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Abstract. We propose a new method for estimating the mixing matrix,
A, in the linear model x(t) = As(t), t = 1, . . . , T , for the problem of
underdetermined Sparse Component Analysis (SCA). Contrary to most
previous algorithms, there can be more than one dominant source at each
instant (we call it a “multiple dominant” problem). The main idea is to
convert the multiple dominant problem to a series of single dominant
problems, which may be solved by well-known methods. Each of these
single dominant problems results in the determination of some columns
of A. This results in a huge decrease in computations, which lets us to
solve higher dimension problems that were not possible before.

1 Introduction

Sparse Component Analysis (SCA) [1–4] is a semi-Blind Source Separation prob-
lem [5], in which it is a priori known that the source signals are ‘sparse’. A sparse
signal is a signal whose most samples are nearly zero, and just a few percents
take significant values. It has been already shown that such a prior information
permits source separation for the case the number of sources exceeds the number
of sensors [6, 1–4].

The problem of SCA can be stated as follows. Consider the linear model:

x(t) =

n∑

i=1

si(t)ai = As(t) t = 1, 2, . . . , T (1)

where A = [a1 . . . an] ∈ Rm×n is the mixing matrix, s(t) and x(t) are the vectors
of all samples of n sources and m observed signals (mixtures) at instant t, T is
the number of ‘time’ samples. The goal of SCA is then to estimate A and s(t),
only from x(t), 1 ≤ t ≤ T and the sparsity assumption. In this paper, we address
only the problem of estimation of A (note that where there are more sources
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than sensors, it is not equivalent to the estimation of the sources). We call each
column of the mixing matrix, i.e. each ai, 1 ≤ i ≤ n, a mixing vector. Although
the word “time” will be used throughout this paper, the above model may be in
another domain, in which the sparsity assumption holds. To see this, let T be a
linear ‘sparsifying’ transform, and the mixing system is stated as x = As in the
time domain. Then, we have T {x} = A T {x} in the transformed domain, and
because of the sparsity of T {s}, it is in the form of (1).

Let k denote the average number of active sources at each instant. In fact,
if the probability of inactivity of a source is denoted by p (sparsity implies that
p ≈ 1), then1 k = n(1− p). Then, two different cases should be distinguished for
estimating the mixing matrix: single dominant component and multiple domi-
nant components. In the former, k is equal to one, and the scatter plot of x(t)
(t = 1, . . . , T ) geometrically shows the data concentration directions. This can be
seen from the fact that at each instant, x(t) = As(t) = s1(t)a1+· · ·+sn(t)an, t =
1, . . . , T ; and for most instants, only one of si’s is dominant and the others are
almost zero. Consequently, in most samples, x(t) is in the direction of one of
the mixing vectors. In the latter, k is greater than one and the mixing matrix
would not be estimated easily from the scatter plot. Up to now, many papers
have been addressed the former case [1, 3, 4], while only few researchers have
considered the latter case [4, 7, 8]. In this paper, we focus on the case of multiple
dominant components.

In the multiple dominant components SCA, the observed data concentrate
around k-dimensional subspaces which are spanned by a set of k mixing vectors.
We call these subspaces concentration subspaces throughout this paper. In a
multiple dominant problem finding a k-dimensional concentration subspace is
not equivalent to find some of the mixing vectors. All of the existing methods
[7, 9] need to find most of the concentration subspaces and then estimate the
mixing matrix from them (this is not the case for our algorithm).

The main idea of this paper is to show that the multiple dominant problem
can be converted to a series of single dominant problems, which may be solved by
simple algorithms of the single dominant problem to estimate the mixing matrix.
Moreover, by estimating each concentration subspace, some of the mixing vectors
are found (contrary to [7, 9] in which all or many concentration subspaces were
needed to be estimated before starting the estimation of mixing vectors). This
results in a low computational cost in comparison to the methods of [7, 9] and
therefore, problems with higher dimensions can be solved by this algorithm. Up
to our best knowledge there is no practical algorithm for solving this problem
when k ≥ 3 but our method can handle dimensions more than this.

Throughout the paper, we suppose that the sources are sparse enough so
k < m/2 (where m is the number of mixtures), the sources are independent and

1 More precisely, in this paper, by the average number of active sources we mean an
integer. If n(1 − p) is slightly greater than an integer k = bn(1 − p)c (for example
is n(1− p) = 1.05, then the k-means algorithm, which has been designed for k = 1,
still works). In other cases, k = dn(1− p)e.
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the probability of activity are the same for all of them. Finally, we assume also
that each subset of m columns of A is linearly independent.

2 The main idea

The main idea of converting a multiple dominant problem to a single dominant
one comes from the following theorem (the proof is left to the appendix).

Theorem 1 If k ≤ m
2

and the sources are statistically independent then the
average number of active sources in a k dimensional concentration subspace (de-

noted by k̃) is k̃ = k(1− p).

The above theorem states that although the average number of active sources
k = n(1 − p) may be greater than 1, the average number of active sources
within a concentration subspace B (that is, k̃ = k(1 − p) = n(1 − p)2) is one
level sparser . In other words, a multiple dominant problem in the original space
may be transformed into a single dominant problem within the subspace B.
Consequently in the subset of data points which lie in B, we can use a single
dominant algorithm (like that of [2]) for estimating the mixing vectors which are
a subset of the mixing vectors of the main problem. If n(1 − p)2 does not less
than or approximately equal to one, then the single dominant assumption does
not hold and the above technique should be used one or several levels.

In summary, our approach for estimating the mixing matrix consists of the
following steps:

– Step 1: Find a new concentration subspace. A concentration subspace can
be found by maximizing a cost function (see Sec. 3). For finding a ‘new’ con-
centration subspace, the steepest ascent is initialized by a randomly different
starting point (note that there are a lot of concentration subspaces).

– Step 2: Determine all data points which lie in this concentration subspace,
and run a single dominant algorithm to find the mixing vectors in that
subspace, which are a subset of the mixing vectors of the main problem. The
points whose distances to the desired subspace are less than a specific value
are supposed to belong to this subspace.

– Step 3: If all of the mixing vectors have been found, the search has been
finished. Otherwise, go to step one, and continue. In this paper the number
of sources is supposed to be known in advance.

Remark: Assuming that the probability of inactivity (p) is identical for all
sources, pn is the probability of no source being active, and hence p can be
estimated as p̂ = (NT )1/n, where T is the total number of data points, and N is
the number of ‘active’ data points (i.e., x’s whose distances from the origin is
greater than a threshold). However, in this paper, p is assumed already known.

3 Finding Concentration Subspaces

Each k-dimensional subspace can be represented by an m by k matrix, whose
columns form an orthonormal basis for the subspace. In this paper, we do not



4 Noorshams, Babaie-Zadeh, and Jutten

distinguish between a subspace and its matrix representation. Let B ∈ Rm×k be
the orthonormal matrix representation of an arbitrary k-dimensional subspace.
The following cost function has been presented in [9] to detect whether B is a
concentration subspace or not:

fσ(B) =

T∑

i=1

exp

(
−d2(xi,B)

2σ2

)
, (2)

where d(xi,B) is the distance of xi from the subspace represented by B [9].
For small values of d(xi,B) compared to σ, exp(−d2(xi,B)/2σ2) is about

1 and for large values of d(xi,B), it is nearly zero. Therefore, for sufficiently
small values of σ, the above function is approximately equal to the number of
data points close to B. Therefore, by maximizing the function f , we actually
maximize the number of data points close to B thus we find a concentration
subspace. Moreover, if the set of points are concentrated around several different
k-dimensional concentration subspaces, f has a local maximum where B is close
to the basis of each of them.

The idea of [9] for finding a concentration subspace is to maximize the func-
tion fσ for a sufficiently small σ, using steepest ascent method. For very small
σ, many local maxima exist which do not correspond to any concentration sub-
spaces. These local maxima correspond to spaces which contains r < k mixing
vectors instead of k. On the other hand if σ is large, then the peaks are mixed
together. In contrast to [9] which uses an iterative method by considering a se-
quence of decreasing σ to prevent getting trapped in local maxima, in this paper
we use only a medium value for σ. In each step, we find a subset of k mixing
vectors which are related to the estimated concentration subspace. As will be
discussed in Sec. 7, if an incorrect concentration subspace with r (r < k) mixing
vectors is estimated, the algorithm detects r mixing vector rather than k and
therefore it is robust to these errors.

4 Estimating mixing vectors and the mixing matrix

Consider a concentration subspace B and suppose that the points xi for i ∈
I ⊂ {1...T} belong to this subspace. The fact that k̃ < 1 ensure us that most
of these points concentrate along k, 1-dimensional subspaces. Then, we use the
same idea of [2] designed for finding the mixing vector in the case k = 1: Firstly,
data samples are normalized by dividing them by their norms (x̄i = xi/‖xi‖),
that is, the points are projected onto the unit sphere. Moreover, the sign of the
first component is forced to be positive. Then, we have a point distribution on
a unit hemisphere. Note that most of these points are concentrated around k
points, and hence the mixing vectors (which corresponded to the centroid of
these clusters) may be found by a clustering algorithm.

However, there are numerous outliers which do not belong to any clusters.
Outlier points make the clustering algorithms inaccurate and increase the prob-
ability of error in detecting cluster centers, therefore they have to be removed
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as more as possible. We say that two points are neighbor if the distance be-
tween them is less than a specific value r which is dependent to the energy of
the sources. For outlier detection the fact that outliers are alone in the space
is used. In other words, they do not have any neighbor, but this is not true for
cluster centers because the density around them is high. By this definition, a
point is considered as an outlier if it does not have any neighbor.

The method we used in this paper for the clustering is subtractive clustering
[10]. In this method each point is considered as a cluster center and its potential
for being a cluster center is computed. The point with highest potential is con-
sidered as a center and that cluster is removed. This process continues to find
all clusters.

5 The Final Algorithm

Putting all together, the final algorithm is summarized as follows.

1. Remove the data samples (x(t)) which are near the origin. In these samples,
all of the sources are probably inactive.

2. Estimate k to set the dimension of the concentration subspaces and also p
to check that if k̃ is smaller than 1.

3. Assume an appropriate value for the free parameter of the cost function (σ).
4. Maximize fσ(B) with the steepest ascent algorithm in several steps:

(a) Choose a random starting subspace (an orthonormal m by k matrix B1).
(b) Set Bj+1 = Bj + µ∂fσ/∂Bj .

2

(c) Orthonormalize Bj+1.
(d) If ‖Bj+1 −Bj‖ < 10−3 go to (5) else j = j + 1 and go to (b).

5. Consider the points whose distances to B are less than a specific value (d)
and ignore the other points.

6. Normalize the points and force the sign of the first component to be positive.
7. Remove the points with no adjacent (outlier points) by preprocessing.
8. Detect the cluster centers with subtractive clustering algorithm (these vec-

tors are some of the mixing vectors).
9. Compare obtained vectors (in the previous step) with former mixing vectors.

If each of these vectors is new3, then add it up to the list of estimated vectors,
else throw it away.

10. If the number of estimated mixing vectors is n, then stop the algorithm, else
go back to (4).

6 Experimental Results

In this section, 2 simulations are presented to justify the algorithm. In all of
these simulations, sparse sources are generated independently and identically

2 In all simulations we consider µ = .01.
3 Two vectors are considered identical if the angle between them is less than a certain
amount (5 degree in our simulations).
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Fig. 1. Error of the overall algorithm for all simulations in the case n = 10, m = 6,
k = 2 and T = 10000 for 50 different simulations.

distributed (i.i.d) by the Bernoulli-Gaussian model. In other words, the sources
are inactive with probability p and are active with probability 1 − p. In the
inactive case, their value is a zero mean Gaussian with standard deviation σoff ,
and in active case it is a zero mean Gaussian with standard deviation σon.
Consequently si ∼ (1− p) N (0, σon) + p N (0, σoff).

In order to have sparse sources, the conditions σon À σoff and p ≈ 1 should
be applied (σoff is to model the noise). In all simulations, the values σon = 1 and
σoff = 0.005 have been used and each component of the mixing matrix is gener-
ated randomly in the [0, 1] interval after that each column of it, is normalized.

All simulations were performed in MATLAB 7 under WindowsXP, using an
Intel Pentium IV 2.4 GHz processor with 1 Gigabyte RAM.

Experiment 1: Performance

In this experiment, the performance of our algorithm is demonstrated. 50 sim-
ulations for 50 different mixing matrixes are performed for the case n = 10,
m = 6, k = 2 (p = 0.8) and T = 10000. The parameters are chosen as σ = 1/40,
d = .01 and r = .02

In all cases, the obtained vectors are compared with the mixing vectors. For
comparison the criterion E = minP∈P ‖A− ÂP‖2 is used, where P is the set of
all permutation matrices (this is the same criterion used in [7]). This estimation
error is shown in Fig. 1 for all simulations.

The average number of iterations for successfully finding all mixing vectors
is around 30, but in 3 simulations this number exceeded 100 iterations and in 1
case more than 500 iterations was required. This may increase the run time of
the algorithm. By considering this inefficiency the processes took less than 90
sec in average for estimating a mixing matrix. Moreover the maximum error in
the mixing matrix estimation is .018, therefore, the error is negligible.

Experiment 2: Middle and large scale problems

To show that the method is capable of solving medium scale problems, two
simulations are performed. In the first simulation, the parameters were n = 25,
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m = 15, k = 5 and T = 100000, whereas in the second experiment, they were
n = 35, m = 20, k = 4 and T = 50000. The process took about 1 hour for the
first case and 3 hours for the second case. As far as we know there is no algorithm
to estimate the mixing vectors in these dimensions (k = 4 or 5). In these scales
the sources are not so sparse but our algorithm can handle this situation.

To measure the accuracy of the estimation, the angle between each estimated
vector and its corresponding actual mixing vector (i.e. inverse cosine of their dot
product) were calculated. These n angles were all less than 0.01 radian, showing
that all of the mixing matrix have been correctly estimated.

7 Conclusion and Discussion

In this paper, we introduced a method for estimating the mixing matrix in the
multiple dominant SCA problem which can handle larger k in comparison to
other methods ([7, 9]).

At our best knowledge, all existing SCA methods are unable to estimate
mixing matrix in large and even medium scales, for the multiple dominant case.
However, our method solves the problem at least in the medium scale cases
and maybe it can handel larger scales in comparison to other existing methods
till now (our algorithm is capable of solving this problem when the averaged
number of active sources is up to 5). As observed in the experimental results,
all mixing vectors may be detected with good accuracy. However, some mixing
vectors might not be found in few iterations, either because of lack of sufficient
data, or because some of the actual mixing vectors are close to each other.

As was mentioned in the section 3 a medium value for σ must be considered
and for very small σ the chance of error in finding a concentration increases.
The subtractive clustering method does not need any prior information about
the number of cluster centers, therefore, if the estimated subspace contains r
(r < k) mixing vectors rather than k, the projected data on the positive normal
hemisphere concentrate around r clusters and the clustering method detects r
centers instead of k, thus our algorithm is somehow robust to these errors and
consequently to σ.

Unfortunately, our algorithm is not efficient to some extent, because some of
the mixing vectors are detected several times in order to find all vectors. This
may lead to a greater number of iterations and consequently a longer run time.
Finding an efficient method for estimating the mixing matrix is a future work.

Appendix: Proof of Theorem 1

Consider a concentration subspace B. Then, by definition, it is formed by a linear
combination of k mixing vectors. Let al1 · · ·alk be these mixing vectors. Then for
every point x in this subspace, we have x =

∑k

i=1 sliali where sli 1 ≤ i ≤ k are the
sources.

Lemma 1 If k ≤ m
2

and the mixing matrix is full rank then, each point in a con-
centration subspace (B), for the sparsest solution, is almost always the linear combi-
nation of a set of k fixed mixing vectors. Precisely if x =

∑n

i=1 s̃iai then si = 0 for
i ∈ {1, 2, ..., n} − {l1, l2, ..., lk}.
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To prove this lemma suppose that there is another set of mixing vectors {at1 · · · ath
}

and real valued variables śt1 , · · · , ´sth
such that x =

∑h

i=1 śtiati . Then x =
∑k

i=1 sliali =∑h

i=1 śtiati shows that the set {al1 , · · · , alk , at1 , · · · , ath
} is not linearly independent.

A is assumed to be full rank thus each ḱ ≤ m different mixing vectors are linearly
independent. From this comment we can conclude that k+h > m, moreover, k ≤ m/2
(see section 1) thus h > m/2 and we have h > k. This is in contrast to our basic
assumption that we want to find the sparsest solution to BSS problem. This lemma is
in fact similar to the theorem of uniqueness of the sparsest solution [6].

Using the above lemma, the expected value of active sources in B is

k̃ =

k∑

i=0

iP{i sources from l1, · · · , lk active| remaining n− k sources inactive}

where P{·} denotes the probability and k̃ is the expected value of the number of active
sources in a concentration subspace. Since the sources (and hence their activity status)
are assumed to be independent, the above equation is reduced to:

k̃ =
k∑

i=0

iP{i sources of l1, · · · , lk active} =
k∑

i=0

i

(
n

k

)
(1− p)ipk−i

This is the expected value of a binomial random variable and hence k̃ = k(1− p).
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