of data [10]. The basic idea is to transform the source code
of a model in XML following predefined DTDs (Document
type Definition), and to instantiate and to associate an ob-
ject in the engine with this file. This approach has many
advantages: we can produce DTDs for any kind of program-
ming languages in order to extend the possibilities, we can
work independently on the file without performing tasks on
the associated object, and we can modify directly from the
Proxy object some parameters of the model.

5. CONCLUSION
We introduced in this paper our approach for the defini-

tion of models libraries enabling the reusability of modeling
components. These models libraries are built on the con-
cepts of modeling components, abstraction hierarchy and
genericity of use. They allow the model designer to perform
its model design very quickly, once models have been intro-
duced in such a library. We provided also this user with a
set of APIs allowing him to process his models through some

Web-based APIs and graphical interfaces accessible using a
simple Java-enabled Web browser. Our approach has been
validated in two different domains: VHDL test and DEVS-
based environmental modeling and simulation [3]. We have
three main perspectives of work. We saw that we are cur-
rently able to store instantiated Java objects. The next step
will be to develop the storage engine in order to enabling it
to store C++ instantiated objects. This will be done with
a massive use of XML-based techniques. The second per-
spective is to define a meta-language in order to help the
models design. Finally, we want to study how to manage
and maintain with the most efficiency a distribution of stor-
age engines over a network and over multiple hosts.

6. REFERENCES
[1] K. Ahmed and C. Umrysh. Developing Enterprise

Java Applications with J2EE(TM) and UML.
Addison-Wesley Pub Co, 2001.

[2] P. Benjamin, J. Erraguntla, D. Delen, and R. Mayer.
Simulation modeling at multiple levels of abstraction.
In Proceedings of the 1998 Winter Simulation
Conference, 1998.

[3] F. Bernardi, E. de Gentili, and J. Santucci. Reusable
models integration in a devs-based modelling and
simulation environment. In Proceedings of ESS2001,
2001. Marseille, France.

[4] A. Breneuse, J. Top, J. Broenink, and J. Akkermans.
Libraries of reusable models: Theory and application.
Simulation, (71), 1998.

[5] D. Cottrell. Electronic component information
exchange (ecix). In Proceedings of the DAC 1997,
1997. session 35.2.

[6] G. Konduri and A. Chandrakasabn. A framework for
collaborative and distributed web-design. In
Proceedings of the DAC 1999, 1999.

[7] J. Kuljis and R. Paul. A review of web-based
simulation: Whither we wander ? In Proceedings of
the 2000 Winter Simulation Conference, 2000.

[8] K. Moss. Java Servlets, second edition. McGraw-Hill,
1999.

[9] ODMG. ODMG 3.0 Specifications. Morgan Kaufmann
Publishers, 2000.

[10] W. Pardi. XML in Action. Microsoft Press, 1999.

[11] H. Praehofer, J. Sametinger, and A. Stritzinger.
Building reusable simulation components. In
Proceedings of WEBSIM2000, Web-Based Modelling &
Simulation, 2000. San Diego, CA, USA.

[12] R. Rosenberg. The bond graph as an unified database
for engineering system design. Journal of Engineering
for Industry, 97, 1975.

[13] A. Umar. Cient/Server Internet Environments.
Prentice Hall, 1997.

[14] P. van den Hamer, W. van der Linden, P. Bingley, and
N. Schellingerhout. A system simulation framework.
In Proceedings of the DAC 2000, pages 699–705, 2000.

[15] R. Wadhwani. Component and library management
tutorial. In Proceedings of the DAC 1991, 1991.
session 1.1.

[16] B. Zeigler. Theory of Modeling and Simulation.
Academic Press, 1976.

17

