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ABSTRACT

A new adaptive synchronization scheme achieving a joint
state and parameter estimation is proposed as an alternative
to the well-known Extended Kalman Filter based on a first
order approximation. It involves a polytopic observer which
does no longer require a linearization. The resulting adap-
tive synchronization is global and holds for a large class of
chaotic systems. The computation of the gain of the ob-
server is performed in a systematic way and is derived from
the solutions of a Linear Matrix Inequalities set.

1. INTRODUCTION

Synchronization of two systems which neither assumes iden-
tical initial conditions nor identical parameters is referred to
as adaptive synchronization. Parameter mismatch is a real-
istic and problematic situation in engineering area while in
some communication scheme the mismatch is intentional.
Indeed, it is typically the case when a parameter is modu-
lated according to a rule which encodes the information to
be transmitted as in chaos shift keying.

When full state is available, an adaptive controller can be
designed. In [1], an adaptive approach is proposed in or-
der to track a slowly time-varying parameter of a chaotic
system. On the other hand, when only partial state is avail-
able from the output of the chaotic system, some adaptive
observer-based approaches can be used. The reader can re-
fer to [2][3][4] in the context of chaos synchronization or
[5] for a more general automatic control point of view. Be-
sides, many works dealing with synchronization with un-
known parameters involve the use of an Extended Kalman
Filter (EKF) which achieves a joint state and parameter es-
timation to handle the problem. See for example [6] for the
continuous case or [7] for the discrete case.

Nevertheless, achieving global stability of the adaptive al-
gorithms is a challenging task. For adaptive controllers or
observers, the difficulty stems from the fact that the chaotic
system must verify some special properties such as nonlin-
earities with Lipschitz conditions, special structure such as
output injection. In this paper, a new joint state and un-
known parameters estimation algorithm is proposed as an
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alternative to the Extended Kalman Filter. The advantage
lies in the fact that the observer does no longer requires a
first order approximation as it does for the EKF. The con-
vergence analysis is based on the theoretical results stated
in [8]. It is shown that the resulting adaptive synchroniza-
tion is global and holds for a large class of chaotic systems
admitting a polytopic description. The computation of the
gain of the observer is systematic and is derived from the
solutions of a Linear Matrix Inequalities set.

2. POLYTOPIC DESCRIPTION

As a preliminary, this section aims at stating some condi-
tions under which the dynamical matrix .4 of the general
system described by

Trer = Alyr)Tr + E(yr) (1

Y = Czy

can be rewritten in a polytopic form. z, € ¢, A € R*,
C € R™*4,  FE is a (possible) nonlinear g—dimensional
function depending on y .

Proposition 1 If there exists a function h : R™ — RT,
defined as pr, = h(yx) with py being bounded when yy, is
bounded, such that A(yr) = A(py) holds and rendering A
10 be of class C'' with respect to py, then there always exist
some fi s and A;’s such that :

N

Alpr) = &ilpw) As 2)

i=1

with A;’s corresponding to the vertices of the convex hull
Co{Ai,...,Ax}, and £i’s belonging to the compact set
S={m € RV, g = (pp,-.., )T, ut >0 Vi and
Zilil pi = 1}. Ais said to be expressed in a polytopic
form and py, acts as a time-varying parameter for A. From
the definition of the output y, py, is clearly on-line avail-
able.

Proof

The proof is constructive in the sense that it explicitly pro-
vides the ;s and the A;’s. In the proof, the dependence on
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pr, of the f,i ’s will be omitted for clarity sake.

Determination of &;.
On one hand, since A is of class C' with respect to the
entries of py, A can be rewritten in the form

L
Alpr) = Ao+ Y pid) Ale 3)

=1

Ay is the matrix derived from A(py) by keeping its con-
stant entries while setting to zero its time-varying entries.
Let I and ¢ two indices depending on j and corresponding
respectively to the position of p; in A(py). Then, Aé-c is the
matrix whose entries are all zero except the one, located at
row [ and column ¢, which equals unity.

On the other hand, since pj is bounded, it is constrained
to a compact domain which can always be embedded in a
polytope and thus verifies :

pe=Y G with YL 6 =1, 6>0 (4

N corresponds to the number of vertices p; of the polytope.
Equation (4) can be rewritten in a matrix way

I I R S RO
: S &
ng]) _ ﬁgJ) . ﬁgj) . ’55\]7) 52
(D) D) o | ey
Py, R 2 e PN 2R D
L1 ] | 1 o1 N N et
S— ~~
By, F
6
where F' is a constant known matrix whose entries ﬁgj ) are

the components of the vertices p;. At each discrete-time £,
the matrix Ej, is known because py, is available. Hence, the
matrix G, (and so the £} ’s) are given by :

G, =F'E, (6)

where F'* is the pseudo-inverse of F' fulfilling the con-
straint f,i > 0.

Determination of A;
Substituting (4) into (3) yields :

Alpr) = Ao+ Xioy (D )l )

Since "V €6 = 1 and Ay is constant, Ag = TN €1 Ay,
Left factorizing the expression (7) by Zi\; f,i yields :

L
Alpr) = X, € (Ao + > o0 Ale)
j=1 (8)

A;

Finally, identifying (8) with (2) gives the matrices A4;6G=
1,...,N)

L
A=A+ o)Al )

j=1

It is worth emphasizing that the description (1)-(2) includes
some well-known special systems. Indeed, the case when
A(yr) = Ais a constant dynamical matrix corresponds to a
Lur’e system and the case when A(yx) = A;, E(yr) = E;,
some constant matrices, corresponds to a piecewise linear
system. In next section, it is shown how such a result can
be used to complete an adaptive synchronization of chaotic
systems.

3. ADAPTIVE SYNCHRONIZATION

We propose an adaptive synchronization scheme with global
convergence properties based upon a joint state and param-
eter estimation via a polytopic observer [8]. In the sequel,
the system exhibiting a chaotic motion will be called the
transmitter as usual.

3.1. Observer design

The transmitter under consideration is described by the fol-
lowing dynamics:

{ Trp1 = A(yr)zr + f(ye)Or + 9(yr) (10)
yr = Czp

with 2, € R", y,, € R™, f and g two n-dimensional func-
tions of . 8 € RP is the unknown parameter vector. Such
a parameter has to be estimated and is assumed to be con-
stant over a fixed interval of time. Furthermore, A(y;) and
f(yx) are assumed to be bounded if y is bounded.

By introducing an extended state vector denoted Zj com-
posed by the states of the system and the parameter 6, that
is 2, = [z 6117, (10) can be rewritten :

Tht1 ] _ [ Alyr)  fyr) ] [ T } n [ 9(yr) ]

Or+1

yr = C 3y,
(1D

where C = [C' 0], 0 and 1 are respectively a null ma-
trix and the identity matrix of compatible size. A is the
dynamical matrix of the augmented system. When (10)
exhibits a chaotic motion, all the components of both the
state vector z, and the output y;, are bounded. Furthermore,
since A(yy) and f(yy) are assumed to be bounded if yy, is
bounded, it is always easy to check for a function h such
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that A(yr) = A(px) with pr, = h(yg) and such that A is
of class C'' with respect to pj. Thus, according to the re-
sult of Proposition 1, the matrix 4 (py,) can be written in a
polytopic way, that is:

N

Alpr) = &ilpr) A

i=1

12)

where the &;(p)’s and the A;’s are computed from (6) and
9).

Now, consider the observer with state vector Z; = [&7 §7]T

described by :

Tyt Ty
A =A A+
e = |
5| Tk = Tk 9(yr)
Lc | gr Tk |+ 99|
Jr = Oy
13)
whose time-varying gain L(py) is defined as follows :
N .
Lipr) =Y &(pr)Li (14)
i=1

Such an observer is called a polytopic observer since it in-
volves matrices A and L having a polytopic description.
The resulting state reconstruction error €;, = Ty — Tk, de-
duced from (11) and (13), is thus also described in a poly-
topic way

N
€ht1 = & (pr) (Ai — LiC) ) ey, (15)
(>
=1

We recall a recent general result ensuring the global stability
of such a polytopic system :

Theorem 1 [8] Global stability of (15) is achieved when-
ever the feasibility condition of the following set of Linear
Matrix Inequalities is satisfied :

G; + GlT - S; GszL — FiTCV

ATG, ~ OTF, s >0

(16)

forall (i,5) € {1,...,N} x{1,...,N}

The G;’s, S;’s and F;’s are unknown matrices of appropri-
ate dimensions. The resulting gains L; are given by L; =
G, TFT.

Consequently, from Theorem 1, the L ;’s ensure the global
stability of (15) and so the global convergence toward zero
of both errors ||z, — # || and ||6; — 81|. The proposed poly-
topic observer achieves a global adaptive synchronization.

4. ILLUSTRATIVE EXAMPLE

As mentioned in the introduction, adaptive synchronization
can be used either to handle parameter mismatch problems
or to retrieve the information in some communication scheme
based on chaotic switching. The illustrative example deals
with the later situation. The chaotic system acting as the
transmitter corresponds to the Henon map :

:U;cl)l =6y - (avl(cl))2 + x?) +1
22 =q-alV) ¢=03 (7
Ye = HJS)

The scalar parameter 8y (p = 1) switches between 6,,,;,, =

—1.4 and 6,,,,, = —1.3. Let note that the state zg) is on-

line available because y, = ;zzgcl).

The extended state vector obeys the following equation:

IEAROaICaNE
2 — 2
gl | =] 00 g | +] 0
Or+1 0 0 1 | | O 0
Aly) o)
o)
k
w=[1 0 0] .
¢ Ok
(18)

which is similar to (11) with

Alyr) = [ 2 é } and f(yp) = [ (ﬂf%))z’ }

Our goal is to reconstruct simultaneously the state argf)

the parameter 6. Taking p, = h(yg) = (:z:fcl) )? enforces
A(yr) to be expressed as a function of class C'* with respect

to pr. Since py, is scalar (L = 1), one has pgﬂl)

sides, (17) being chaotic, CUS) and so py, is bounded. Hence,
assumptions of Proposition 1 are fulfilled which allows a
polytopic description (2) for which the &;’s and the A;’s
have to be determined according to the constructive proof.

and

= pi. Be-

Determination of &;
By simulating the chaotic system (17), it can be inferred

that pj, ranges between a minimum ﬁgl) = 7.7-107% and
a maximum ﬁ?) = 1.64. Those extrema correspond to the
vertices (/N = 2) of the polytope wherein py, lies. Hence,
pr can be expressed as in (4) or (5).

(e}.))? } _ { A ] { ¢ } (19)
[ 1 11 2
E‘; }‘r Gy

IV -730



Note that for this particular case, the solutions of (19) leads
to simple explicit forms :

(2)

Y -

and €2 = 1 — &k since 2N | € = 1.

Determination of A,
The A;’s are computed in a straightforward way according
to (9) and yields :

0 1 7.7-10°° 0 1 1.64
A;=103 0 0 Ay;=103 0 0
0 0 1 0 0 1
(20)

Determination of L;

The gain L(py,) verifies (14). The £} ’s are the same than the
ones involved in the polytopic decomposition (12) and re-
sulting from the solution of (19). The L;’s are derived from
the solution of the LMI (16) with A; given in (20). The res-
olution can be performed thanks to standard LMI solvers.

[ ~0.0089 ] [ 0.5677 ]
L= 03000 |and L= 0.3000 @1)
[ 0.2741 J [ 0.3387 J

The design of the polytopic observer (13) is now completed.
The figure 1 shows the convergence of the estimated param-
eter 6, toward the true parameter 6, which switches period-
ically between two distinct values and the convergence of
the error of synchronization toward zero. The simulations
are consistent with the theoretical results. Let recall that
since the convergence is global, it is achieved whatever be
the initial conditions.

5. CONCLUSION

A scheme ensuring a global adaptive synchronization by a
joint state and parameter estimation has been proposed as
an alternative to the standard Extended Kalman Filter. The
advantage lies in the fact that the design does no longer re-
quire a first order approximation, preventing some possible
bad convergence properties. The gain of the polytopic ob-
server is easily computed from the resolution of a Linear
Matrix Inequalities set. Besides, the novelty of such an ap-
proach stems from the fact that the design takes into account
some chaos specificities as the bounds of the state vector in
the state space.
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Fig. 1. Black 6, gray O (up). Error of synchronization €y,
(down)
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