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1 Introduction  
 

The extraction of useful information, conveyed by a given signal, is of major 

importance in the understanding of underlying mechanisms and for the elaboration of 

decisions and actions. Any system dedicated to this task leans on a step of analysis of 

information contents.  

 

When dealing with time-series signals, the analysis of their evolution in the direct 

space of representation, is classically complemented by the examination of an equivalent 

representation in the Fourier domain. Although, these two representations allow 

characteristics of signals to be globally extracted, they can appear insufficient or even 

unsuitable for the analysis of local properties. Indeed, by switching to the Fourier domain, a 

mathematically equivalent representation is obtained but all the explicit temporal descriptions 

of the signal are lost. If this dual aspect of Fourier's representation has no consequence on 

signals stemming from a linear or a time-invariant system, it is a major drawback when the 

purpose is to analyze the spectral contents of a signal on a variable window length.  
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Several representations allying time and frequency or time and scale of analysis were 

introduced in literature. They can be either linear or nonlinear, parametric or not parametric, 

complete or incomplete, etc. . Each of these representations describes the signal by 

highlighting some of its characteristics while the others are relegated in the background. 

Therefore the choice of a representation is crucial and influences the post-processing 

outcomes.  

 

In a given context, the useful information carried by a signal can be related to its 

almost stable or slowly evolutionary dynamics, to the occurrence of abrupt ruptures or 

transients but also to the chronologies of these events. The main part of the conveyed 

information appeared then as nonstationarities on the signal. A signal is assumed to be 

stationary if its statistical properties (mean, variance, autocorrelation, …) are invariant over 

time. Fourier representation is particularly adapted for the description of stationary signals. 

Such a signal can exhibit unexpected events but their probabilities are known. There is a wide 

range of nonstationary signals. Depending on the type of encountered nonstationarities 

(transient events, frequency modulation, …), a specific analysis technique is required. 

Therefore, describing nonstationary signals is generally difficult since there exists no 

universal or canonical tool to achieve this task.  

 

Among methods aimed at analyzing nonstationary signals, time-scale and time-

frequency approaches have been extensively used during the last decade. The ability of these 

methods to address some key issues for representing nonstationary signals gave rise to new 

insights and fruitful multidisciplinary developments. Thus, writing a self-contained and 

complete overview of time-scale and time-frequency approaches and their applications is not 
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the intent of the present article. Subsequent published materials (papers, books, special 

journals, …) highlighting these issues are then recommended (1-19).  

Time-scale representations or “wavelets analysis” offer a time versus duration analysis 

of the observed phenomenon. Hence, they allow to focus on short events and to characterize 

them by means of their evolution throughout the set of analysis scales. The use of wavelet 

approaches for studying transient signals is then rational. Time-frequency approaches permit 

the description, according to time and frequency, of the evolution of the signal energy 

distribution. They allow time-frequency structures or signatures that characterize the 

dynamics of the observed signal to be extracted. It is then natural to consider these methods 

for the analysis of signals for which the energy distributions vary gradually over time.  

 

Electroencephalographic signals (EEG), as most of biomedical signals, are 

nonstationary and these nonstationarities often contain significant information regarding the 

originating mechanisms and the underlying pathophysiological processes. Among available 

methods used in the investigation of epileptic patients, EEG keeps a high potential clinical 

value (20). EEG signals may be recorded from scalp electrodes (conventional EEG), from 

subdural electrodes (electrocorticography, ECoG) or from intracerebral electrodes usually 

implanted under stereotactic conditions (stereoelectroencephalography, SEEG) (21). Signal 

processing methods may bring substantial complement to visual analysis of EEG signals, 

especially during epileptic episodes (both ictal and interictal periods) where signals often 

exhibit nonstationary properties.  

In this context, time-scale and time-frequency methods, introduced in the field of 

epileptic EEG about ten years ago, were shown to provide meaningful representations of 

isolated events, as spikes, spike-waves, sharp-waves (22) and of the complex evolution of 

signal spectral content as a function of time during ictal periods (23). 
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The aim of the current paper is to give a didactic overview of both wavelets and time-

frequency methods, and their potential contribution to the description of the epileptic 

electroencephalography is illustrated in two examples : the first one deals with interictal 

events detection on scalp EEG ; the second one is aimed at classifying depth-EEG signatures. 

The following section presents the theoretical background of wavelet transforms and its 

application for spikes detection. In section 3, time-frequency representations are introduced 

and their potential use for extracting particular signatures in SEEG is investigated. 

Concluding remarks are reported in section 4.  

 

2 Wavelet Transform 
 

From the conceptual point of view, the wavelet transform (WT) is not new. It consists 

of representing a signal S by means of a linear combination of elementary functions. The 

same idea is used in the Fourier transform where the elementary functions are sinusoids. One 

of the originalities of WT is the set F of elementary or decomposing functions which are 

obtained after scaling (dilating) and translating a unique function denoted ψ , called wavelet, 

and verifying some admissibility conditions (24).  

2.1 Wavelets Theoretical background 
 

The coefficients or details resulting from the WT are denoted ( , ;SWT a t )ψ  with :  

( ) ( ) ( )*
,

1, ;S aWT a t S u u du
a

ψ ψ
+∞

−∞

= ∫ t  

where * designates the complex conjugate, and :  
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( ) ( )2
, ,

1L / , 0,a t a t
u tu a

aa
ψ ψ ψ

⎧ ⎫−⎪ ⎪⎛ ⎞= ∈ = ≠ ∈⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

F t  

For a and t continuously varying (a nonzero and t real), the set of ( ), ;SWT a t ψ constitutes the 

(continuous) wavelet transform. Parameter a is the scaling factor, used both to control the 

time duration of the wavelet and to ensure the normalization of its energy that must be equal 

to 1. Parameter t is the translation factor, used to position the wavelet over the axis u which is 

the time axis in temporal signal analysis. Wavelet transform can be interpreted as a filtering 

process of signal S. In fact, by defining ( ) *1
a

uu
aa

ψ ψ −⎛ ⎞= ⎜ ⎟
⎝ ⎠

, ( ), ;WT a t ψ  can be written as 

:  

( ) ( ) ( ), ;S aWT a t S u t u duψ ψ
+∞

−∞

= −∫  

This last equation shows that ( , ;SWT a t )ψ  is the output, observed at time t, of a filter whose 

impulse response is given by the function aψ , where the scale a is used to adjust the 

bandwidth (i.e. the frequency resolution), and S being the input. Thus, this transformation acts 

on the signal as a filter bank whose frequency characteristics are related to the analyzing 

wavelet ψ and to the dilation factor a.  

 

The admissibility conditions wavelets must satisfy are rather weak. Therefore, many 

wavelet transforms may be defined. For a given purpose, this allows an analyzing wavelet 

tailored to match the signal characteristics to be delineated and parameters a and t to be freely 

selected without constraining them to any particular value. In other words, from a priori 

knowledge about the signal, the analysis may be restricted to an appropriate set of scaling 

parameters.  
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Generally, under these only conditions, the set F does not provide a basis of ( )2L 1 

and the resulting transform is thus redundant : the signal, which is initially a one dimensional 

function of time, is mapped into an equivalent two dimensional image, which axes are the 

time t and the scale a, while the amount of conveyed information remains unchanged (only its 

representation is modified). In figure 1, an academic case is reported to illustrate the gain that 

might be expected when changing the representation domain. The considered signal, in the 

left panel, is the sum of two transients having the same shape but different durations. The 

right panel, corresponding to a continuous wavelet representation of the signal, clearly 

outlines the ability of wavelet transform to describe efficiently the signal : two signatures are 

revealed in the wavelet domain, corresponding to the transient components of the signal.  

 

When specific mathematical properties are verified, both on the analyzing wavelets ψ  

and on the set of dilations and translations parameters, an orthonormal wavelet basis of 

 can be derived from F. This leads to the orthonormal wavelet transform (OWT) 

(sometimes called discrete wavelet transform-DWT). Indeed, for particular wavelets and for 

the discrete grid given by the series a = 2-m (dyadic scales), t = n.a, where m and n are 

integers, the associated subset of F constitutes an orthonormal basis of  (25). The 

wavelet analysis is thus seen through the associated multiresolution analysis (or filter bank) 

and the decomposition over an orthogonal basis of 

( )2L

( )2L

( )2L  leads to a cascade of high-pass and 

low-pass filtering of the signal followed by decimations. The signal S is then decomposed into 

a discrete set of orthogonal details ensuring the exact reconstruction of the original signal 

(26).  

 
                                                 
1 The set of functions of finite energy  
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Intermediate situations do exist. For example, biorthogonal wavelet transforms use the 

same grid but impose less constraint on the wavelets used for decomposing and reconstructing 

the signal, dyadic wavelet transforms use the dyadic scales whereas the parameter t varies 

continuously over time. Readers interested in these aspects of wavelet analysis may refer to 

(10).  

 

Then, for describing a signal, we have a multitude of wavelet transforms at hand. 

Consequently, the choice must be motivated by the seeking goals. Each representation has its 

own advantages and limitations : orthogonal and biorthogonal wavelet transforms are useful 

in the field of coding where the target is to compress the information and to reduce 

redundancies. They are less relevant for singularity detection and pattern recognition where 

properties like translation invariance and localization are desirable (27, 28). Dyadic or 

continuous wavelet transforms are indeed suitable for addressing such issues (29). These 

methods have been used in different areas of biomedical engineering. In this context, an 

overview of potential applications is given in (5, 18, 19).  

 

2.2 Wavelet transform based interictal transient detection 
 

The objective of this section is to illustrate the usefulness of WT through the problem 

of detection of interictal events, like spikes or spikes-waves. These transients are generally of 

short duration, they have imprecise shapes and are mixed to additive noise. For this class of 

signals, usual hypotheses (stationarity, gaussian assumption ...) are not verified and restrict, 

this way, the use of classical tools of analysis. As the relevant events are brief and occur in the 

signals as "details" or singularities, well localized in time, time-scale approaches offer a sound 

framework for their description. Figure 2 depicts the representation of a 10 seconds period of 
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a surface EEG recorded during interical episodes on a patient suffering from a left temporal 

lobe epilepsy. The signal exhibits artifact transients activities, various background shapes and 

interictal events. Such a signal can be modeled, after sampling, by a random process X(k) such 

that (30) : 

 

( ) ( ) ( ) ( ) ( )
1 1

p a

i j

n n

i p j a
i j

X k F k P k t A k t B k
= =

= + − + − +∑ ∑  

 

This relation expresses the relevant activities (elementary waves, background activity, noise, 

artifacts ...) which constitute the signal (see Figure 2). ( )F k , the background activity, may be 

considered as a piece-wise stationary signal present either casually or over the whole duration 

of the observation; for each i,  represents a brief duration potential, occurring at the random 

time  , and corresponding to an abnormal neural discharge; the 

iP

ipt jA terms may be related to 

artifacts occurring at unpredictable times 
jat ; finally, measurement noise which are stationary 

over the observation duration are gathered in the term ( )B k  ; the entities  and  

respectively represent the unknown number of temporal occurrences of brief useful events 

and artifact transient signals over the observation period.  

pn an

The component ( )F k  includes basic activities (Alpha, Beta ...) as well as ictal stationary 

periods of time (recruitment phase during an epileptic seizure for example). The distinction 

between the jA and  terms depends on the goals of the study : in our case, the epileptic 

events to be detected are described by the  terms ; conversely, transient waves associated to 

sleep, vertex sharp transients or K complexes belong to the set of artifacts. In all cases, and 

this, independently from the application, transient signals generated by eye movements are 

represented by 

iP

iP

jA  terms. Applying continuous wavelet transform to the derivation Fp2-F8 
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(Figure 3) allows interictal events to be enhanced over particular scales and thus open the way 

for their detection.  

Based on the above remarks, we proposed, about ten years ago (30, 31), the first EEG 

interictal event detector using continuous wavelet transform. Briefly, a two level decision 

system was designed (Figure 4). The first stage is aimed at separating background activity and 

measurement noise from transient signals (useful transients and artifacts,). The decision 

structure is quadratic (to avoid phase variations sensitivity) and makes use of a filtering / 

squaring / summation scheme. At the output of the first detection level, the transient signals 

are enhanced when compared to the background activity (Figure 3) without a specific 

distinction between epileptic events and artifacts (mainly induced by muscular activity and 

eye movements). The crossing of a first threshold λ1 allows to select the observation instants 

where an impulse-like signal occurs. Experimentally, when a significant wave or an artifact is 

present, the wavelet transform evolves through scales accordingly : the jA  are magnified on 

the smallest scales. The squared modulus increases (resp. decreases) for high resolution if the 

threshold crossing is due to an artifact (resp. useful wave) (32, 33). These considerations led 

us to build the second level. It is based on a decision parameter, derived from the wavelet 

domain representation. Separation between the useful transients and artifacts is then obtained 

by comparing this parameter to a second threshold λ2. Finally, threshold λ1 is estimated for 

controlling the false alarm rate and threshold λ2 is computed to guarantee a minimal rate of 

good classification of useful transients and artifacts.  

 

2.3 Remarks about WT and detection 
 

To our knowledge, this was the first wavelet based interictal event detector proposed 

in the literature. In the case of scalp EEG signals, performances of the above detector 
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compared favorably, in terms of sensitivity and specificity, to those of other detectors 

described elsewhere (34-36). It is now available on a digital EEG monitoring system2. Such a 

detection methodology may be used as a building block into a general context based detection 

procedures of epileptic transients as those proposed in (37-40), Other detectors using wavelets 

have been proposed for detecting epileptic transients events : multiresolution analysis is 

proposed for the study of EEG in (41) and (42). Interictal spike detection strategies are 

proposed in (43-46) based on biorthogonal wavelet transforms as well as on continuous 

wavelet transform. WT has also been considered for seizure onset detection and 

characterization (42, 47).  

Today, the main challenge is to make already developed wavelet methods available as 

tools for analyzing epileptic recordings in clinical context.  

 

3 Time-Frequency representation 
 

Rather than decomposing a signal S according to a given set of functions, Time-

Frequency Representations (TFR) lean on a transformation which objective is to represent the 

signal energy distribution in the time-frequency domain. Several association rules, between 

the signal and the transformation, can be considered (6). Energy being a quadratic 

transformation of the signal, it is natural to pay particular attention to quadratic energy 

distribution representations.  

3.1 Time-Frequency theoretical background 
 

To obtain such a joint time and frequency distribution of energy, the concepts of 

instantaneous power ( )
2

S t  and power spectrum density ( )
2

Ŝ f  are combined. If one 

                                                 
2 Deltamed Co., Paris, France 
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considers that S belongs to , it is natural to look for a representation  as " joint 

energy density " such as its summation over the time-frequency plane allows recovering the 

signal energy.  

( )2L ( ,ST t f )

It is important to note that ( )
2

1, ,S ST t f WT t
f

;ψ⎛
= ⎜

⎝ ⎠

⎞
⎟  is a quadratic energetic time-frequency 

distribution and is known as the scalogram. It is however a very particular time-frequency 

distribution.  

 

Among the various possible forms of ( ),ST t f  we focus in the following on the Cohen 

class of distributions. It gathers all time-frequency shift invariant, energetic, quadratic 

distributions (17). Any distribution of this class is given by : 

 

( ) ( )
( )2 2

, ; ,
2 2

j s t j f

ST t f e S s S s e d ds d
πυ π ττ τϕ ϕ τ υ υ τ

− −∗⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫∫∫  

 

where S is the signal to be analyzed, τ , t, and s are temporal variables, f andυ  frequency 

variables and ϕ  is an arbitrary function, called kernel function. The characteristics of this 

kernel determine the properties of the associated TFR. The simplest kernel (ϕ τ υ( , ) = 1 ) 

corresponds to the so-called Wigner-Ville Distribution (WVD), given by :  

 

2
( , ) ( ) ( )

2 2
j f

SWVD t f S t S t e d
π ττ τ τ

−∗= + −∫  

 

and which plays a fundamental role. Indeed, any distribution of the Cohen class can be written 

as a two-dimensional convolution between the WVD and the 2D Fourier transform of ϕ τ υ( , ) . 
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The WVD has a very good resolution but suffers from the presence of interference terms 

related to the nonlinear character of the transformation. Although these terms are carrying 

information, they may limit the interpretation of the time-frequency representation. The 

interference terms are of oscillatory nature, they can then be attenuated by a smoothing (i.e. 

convolutions with a low-pass kernel) of the WVD. It should be noted that the attenuation of 

the interference terms comes with a degradation of the time and frequency resolutions. Many 

authors proposed particular low-pass kernels to reduce the interference terms while 

preserving, as much as possible, the resolution of the WVD and most of its properties. 

Readers interested by an overview on TFR can refer to (7, 17) or (48).  

An academic example is considered in Figure 5 where two signals are analyzed. The 

first signal (top left panel) is the sum of 4 bursts : two of them have the same frequency but 

different time positions while the two others occur at the same time but have different 

frequencies. Its Wigner-Ville representation shows (middle left panel) 4 auto-terms and 6 

cross-terms (two of them overlap) that correspond to the interaction between the signal 

components. The smoothing of the Wigner-Ville representation (bottom left panel) suppresses 

the cross-terms and thus makes the readability and the understanding of the signal description 

easier but decreases the time-frequency resolution (the supports of auto-terms are enlarged). 

The second signal (top right panel) is a mono-component frequency modulation signal with a 

sinusoidal law. The Wigner-Ville representation (middle right panel) exhibits oscillating 

terms, induced by the interaction between the different parts of the modulating law. The 

smoothed Wigner-Ville representation (bottom right panel) reduces the interferences and 

reveals the signal frequency modulation law.  
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3.2 Time-frequency representation of ictal patterns 
 

Time-frequency representations are widely used for biomedical signal analysis (19), 

(49). The applications to ECoG signals were primarily aimed at analyzing (23, 50) and 

modeling observed signals (51) in epilepsy. However, very few works are related to time-

frequency analysis of SEEG signals. In (52), multivariate AR modeling of multichanel SEEG 

signals combined with adaptive segmentation is used to track rapid dynamic changes in 

seizure signals for patients with temporal lobe epilepsy.  

 
The main goal is to study the temporal evolution of the frequency contents of SEEG 

signals during both pre-ictal and interictal periods and to identify reproducible (from a seizure 

to another) time-frequency signatures, describing qualitatively the various phases of a seizure.  

 

As we do not have a priori information which would lead to the choice of a given 

TFR, various time-frequency representations with fixed kernel were implemented, tested and 

objectively compared on simulations and on a large real data set (53, 54). The Smoothed 

Pseudo Wigner-Ville Distribution (SPWVD) which allows two independent smoothing 

operations in time and in frequency (7), appeared to be well adapted to the representation of 

the large variety of time frequency patterns revealed from SEEG signals (55). Typically, for 

smoothing purposes, two Hamming windows with 0,125 s and 0,5 s duration are used 

respectively for the time and frequency domain smoothing.  

 

Figure 6-a shows the SEEG signal recorded from amygdala during the pre-ictal and 

ictal period along with its associated SPWVD (Figure 6-b). The electrical onset of this first 

seizure (S1) occurs at t = 53 s and is highlighted by high amplitude spikes. One can notice 

that chirp-like patterns as well as signatures with nonlinear frequency modulation law and 
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harmonic structure are revealed by TF analysis during the ictal period. Such patterns are not 

observed during interictal periods. Of particular interest is the time-frequency signature 

associated to the tonico-clonic discharge generally invading both mesial and neocortical 

structures. One can also notice that this signature, occurring around t = 115 s and having a 

multi-component harmonic structure, occurs simultaneously with the first clinical symptoms.  

 

From our database on temporal lobe epilepsies (TLE) (56), we selected SEEG 

recordings performed in patients candidate to surgery. Using SPWVD, particular SEEG 

patterns observed in these recordings were reported in (57, 58). An in-depth analysis of the 

time-frequency plans led us to group these signatures in three classes : transients, elementary 

modes and mixtures of components :  

Transients : These signals have short time support, random or unknown shapes and their time 

occurrences are unpredictable. They can appear in a SEEG recording in an isolated way or in 

the form of a repetitive discharge. 

 1- Isolated transients: they can be short or large (50 ms to 300 ms) with a 

frequency band going from 5 Hz to 25 Hz. Figure 7-a depicts a large transient followed by 

short transients. A burst is another example of isolated transients (Figure 7-b). These signals 

have short time and frequency supports (a time duration of about 0.5 s and a variable central 

frequency). 

 2- Transient discharge: it is a succession of transients having a stable or 

evolutionary nature with regard to their power or their time occurrence. Figure 8 shows a 

series of transients whose frequency decreases slowly at the beginning, becomes constant 

afterwards and finally increases; the power of the series decreases at the end. 

Another observed situation is that of a series of transients on which oscillatory 

components superimpose. The example presented on Figure 9 illustrates the first phase of a 
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change in a signal type where a sequence of spikes is vanishing and a fast rhythmic activity 

(narrow band signal) is progressively appearing. 

 

Elementary modes: The second class includes the signatures observed on a larger time 

support but characterized by more structured time-frequency patterns. 

 1- Simple mode: this signature corresponds to a stable and quasi mono-

component (rhythm) signal, i.e. reproducing the instantaneous frequency of the signal. A 

pseudo-regular mode corresponds to a quasi-constant frequency (Figure 10-a). An intermittent 

mode is represented by a mono-component signal with fast changes in the instantaneous 

frequency (Figure 10-b).  

 2- Mixed mode: a mixed mode is composed of several mono-component 

signals. Figure 11-a depicts an example of this mode where the signal is composed of a 

constant frequency and a quasi-linearly decreasing chirp. For the example reported on Figure 

11-b, there are various components whose instantaneous frequencies tend to intersect or to 

move away in the time-frequency plan. A third example presents various components which 

correspond to the harmonics of a fundamental (Figure 11-c).  

 

Mixtures of components :For these modes, the time-frequency plan is either slightly 

structured or not structured at all. 

 1- Quasi-regular mode: an example is displayed on Figure 12 where a 

signature, corresponding to a frequency modulated signal, according to a parabolic law, and a 

series of transients, can be observed.  

 2- "Random" mode: when the time-frequency plane does not make it possible 

to qualitatively identify a modulation law governing the signal, one will speak, by misnomer, 

of a "random" mode. The Figure 13 provides two examples of this class ; the first one 
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corresponds to a low frequency activity whereas the components of the second one are 

distributed over a broader frequency band. 

 

On the basis of this qualitative classification, two questions, related to reproducibility, 

may be stated: i) Can the same signature be found in TFR’s of other signals recorded during 

the same seizure? ii) Is this signature also present in TFR’s of signals recorded during other 

seizures ? To answer these two questions, we selected SEEG recordings performed in a 

patient suffering from mesial TLE, for the presence of rhythmic sustained discharges of 

spikes in limbic and neocortical structures from our database. Five seizures (denoted in the 

following by S1, S2, S3, S4 and S5) were recorded during the pre-surgical evaluation. All 

recordings (interictal and ictal) were visually analyzed. The seizure pattern was found to be 

relatively reproducible in analyzed seizures. It can be described as a succession of phases 

where high amplitude spikes are followed by tonico-clonic discharges in mesial structures 

(hippocampus and amygdala). Neocortical structures are also affected in seizures, but always 

secondarily, typically about one minute after initial changes of activity take place in limbic 

structures. As an important fact, first clinical signs always occur with this secondary 

discharge. This led us to focus on the TF analysis of SEEG signals recorded from mesial 

(amygdala, hippocampus) and lateral neocortical (mid temporal gyrus, superior temporal 

gyrus) structures. We then proposed a detection procedure based on a 2 dimensional time-

frequency matched filtering approach (59) : a template defined from the signature (figure 14), 

was used to evaluate a time-frequency statistics ( ),t fη  in two situations. Situation 1: the 

template is correlated with TFR’s of signals issued from the same seizure (S1). Situation 2: 

the template is correlated with TFR’s of signals recorded during the other seizures (S2 to S5). 

In the following, results obtained in both situations are detailed. To avoid sensitivity with 
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respect to signal amplitude variations, the statistics ( ),t fη  is normalized, in the range [0, 1], 

by dividing correlation values by the local energy of the template and the observed signal.  

a) Situation 1. It was first verified that the correlation of the TFR of the signal 

recorded from the hippocampus with the template (extracted from this same signal) leads to 

consistent results, as shown in figure 15. When the template reaches the TF zone it was 

extracted from, statistic η  reaches the maximum value of +1.0 and no frequency shift is 

observed, as illustrated in figure 15-a which displays )0,(tη . Results obtained from the 

correlation of the template with TFR’s of other signals of the same seizure are summarized in 

table 1 which gives the maximum values of the statistics η . High values of η  are associated 

to sharp peaks with no frequency shift, as exemplified in figure 15-b. Detailed analysis of 

table 1 also shows that the signature is mainly present on signals recorded from mesial 

(hippocampus, amygdala) and neocortical structures (anterior mid temporal gyrus, superior 

temporal gyrus). For other signals, only weak peaks are observed. 

b) Situation 2. The correlation between the template and TFR’s of signals from the 

four other seizures (S2 to S5) was performed. For S2, no signature similar to the template was 

present during the ictal period and correlation values remain low. In S3, the signature was 

found to be present and the template exactly matches it with no translation in frequency. In 

the two remaining seizures (S4 and S5), a similar signature was present but a frequency shift 

was necessary for it to be detected. This fact is illustrated in figure 16 which shows the TFR 

of the hippocampal signal recorded in S4. Visual inspection of this TFR reveals the presence 

of a signature similar to the template (figure 16-a). However, after correlation with the 

template, the statistic ( 0,t )η  does not exhibit any dominant sharp peak (figure 16-b). On the 

other hand, as shown in figure 17, the display of ( )ft,η  (as a function of both time and 

frequency shifts) now reveals that a sharp peak appears for a frequency shift equal to 0.4 Hz. 

This shift was found to exist for all TFR’s associated to signals retained in the analysis and its 
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value was found to be constant (0.4 Hz). Similar results were obtained in seizure S5 but with a 

different frequency shift value of -0.8 Hz estimated also by the frequency position of the peak 

value in the 2D detection statistics. Results obtained on S4 and S5 demonstrate that a 2D 

matched filtering improves the detection procedure.  

 

3.3 Remarks about TFR and signatures detection/classification 
 

This work can be seen as the first step toward a classification of SEEG time-frequency 

patterns occurring during temporal epilepsies. A large scale investigation is necessary to 

achieve such an issue. A similar classification has been recently reported on surface EEG 

signals recorded in epileptic newborn babies (60). About 3 years ago, Franszczuk and 

colleagues (61) presented some results obtained from the application of the matching pursuit 

algorithm (MPA), initially developed by Mallat and Zhong (62), on signals recorded during 

mesial temporal seizures. Again, although the method used (MPA) is different from those 

presented in this study, general results similarly suggest that TF methods are well suited to 

analyze rapidly changing signals. More recently, the time-frequency content of depth-EEG 

signals was investigated using spectrogram analysis (63). The authors report that particular 

signals having a “chirp-like” spectrographic structure are often associated with seizures, 

confirming previous studies that also pointed up the existence of such TF patterns in epileptic 

EEG signals. They also present a standard signal processing technique (time matched 

filtering) that is used for the detection of seizures and for the analysis of their propagation 

over electrode grids directly placed on neocortical structures. This technique consists in 

correlating a representative template with spectrograms associated to signals of interest. 

However, as seen in the previous paragraph, for some patterns visually similar to the chosen 

template but inside which there exists a shift in frequency (that may be very small), this 
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detection technique may fail and the two-dimensional matched filtering procedure, by 

allowing time and frequency shifts, some signatures slightly translated in frequency can be 

better detected. 

 

4 Conclusion 
 

The change of signal representation domain, when dealing with nonstationary signals 

as EEG, may lead to a better description of the signal dynamics. Among available approaches, 

a growing interest for time-scale and time-frequency representations has been noted during 

the last decade. In this paper, we have presented the theoretical basis of both approaches as 

well as examples in the field of surface and depth EEG analysis. Both methods share common 

aspects. Particularly, continuous wavelet transforms allows particular time-frequency 

representations to be built. However, in this case, the time and frequency resolutions, 

respectively noted  and tΔ fΔ  are interdependent and vary over the time-frequency plane. For 

the time-frequency representations belonging to the Cohen class, tΔ  and fΔ  are constant. 

Both methods also differ from several aspects. First, the wavelet transforms are linear 

operators whereas the time-frequency approaches are nonlinear and thus induce interferences 

between signal components. Second, orthogonal wavelet transforms can efficiently describe 

signals by means of few coefficients leading to compact representations. This property (not 

verified in time-frequency representations) may help in some applications where the goal is to 

compress the information.  

In epileptic EEG recordings, these methods appear as an appropriate framework to 

depict transients signals, structured or unstructured multicomponent patterns with fast changes 

or slow evolving time-frequency properties. Highly complex seizure patterns can be explored 

and characterized using such methods Results obtained from experiments conducted in our 

group are corroborated by results obtained in other studies and demonstrate the benefits one 
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can expect from nonstationary signal representations. Such a characterization can be further 

used in localization and classification of seizures (64) (65).  

Nonstationary detection procedures may be build in the transformed domain to 

localize interictal events or particular time-frequency signatures. We found that chirp-like 

patterns may be observed in TFR’s of SEEG signals, as also described in (66). These patterns 

were found to be identical across different channels of the same seizure recording but were 

found to slightly vary from one seizure to another. Consequently, one must be cautious with 

the detection procedure : we demonstrate that a one-dimensional matched filter may fail in 

detecting patterns visually similar to a searched template and a 2D detection procedure can 

overcome this limitation. However, from our experience, methods based on matched filtering 

would not lead to satisfactory results for more significant variations (like strong pattern 

deformations and superposition of other components). To us, from the signal processing 

standpoint, new algorithms still have to be designed to deal with more complex deformations 

of TF patterns (such as affine transformations in both time and frequency or with varying 

mixtures where some components maybe either suppressed or added). A step in that direction 

is accomplished in the study reported in (67) where similarities between seizure signals 

(characterized by their TFR) are automatically extracted using a matching procedure in which 

both time and frequency deformations are allowed, under minimal cost constraints.  
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a) b) 

Figure 1. a) Time domain representation of the sum of two transients. b) Continuous wavelet representation 
of the signal in a). The two components are clearly isolated along the scales axis (vertical axis) 
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Figure 5. Two examples of TFR on simulated signals. Cross-terms are removed while enlarging the time-
frequency supports of auto-terms.  
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Figure6. a) Signal recorded from the amygdala during a seizure, b) its SPWVD. 
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a b 

Figure 7. a) Large transients (lt) and short transient (st) occurring in the hippocampus during the interictal 
period, b) burst occurring in the anterior part of the middle temporal gyrus during the interictal.  
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Figure 8. Series of transients appearing in the 
hippocampus during the ictal period. 

Figure 9. Series of transients followed by oscillations 
occurring in parahippocampal gyrus during the ictal 

period. 
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Figure 10. Simple modes: a) pseudo-regular mode recorded from neocortex during the interictal period, b) 
intermittent modeoccuring in parahippocampal gyrus in the ictal period. 
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Figure 11. Mixed modes appearing in a) amygdala b) hippocampus and c) parahippocampal gyrus in the ictal 
period. 
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Figure 12. Quasi-regular mixture components mode observed in the amygdala in the ictal period. 
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Figure 13. Random components observed in the posterior (a) and anterior (b) parts of the middle temporal gyrus 
during the interictal period. 
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Figure14. Signal recorded from the hippocampus during a seizure (S1) and its SPWVD. The template selected 
for use in the detection procedure is bordered by the rectangle. 
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Figure 15. Correlation curves between the template and signals recorded from (a) hippocampus and (b) 
parahippocampal gyrus during seizure S1. In the first case, the maximum possible correlation value is reached 
since the template is extracted from the same signal. In the second case, a high value is obtained. This denotes 

the presence of a similar TF pattern in another cerebral structure, probably signing common underlying 
mechanism.  
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Figure 16. SPWVD of signal recorded from hippocampus during seizure S2 (a) and correlation with the 
template (b). One can notice that the correlation curve exhibits low values, even if the pattern recorded on signal 

from the same structure during seizure S2 is visually similar to the template (figure 14). These low values are 
explained by a slight shift in frequency, not easily detectable by visual inspection. 
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Figure 17. a) 2D correlation between the template(previously extracted from seizure S1) and the signal recorded 
from the same structure(hippocampus) recorded  during seizure S2, b) correlation curve corresponding to a 

frequency shift of 0.4 Hz , clearly appearing on c) the time slice corresponding to the peak location. 
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Recorded cerebral structure Correlation peak 
Amygdala 0.8066 

Mid Temporal Gyrus (anterior part) 0.6569 
Hippocampus 1 

Mid Temporal Gyrus (median part) 0.2656 
Parahippocampal gyrus 0.7316 

Mid Temporal Gyrus (posterior part) 0.2107 
Superior Temporal Gyrus (posterior part) 0.7845 

Table1. Maximum values of the correlation between the template and the TFR’s of signals recorded from listed 
cerebral structures.  
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