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� This work has been started while being at the LIRMM. 

Abstract: This paper presents new force performance indexes 
adapted to Parallel Mechanisms with Actuation Redundancy 
(PMAR) especially parallel wire�driven manipulators (where 
only tensile forces in cables are possible). Such performance 
indexes might be used for optimization purpose. At first, the 
operational force polytope is established. It is the accurate 
representation of admissible operational forces from the 
kinetostatic analysis point of view. A way to efficiently 
compute it is given. The obtained description of the polytope 
is the same as in [1], but regarding forces. As a consequence 
the reader is free to use any of the indexes introduced in [1]. 
From the authors� point of view the �maximum operational 
isotropic force� is well adapted to characterize parallel wire�
driven manipulators� force behavior.  The way to compute it 
is established. At last, this index is computed for several 
parallel wire�driven manipulators. 

I. INTRODUCTION 

Wire�driven manipulators show great performances in 
terms of dynamics since the weight of the moving parts is 
reduced to the minimum. As an example the Falcon robot 
[2][3] (see fig. 1) can reach a 43 g acceleration. 

 
fig. 1 � The Falcon robot 

The wire�driven mechanisms we will deal with are 
different from crane mechanisms. In fact cranes need 
gravity to maintain positive tension in cables. In our case, 
we deal with Parallel Mechanisms with Actuation 
Redundancy (PMAR). Such a redundancy participates to 
maintain tensile positive in cables. 

The Falcon robot is a 7 actuators / 6 degrees-of-
freedom (dof) mechanism. In order to obtain bigger 
workspaces, other mechanisms with more actuators were 
imagined. We can notice the 9 actuators / 6 dof Sacso 

mechanism [4] developed at Onera, or the force reflecting 
joystick for telerobotics developed at the NASA [5]. 

Some mathematical tools were developed to 
characterize such mechanisms. Kawamura and Ken [6] 
explained how to verify (with an iterative process) that the 
tensile in cables is always positive inside the whole 
workspace. Verhoeven and Hiller [7][8] described with 
inequalities the domain of the operational space where 
tensile in cables is higher than a certain level. 

Some other approaches based on the rigidity matrix 
were also developed [9][10], leading to performance 
indexes. In terms of force [11] and [12] present a way to 
characterize the admissible domain of operational forces as 
the union of several ellipsoids. 

Another approach has been also proposed by Ngyen in 
[13], but adapted to the grasping problem. He proposed a 
graphical method to characterize the force-closure grasps 
based on the shape of the grasped object. This problem 
might be transposed to wire�driven manipulators easily 
(see [14]) while grasping forces must remain always 
positive such as for tensile forces. 

It is claimed here that a good way of characterizing the 
behavior of wire�driven manipulators is to focus on the 
operational forces. Two remarks must be done: 
• Classical tools, such as the Singular Values 

Decomposition of the Jacobian matrix or the 
conditioning number, are not adapted to PMAR [1]. In 
fact, as soon as there is redundancy, such tools are 
meaningless regarding performances in the operational 
space. 

• Furthermore, due to redundancy, no corresponding 
relationship exists between velocity and force 
transmission (the classical force/velocity duality is not 
as significant for PMAR as it is for simple Parallel 
Kinematics Mechanisms), and the study done in [1] 
regarding velocity transmission has to be extended to 
force transmission. In fact, if velocities of the actuators 
must be synchronized, in order for the PMAR to work 
properly, forces might be chosen freely while they can 
generate internal forces in the mechanism.  

 In this paper, at first we will focus on the operational 
force polytope, which is the exact representation of 



attainable forces exerted by the traveling plate (when 
assuming that actuators forces are bounded). The 
computation is different from the one introduced in [15], 
as it is not a simplex algorithm, and it can deal with 
unsymmetrical force bounds for the actuators. As a 
consequence it is well adapted for parallel wire�driven 
manipulators. We will give a systematic representation of 
the frontiers of the polytope in order to use the specific 
tools introduced in [1]. As a consequence we will be able 
to compute all the performances indexes introduced in [1]. 

In our opinion, a good way to characterize force 
transmission of parallel wire�driven manipulators is to 
consider the maximum isotropic operational force, i.e. the 
force that the traveling plate can always exert in any 
direction of the operational space. The focus will be put on 
such an index, and some practical examples will be given. 

II. MODELING OF WIRE�DRIVEN PARALLEL 
MANIPULATORS AND ANNOTATIONS 

A. Scheme of a typical wire�driven parallel manipulator 
For illustration purpose the planar mechanism shown in 

fig. 2 will be used. It is a 3 actuator/2 dof PMAR, 
composed of rotational motors pulling on the wires 
attached to the traveling plate. 
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fig. 2 � Geometry of a typical parallel wire�driven mechanism 

Note that, for simplification purpose, the effect of gravity is 
neglected. Gravity introduces a directional bias in the 
operational force space (refer to [16]). The proposed 
method might be improved to cope with such a problem. 
 We will note: 
• m  the dimension of the joint space (in fig. 2 3m = ), 
• n  the dimension of the operational space ( 2n = ), 

• [ ]1 ... mτ τ= Tτ  the joint force vector, 

• [ ]1 ... nf f= Tf  the Cartesian force vector. 

Formulas will be established for any size of joint and 
operational spaces, as long as m n> . 
B. Mapping articular and operational forces through the 

Jacobian matrix 
The so-called �inverse Jacobian matrix� mJ  is 

representative of the linear application linking operational 
velocities x"  to actuators velocities q" : 
 mq = J x" " . (1) 

While assuming that no internal power is dissipated in 
the mechanism, the conservation of power from actuators 
to the traveling plate ( T Tq τ = x f" " ) leads to the well 
known relation: 

 T
mf = J τ . (2) 

The admissible joint force space, i.e. the domain of 
space in which a point represents a realistic combination of 
actuator forces, is a rectangular parallelepiped. 
Note that we have to generalize this terminology for higher 
dimension spaces by saying �hyper rectangular 
parallelepiped�. 

It is defined by the 2m  inequalities: 

 , {1, ..., }
min

i i
max

i i

i m
τ τ
τ τ
⎧ ≥⎪ ∈⎨

≤⎪⎩
, (3) 

where: 
• max

iτ  is given either by the thi  motor maximum force 
capability, or by the thi  wire maximum tension 
capacity. This constitutes a physical limit for the 
mechanism and is independent of the mechanism load. 

• min
iτ  represents the lowest acceptable tensile in cable 

( min 0iτ ≥ ). It is often decided that min 0iτ > . 

 fig. 3 depicts such a domain for 3m = . 
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fig. 3 � Admissible joint force space 
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fig. 4 � Admissible operational force space 

Mapping the admissible joint space in the operational 
space (through the Jacobian matrix) leads to the desired 
polytope. Such a polytope can be observed on fig. 4 for 

2n = . The depicted circle and ellipse are associated to 
performance indexes. Thus, the radius of the circle 
corresponds to the largest force that the machine can 
handle in any direction of the operational space; the 
deformation of the ellipse is a measure of the force 
isotropy (but is quite meaningless for parallel wire�driven 
manipulators, while the operational polytope is not 
centered on the origin). 

Next section will aim at characterizing this operational 
polytope. A systematic description of its frontiers will be 

= T
mf J τ



given. It will be the same as the one introduced in [1] in 
order to reuse the exposed performance indexes. 

III. CHARACTERIZATION OF THE OPERATIONAL FORCE 
POLYTOPE 

The Singular Values Decomposition (SVD) of the 
Jacobian matrix helps understanding the way the joint 
rectangular parallelepiped transforms into the operational 
polytope: 
 T T

mJ = U S V , (4) 
where: 
• U  and V  are orthogonal matrixes of dimension 

m m×  and n n×  respectively. They represent the 
rotations from the canonic bases (respectively articular 
and operational) to the ones adapted to the SVD. 

• S  is a rectangular matrix of dimensions n m×  
containing the singular values 1, ..., nσ σ . It can be spit 
in two matrixes: 

 ′S = S P , (5) 
where P  is the n m×  projection matrix to the range 
of T

mJ  and ′S  is the diagonal matrix consisting of 
the singular values: 

1
0

1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

P = # , 1( , ..., )nσ σS' = diag . 

 We will figure out how the joint rectangular 
parallelepiped transforms when mapped through the 
different matrixes. To do this let us introduce sτ  the joint 
vector force expressed in the SVD joint base, rτ  the 
restriction to the range of T

mJ  of the former vector, and 

sf  the vector of operational forces expressed in the SVD 
operational base: 

′⎯⎯→ ⎯⎯→ ⎯⎯→ ⎯⎯→
TV P S U

s r sτ τ τ f f  

 fig. 5, fig. 6 and fig. 7 illustrate the depicted 
transformations. 
 Our goal will be to point out the equalities which 
characterize each frontier kS  of the operational polytope. 
The equality will have to be of the following form in order 
to be coherent with the formalism introduced in [1]: 
 { | 1}k M= =T

km vS , (6) 
where m  is the vector going from O , the origin of the 
frame, to M  a point belonging to the frontier and kv  the 
vector characterizing the side. 
Note that such a formalism is always possible except when 
the side crosses O . 

We have split the evaluation of the operational 
polytope in a few steps: 
1. finding all vertexes of the joint rectangular 

parallelepiped, 
2. finding their coordinates in the SVD joint base, 
3. computing their projection in the range of T

mJ , 

4. finding all hyperplanes of the range of T
mJ  linking 

all possible combinations of vertexes� projection. 
5. Seeking among those planes in order to keep only the 

frontiers of the polytope, 
6. mapping those chosen planes into the operational 

space. 
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fig. 5 � View of the admissible joint force space when seen 

from a point collinear with the kernel of T

m
J  
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fig. 6 � Restriction of the admissible joint 

force space to the range of T

m
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fig. 7 � View of the admissible operational force space directed by the 

vectors of the SVD operational base 

Step 1 
The admissible joint space has 2m  vertexes: 

lvertexτ , 

{1, ..., 2 }ml∈ . One way to compute them efficiently is to 
write the binary representation of 1l −  and to assume that 
when the thi  digit of it is equal to 1, the thi  coordinate of 

lvertexτ  should be max
iτ , otherwise min

iτ . 
Example: 

3m = → there is 32 8=  corners (see fig. 3), and corner 
number 5 can be define as: 

5 1 4 0000100
binary

− = =  

1 2 3 4 5 6 7 8
min min min min min max min minτ τ τ τ τ τ τ τ⎡ ⎤= ⎣ ⎦5

T

vertexτ  (7) 
 This vector is depicted in the canonic joint base. 

r sτ = P τ

′s rf = S τ

T
sτ = V τ

fig. 3 

to fig. 4 

sτ = U τ



Step 2 
 

vertex ll

T
s vertexτ = V τ  (8) 

vertexlsτ  is the representation of 
lvertexτ  in the SVD joint 

base. 
Step 3 
 

vertex vertexl lr sτ = P τ  (9) 

vertexlrτ  is a n  size vector. It represents the projection of 

vertexlsτ  in the range of T
mJ . There is still 2m  vertexes like 

this one ( {1, ..., 2 }ml∈ ). 
Step 4 

While each frontier of the polytope is an hyperplane, 
and while an hyperplane is of dimension 1n − , each 
frontier can be characterized with only one linear equation 
(linking the  coordinates of the hyperplane). The obtained 
equation will be of the following form: 
 1=T

kp u , (10) 
where ku  is the characteristic vector of hyperplane k , and 
p  the column vector associated to point P  belonging to 

the hyperplane. 
Note that in the case of fig. 3 each hyperplane is a line. 
 While ku  is of dimension n , n  independent linear 
equations are required to establish it. The proposed method 
consist in  choosing n  distinct vertexes� projection 

vertexlrτ  

among the 2m  ones, and expressing the fact that they 
belong to the hyperplane, that is to say: 
 1=

vertexl

T
r kτ u . (11) 

 We can count 
2m
nC  different ways of choosing those 

points. 
Note: 

2m
nC  represents the number of combinations of n  

elements among 2m . 
Thus, 

2m
nC  linear systems might be obtained. Each system 

can be written as follows: 

 
1 1

1

vertexl

vertexln

T

k
T

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

$ $
r

r

τ

u
τ

, (12) 

with {1, , 2 }m
il ∈ … , depending which of the 

2m
nC  

combinations we are dealing with ( {1, , }i n∈ … ) and 

2
{1, , }m

nk C∈ … ). 
 Let us note kΤ  the characteristic matrix of this 
equation system: 

 
1vertexl

vertexln

T

T

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

$
r

k

r

τ

Τ
τ

. (13) 

 The resolution of the n  equations/ n  unknowns system 
(12) leads to vector ku  characteristic of hyperplane k : 

 [ ]1 1 1 T
k k

−= …u T . (14) 
 We must notice that for some combinations of points, 
system (12) is not a Cramer system ( det( ) 0k =Τ ). Thus, 
vector  ku  can not be determined. This phenomenon 
occurs when two corners� projection are identical 
(

vertex vertexi jr rτ = τ , , {1, , 2 }mi j∈ … ) or when they are aligned 

with the origin O  ( |
vertex vertexi j

*k k∃ ∈ r rτ = τ! ). In the first 

situation, there is no need to matter of vector ku , while 
this combination of points leads to no hyperplane. In the 
second situation, a hyperplane might exist. This 
hyperplane crosses the origin O . Whether this hyperplane 
is not a frontier, or it witnesses a singular posture. The 
final algorithm takes into account such a difficulty. 
 This step leads to q  vectors ku , 

2m
nq C≤ , 

{1, , }k q∈ … . Each vector characterizes a correct 
hyperplane, that is to say a possible frontier for the 
polytope (see fig. 8). 

1si

2si

 
fig. 8 � Representation of all the possible frontiers for the polytope 

Step 5 
 How to find the frontiers of the polytope among the q  
hyperplanes? By noticing that when a hyperplane is a 
frontier all the vertexes are located only on one side of the 
hyperplane. 
Mathematically this can be written: 
 (  = TRUE) OR (  = TRUE)BorderType1 BorderType2  (15) 
with: 

1 2

= ( 1) ... AND ( 1)( )
m

BorderType1 ≤ ≤
vertex vertex

T T
r k r kτ u τ u , 

1 2

= ( 1) ... AND ( 1)( )
m

BorderType2 ≥ ≥
vertex vertex

T T
r k r kτ u τ u . 

When condition (15) is fulfilled, it can be certified that 
ku  characterizes a frontier of the polytope. Among all the 

q  correct hyperplanes, only r  constitute sides for the 
polytope ( r q≤ ). 

Once the borders are established, it is still to be verified 
that the origin of the frame belongs to the polytope. In fact, 
if O  is located outside, it means that in this particular 
position the mechanism can�t even balance a null 
perturbation, i.e. that this specific arrangement is 
unachievable. This test is done by checking that all 
vertexes projections are located below the considered 
border (border is of type 1), and by replaying this test for 
every border. 

At the end, a complete mathematical description of the 
sought polytope is established: 



 
1

1

⎧ ≤
⎪
⎨
⎪ ≤⎩

T
1

T
r

p u

p u
…  (16) 

This polytope �restriction of the admissible joint force 
space to the range of T

mJ � is fully characterized by a set 
of r  inequalities, where p  is the vector associated to point 
P , a point belonging to the polytope, and iu , {1, ..., }i r∈  
the vectors characterizing each frontier of the polytope. 

Step 6 
Mapping the polytope in the operational space is done 

very easily by mapping each frontier. With next formula 
(taken from [1]), we recall the way to compute the 
frontiers� characteristic vectors: 
 ′k kv = S u , (17) 

kv  represents the characteristic vector of side k  in the 
operational SVD base. 
 Finally, the force operational polytope is obtained. It is 
depicted by: 

 
1

1

⎧ ≤
⎪
⎨
⎪ ≤⎩

T
1

T
r

m v

m v
…  (18) 

 Such a representation is the one introduced in [1]. All 
the proposed indexes might be used to characterize such a 
polytope. 

IV. COMPUTATION OF THE LARGEST ISOTROPIC FORCE 
FOR A PARALLEL WIRE�DRIVEN MANIPULATOR 

As proposed in the paper introduction the maximal 
isotropic force might be a good representation of the 
manipulator�s behavior. It represents the intensity of the 
largest perturbation that the nacelle can balance in any 
direction in the operational space. Graphically it 
corresponds to the radius of the largest circle included in 
the operational force polytope (see fig. 4). 

What will be done is to recall (taken from [1]) very 
briefly the way to obtain such characteristics. Afterward, 
we will apply the depicted criteria to a particular parallel 
wire�driven robot. 
A. Recall of the method 

The way to compute the lowest operational force min
polytf  

might be sum up with this single formula: 

 
{1 ,..., }

1min
i r∈

=min
polyt

i

f
v

 (19) 

(Refer to [1] for any explanations.) 
It represents the largest force that the machine can 

handle in any direction of the operational space. 
B. Case study 

We implemented the above algorithm with Matlab for 
validation purpose. We decided to characterize the 
behavior of the planar parallel wire�driven manipulator 
depicted in fig. 2, by computing the lowest operational 
force in its whole workspace.  

The center of the three actuators can be depicted by 
their polar coordinates: 
 1 30θ = ° , 2 150θ = ° , 3 270θ = ° , (20) 
 1000il l mm= = , (21) 
where iθ  is the angle between the x  axis and the motor 
limb, and  il  is the distance taken from the origin, 

{1, 2, 3}i∈ . 
The Jacobian matrix mJ  is: 

 
1 1

2 2

3 3

x y

x y

x y

a a

a a

a a

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

1 1

m 2 2

3 3

a a

J a a

a a

, (22) 

where ia  represents the vector joining M  (coordinates x  
and y ) the position of the traveling plate, to iM  the 
position of motor i , in the canonic operational base (

xi
a  

and 
yi

a  are respectively its coordinates along the abscise 
and the ordinate): 

cos
sin

i

i

l x
l y

θ
θ
−⎛ ⎞

= ⎜ ⎟−⎝ ⎠
ia . 

Note that in this particular case, a closed�form Jacobian 
matrix has been derived. But since the index computation 
does not require a closed�form this computation can be 
done numerically. 
 While scanning the operational space, the Jacobian 
matrix is computed and used to establish the lowest 
operational force for every particular position. 
 Actuator forces were required to be in the range 
[50, 500] : that is to say 50iτ ≥  and 500iτ ≤  for 

{1, 2, 3}i∈ . 

 
fig. 9 � Representation of the largest isotropic force for a 3 actuators/2 dof 

parallel wire�driven manipulator 

 fig. 9 represents the intensity of the isotropic force for 
all positions of the ending part in the workspace�. The 
theoretical workspace is computed with the same 
algorithm while it corresponds to the domain of space 
where 0≥min

polytf . For clearness purpose the domain 

0<min
polytf  has been drawn in white. 

                                                                          
� See video for better understanding. The left part of the animation 
represents the admissible joint force space (a cube) when seen from a 
point collinear with the kernel of T

mJ . The right side represents the 
operational force polytope centered on the nacelle of the mechanism. The 
radius of the drawn circle corresponds to the largest isotropic force min

polytf . 



 With such results, we are able to manage an 
optimization process in order to find the best geometrical 
parameters (for example we might want the lowest 
operational force to be larger than a given limit, in the 
required workspace). 

 
fig. 10 � Representation of the largest isotropic force for n  actuators/2 

dof parallel wire�driven manipulators, {4, 5, 6}n ∈  

 fig. 10 represents the intensity of the largest isotropic 
force for three different parallel wire�driven manipulators 
having 2 dof. The n  actuators, {4, 5, 6}n∈ , are regularly 
dispatched on a circle of radius l . 
 It can be observed that the bigger the number of 
actuators is, the larger the intensity of the maximum 
isotropic force becomes, in the middle of the workspace. 
Furthermore, the workspace for such mechanisms is not 
exactly a triangle, a square, a pentagon, a hexagon, while 
strength in cables must remain higher than a certain level 
bigger than zero. 
C. Extensions 
 The authors would like to insist on three particular 
aspects: 
• If this method is well adapted to wire�driven parallel 

manipulators, it can also cope with normal PMAR, 
where tensile might be negative (for example 

min max
i iτ τ= − ). 

• We did focus on the maximum isotropic force, but as 
in [1], we can also compute the centered ellipse with 
the largest surface included inside the operational 
force polytope (see fig. 4); it might be another way to 
characterize the behavior of such mechanisms. 

• In this paper the algorithm is presented linearly, but 
there are ways to optimize it, for example by mixing a 
few steps in one single stage. Anyway, optimization is 
not required while this computation has no real-time 
purpose. 

V. CONCLUSION 

 In this paper, we presented a mathematical technique to 
establish the force characteristics of PMAR, especially 

wire�driven parallel manipulators. This technique, based 
on the Jacobian matrix and on the use of the force 
polytope, leads to performance indexes. It has been used to 
compute the largest isotropic force, that is to say the 
maximal force a parallel wire�driven robot can handle, in 
any direction of its operational space. Such a characteristic 
might be used for optimization purpose. 
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