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Introduction 
 
Modern systems are becoming more complex, and the number of exceptional situations they have 
to cope with is increasing. The most general way of dealing with these problems is employing 
exception handling techniques. While a number of object-oriented mechanisms for handling 
exceptions have been proposed, there are still serious problems with applying them in practice due 
to complexity of exception code design and analysis, to their improper use, to failure to employ 
exception handling at the appropriate development phases, to shortage of methodologies supporting 
correct use of exception handling as well as lack of mechanisms specific to various application 
domains and design paradigms. 
Building on what was achieved in ECOOP'2000 and ECOOP'2003 workshops, this year’s forum is 
intended to provide an opportunity to discuss research on exception handling and fault tolerance in 
all areas of object-based and component-based software development and use. It aims to cover the 
entire software life cycle as well as various types of applications, techniques and linguistic 
mechanisms. In particular, the following topics will be discussed: 

ϖ Modelling and applications with exceptions. How can such applications be checked, 
verified and proved? Which formal models are appropriate? We encourage submissions 
focusing on modelling system exceptional behaviour with UML-like languages and tools.  

ϖ Perceived complexity of using and understanding exception handling. Do programmers 
misuse exception handling? If so, why? Why do programmers and practitioners often 
believe that exception handling complicates system design and analysis? Why is exception 
handling the last mechanism for programmers to learn and to use?  

ϖ Novel exception handling and fault tolerance solutions for the new computing contexts: 
mobile and agent-based systems, pervasive and ambient environments, self-repairing, 
adaptive and open systems, distributed and asynchronous systems, transaction-based and 
multi-threaded programs. 

ϖ Software architectures which support exception handling and design patterns which help to 
develop systems that handle exceptions systematically. 

ϖ Programming constructs for exception handling. Are Java checked exceptions an 
appropriate solution for module specification? What are the post-Java constructs for 
exception handling? Which forgotten or unused past solutions should be brought back? Are 
they suitable for Java or C# like statically typed languages? 

ϖ Experience reports which illustrate benefits to be derived from as well as difficulties 
involved in using exception handling, summarise practical results of employing advanced 
exception handling models and the best practices in applying exception handling for 
developing modern applications. 

 
We are pleased to present this workshop program with two invited talks and thirteen papers 
covering the above topics. 
 
We want to thank Bertrand Meyer and Andrew Black for presenting invited lectures at this 
workshop. We also want to thank Devdatta  Kulkarni for his  help in preparing the workshop 
proceedings. 
 
Workshop chairs: 
 
Alexander Romanovsky,  University of Newcastle upon Tyne 
Christophe Dony,  Universite Montpellier-II 
Joergen Lindskov Knudsen,  Mjolner Informatics A/S 
Anand Tripathi, University of Minnesota, Minneapolis 

 i



 



Workshop Organizers 
 
 

Alexander Romanovsky 
School of Computing Science 

University of Newcastle upon Tyne 
Newcastle upon Tyne, NE1 7RU, UK 

email: alexander.romanovsky@ncl.ac.uk 
 
 

Christophe Dony 
Universite Montpellier-II 

LIRMM Laboratory 
161 rue Ada 

34392 Montpellier Cedex 5, France 
email: dony@lirmm.fr 

www: http://www.lirmm.fr/~dony 
 
 

Jorgen Lindskov Knudsen 
Mjolner Informatics A/S 

Helsingforsgade 27 
DK-8200 Arhus N 

Denmark 
email: jlk@daimi.au.dk 

www: http://www.mjolner.dk/~jlk 
 
 

Anand Tripathi 
Department of Computer Science 

University of Minnesota 
Minneapolis, MN 55455 USA 
email: tripathi@cs.umn.edu 

 

 ii



 



ECOOP 2005 Workshop 
 

Exception Handling in Object Oriented Systems:  
Developing Systems that Handle Exceptions 

July 25, 2005. Glasgow, UK 
 

http://homepages.cs.ncl.ac.uk/alexander.romanovsky/home.formal/ehoos2005.htm
Program 

09.00-10.30 Session 1. 
09.00-09.05. Welcome (workshop Co-chairs) 
09.05-09.50. Bertrand Meyer (ETH Zurich and Eiffel Software). Disciplined exceptions. 
Invited talk. 
09.50-10.10 Denis Caromel, Guillaume Chazarain (INRIA Sophia Antipolis). Robust 
Exception Handling in an Asynchronous Environment 
10.10-10.30 Chen Fu, Barbara G. Ryder (Rutgers University). Testing and Understanding 
Error Recovery Code in Java Applications 
 
10.30-11.00 - coffee 
11.00-12.40. Session 2. 
11.00-11.20 Stijn Mostinckx, Jessie Dedecker, Tom Van Cutsem, Wolfgang De Meuter (Vrije 
Universiteit). Conversations for Ambient Intelligence 
11.20-11.50 Jan Ploski, Wilhelm Hasselbring (University of Oldenburg). The Callback 
Problem in Exception Handling 
11.50-12.10 Matti Rintala (Tampere University of Technology). Handling multiple concurrent 
exceptions in C++ using futures 
12.10-12.30 Michael J. Zastre, R. Nigel Horspool (University of Victoria). Two Techniques 
for Improving the Performance of Exception Handling 
12.30-12.50 Alexei Iliasov, Alexander Romanovsky (University of Newcastle upon Tyne). 
CAMA: Structured Coordination Space and Exception Propagation Mechanism for Mobile 
Agents 
 
12.50-14.00. Lunch 
 
14.00-15.30 Session 3. 
14.00-14.20 Alfredo Capozucca, Barbara Gallina, Nicolas Guelfi, Patrizio Pelliccione 
(University of Luxembourg). Modeling Exception Handling: a UML2.0 Platform Independent 
Profile for CAA 
14.20-14.40 Donna Malayeri, Jonathan Aldrich (Carnegie Mellon University). Practical 
Exception Specifications 
14.40-15.30. Discussion session: the role of exception handling 
Starts with the invited talk: Andrew P. Black (Portland State University). Exception 
Handling: The Case Against (14.40-15.00 – invited presentation) 
 
15.30-16.00. - coffee 
16.00-17.30. Session 4. 
16.00-16.20 Anand Tripathi, Devdatta Kulkarni, Tanvir Ahmed ( University of Minnesota). 
Exception Handling Issues in Context Aware Collaboration Systems for Pervasive Computing 
16.20-16.40 Luis E. Leyva del Foyo, Pedro Mejia-Alvarez, Dionisio de Niz (CINVESTAV-
IPN and ITESO). Aligning Exception handling with design by contract in embedded real-time 
systems development 
16.40-17.00 Fernando Castor Filho, Cecilia Mary Fischer Rubira, Alessandro Garcia 
(University of Campinas and Lancaster University). A Quantitative Study on the 
Aspectization of Exception Handling 
17.00-17.20 John Tang Boyland (University of Wisconsin-Milwaukee). Position Paper: 
Handling "Out Of Memory" Errors 
17.20-17.30. wrap up 
 

 iii

http://homepages.cs.ncl.ac.uk/alexander.romanovsky/home.formal/ehoos2005.htm


 



Invited Lecture 
Disciplined Exceptions 

 
Bertrand Meyer  

ETH Zurich and Eiffel Software 
 
 

Abstract  
 

The general idea behind exceptions is to notify programs of abnormal cases 
occurring execution, and allow them to recover. The proper use of exceptions, 
and the proper design of an exception mechanism in a programming language, 
require a precise definition of what makes a case "abnormal". 
 
The Eiffel approach follows from an analysis of these issues, based on the 
concept of contract. Essentially, a contract violation causes the failure of an 
operation, which in turns interrupts the current execution by triggering an 
exception. The exception handling mechanism is also a consequence of these 
observations. Starting from these ideas I will present a general enquiry into the 
notion of error, and examine how one should handle exceptions in concurrent 
object-oriented programming. 
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Robust Exception Handling in
an Asynchronous Environment

Denis Caromel and Guillaume Chazarain

INRIA Sophia Antipolis, CNRS - I3S - Univ. Nice Sophia Antipolis
BP 93, 06902 Sophia Antipolis Cedex - France

First.Last@inria.fr

http://ProActive.ObjectWeb.org

Abstract. While distributed computing is becoming more and more
mainstream, it becomes apparent that error handling is an aspect that
deserves more attention. We place ourselves in the context of distributed
objects, and we try to hide the network behind the usual remote method
call semantic.
More precisely, we concentrate on the case where method calls are asyn-
chronous, which complicates the error handling. We start with a state of
the art in this research field, and then propose our approach, detailing
the problems we faced and how we solved them.
Our achievement was to provide the well-known way of handling ex-
ceptions using the try/catch construction to programs written using
asynchronous method calls. Unfortunately, the usage is not totally trans-
parent because of Java limitations. The main part of the approach is to
build an exception mask stack following the Java one.

1 Introduction

Before the introduction of exceptions, errors were commonly returned along the
same path as normal return values, it was the responsibility of the caller to check
the return value. Exceptions, however, have a dedicated channel [1], it is a sub-
path of the returned value path but it deserves as much interest as its parent.
So, the introduction of exceptions was a major milestone, but when dealing with
distributed computing they are often neglected. Efforts are under way to improve
this situation, for instance with [2] and [3].

We concentrate on the Java implementation of exceptions, which brings two
interesting aspects: exceptions are checked thanks to the throws annotation, and
it’s possible to bypass this check using a subclass of RuntimeException as the
exception type.

The most prominent combination of distributed computing and exceptions
may be Java RMI’s RemoteException which forces every remote method to add
a RemoteException to its throws clause, and the assorted try/catch blocks.

These obligations have negative effects: constrained to wrap remote method
calls with try/catch blocks, programmers sloppily tended to place empty catch
blocks, thus swallowing the exception. So all of this care in the Java exceptions
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system resulted in less robust programs. The solution from the C# camp is to
totally get rid of the throws keyword, so all exceptions are unchecked. This
difference between C# and Java is still subject to discussion, our take is that
incomplete throws lists should be reported as a warning by the compiler, not
an error. So one gets to choose between robust or toy code simply by fixing or
ignoring the warning.

2 ProActive

ProActive [4] is a GRID Java library (Source code under LGPL license) for par-
allel, distributed, and concurrent computing, also featuring mobility and security
in a uniform framework. With a reduced set of simple primitives, ProActive pro-
vides a comprehensive API allowing to simplify the programming of applications
that are distributed on Local Area Network (LAN), on cluster of workstations,
or on Internet Grids.

ProActive is used as a base for our implementation, so we present here the
aspects needed to understand the context.

As with every library, there is always some confusion as how to call the end
user, since it’s actually most of the time a programmer. So we use the term
programmer as the library user.

ProActive (like RMI) works with the method call abstraction, so we always
have a caller and a callee. We name them using the client/server metaphor,
although these roles are not static in ProActive, but it is more common in the
distributed world.

These method calls are made to active objects. These are objects with a
thread to serve requests from their incoming queue. When possible, ProActive
method calls are asynchronous. If the method return type is void the call is then
one-way, in that we will not wait for any reply and the call will be asynchronous
in the message passing semantic.

Asynchronous method calls return a placeholder object of type compatible
with the actual return type. This placeholder is called a future and is dynamically
updated with the real returned result upon availability. Trying to manipulate
the future object before its return will result in a wait-by-necessity, that is, the
operation will block until the result arrives, at which point the operation will be
resumed.

ProActive is developed with some constraints in mind, to which the pre-
sented system must adhere. These constraints are that we prevent ourselves
from tampering with the bytecode/JVM or preprocessing the source code before
compilation. Only pure Java code is allowed. Breaking these constraints makes
the programmer’s code harder to debug because the executed code is not the
one he actually wrote.

2.1 Exception Handling in ProActive

Unlike most other projects presented here, ProActive does not treat all excep-
tions the same way. It makes a distinction between functional exceptions and
non-functional ones. To put it simply, functional exceptions are thrown and
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caught in the ProActive code, and non-functional ones are thrown by ProAc-
tive to signal problems impacting the ProActive layer. The latter exceptions are
caught using a mechanism called NFE (Non-Functional Exceptions) [5] briefly
presented in section 2.1.2.

2.1.1 Functional Exceptions

In ProActive, methods that declare exceptions in their signature are always
called synchronously. The mechanism presented here is designed to overcome
this limitation.

Concerning runtime exceptions, as we cannot predict if a method call will
throw one or not we put the potential RuntimeException in the future object,
and throw it when the future is accessed. For one-way calls, we cannot have such
a mechanism (because no reply is expected), so we simply print a stack trace
when a RuntimeException is caught, this behaviour will be improved by the
proposed mechanism.

2.1.2 Non-Functional exceptions

Non-Functional exceptions in ProActive are classified within different categories
and handlers are associable with these exception categories at different priority
levels. These handlers run on one side of the call or the other depending on the
exception type. This mechanism permits to achieve some interesting behavior
like a disconnected mode for a mobile environment.

3 Related Work

We can see a trend in most attempts at asynchronous remote method invocation
that tackled exceptions, which is the use of callbacks. Basically, a callback is
associated with an exception, in one way or another, and when this exception
is thrown the callback is called. The aforementioned ProActive NFE mechanism
fits into this case. We will see the benefits of this approach, its limitations, and
some ways to go past them.

3.1 Exception Callbacks

3.1.1 The JR Programming Language

The JR [6] programming language extends Java to provide a rich concurrency
model, based on that of the SR [7] concurrent programming language. JR pro-
vides dynamic remote virtual machine creation, dynamic remote object creation,
remote method invocation, asynchronous communication, rendezvous, and dy-
namic process creation.

The extension of interest to us is the handler [8] keyword. It is used in
combination with the send keyword. The latter keyword is used to introduce
the asynchronous calls extension. So, with these two keywords a callback is
associated with the forthcoming exception at call time. As we are in an object
oriented environment, it’s not simply a function that is used as a callback, but
a whole object implementing callback methods like the myHandler instance in
Figure 1.
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IOHandler myHandler = new MyHandler();

...

send readFile("/path/to/my/file") handler myHandler;

...

Fig. 1. Example using the handler keyword in JR

This annotation is mandatory for every asynchronous call introduced by the
send primitive that can throw exceptions. The argument to handler is an in-
stance of a class responsible for handling any exception that may be thrown
according to the method signature. The JR compiler statically checks this. So
the handler provides methods for every exception type throwable by the called
method. These callbacks receive as a single argument the actual thrown excep-
tion.

In this realization, asynchrony is not transparent because it’s explicitly re-
quested by the programmer. On the other hand it can be cumbersome to anno-
tate each asynchronous call that can throw exceptions as in the example.

3.1.2 ARMI

The ARMI [9] project covers not just exception handling but aims at providing
an asynchronous remote method invocation mechanism for Java. To deal with
exceptions, it proposes two solutions, one of which uses a callback mechanism.

ARMI uses future objects, like ProActive, as a way to transparently intro-
duce asynchrony, the callback mechanism works by registering <exception-type,
exception-handler> pairs with the future. With this solution they reach the same
level of granularity as the JR approach, but the goal is different since asynchrony
serves as an optimization here.

3.1.3 Conclusion on Callbacks Mechanisms

The first advantage of callbacks mechanisms is that it’s quite easy to implement.
The second one is that it gives the feeling of letting the programmer all the
freedom to implement his behavior to handle the exception since he chooses the
function to be called upon an exceptional event. This feeling is quite misleading
because the main usage of exceptions is impossible with callbacks: unwinding
the call stack up to a certain point. An asynchronous environment makes this
even harder since the call stack may have gone away when the exception is
thrown. But when we use asynchrony as an optimization it is important to keep
the ability to unwind the stack as this is taken for granted in a synchronous
environment.

The other limitation with callbacks is the context representation. When using
the try/catch pair, the error handling code is written next to the code to
protect, so it sounds normal to have access to all local variables when handling
the exception. On the other hand, with callbacks this is not possible since these
variables are not part of the context information given to the callback.

Modern exception implementations (like the Java one) alleviate this problem
by letting the designer build exceptions as first class object, thus adding every
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contextual information he finds useful to them. This is not enough since the
exception thrower may not anticipate how the exception catcher will handle it.
Moreover we argue that the most interesting context is the one provided by
the local variables on the stack. For example, the local variables in the try
block preceding the catch handling the exception can be useful in this handling.
Unfortunately, this information is inaccessible to an exception callback.

Another advantage offered by the try/catch usage in Java is the automatic
unlocking of mutexes acquired using the synchronized primitive.

3.2 Closures

With exceptions, we have the problem of capturing some environmental context
which is handled by closures as present in functional languages. A closure can
be assimilated to the association of a function and a captured environment. In
Figure 2 we can see a small example of an error handler defined as a closure.
Our local variable some-value is captured when the error-handler closure is
created, and when the closure is executed, not only does it sees the actual value of
the variable, but it can modify it. The context capture is complete, we just need
to unwind the stack thanks to some continuations and we can handle exceptions
using callbacks but with the good properties of the standard try/catch.

; Actually this should do serious work instead of just calling

; the error handler.

(define (try-something-with-error-handler error-handler)

(error-handler))

; some-value is our local variable we’ll have access to.

; Unlike in Java, the error handler code has a read/write

; access to the environment captured when creating the closure.

(let* ([some-value 1]

[error-handler (lambda ()

(if (= some-value 2)

(set! some-value 3)))])

(set! some-value 2)

(try-something-with-error-handler error-handler)

(display some-value))

=> 3

Fig. 2. Scheme example of a closure

Closures can be simulated in Java with inner classes but the dirty tricks
needed to work around the final limitation [10] make them impractical to han-
dle exceptions, compared to the catch block.

3.3 Exception in the Future

As we are concerned with asynchrony, future objects are commonly used, so
another approach to asynchronous exception handling is to save the exception
in the future and throw it upon access.
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3.3.1 ARMI

This solution is the second one implemented in ARMI. The authors notice that
the result may be accessed far away from the actual method call. With this in
mind, we lose the benefits of reusing the common try/catch model since the
exception may be thrown in a totally different try/catch block from the one
containing the method call.

3.3.2 Java 1.5

In its 1.5 version (code named Tiger), Java features non transparent future
objects [11]. One of the differences with the other approaches is that this one is
absolutely user explicit. This is certainly a drawback in our context of asynchrony
as an optimization, but by forcing the programmer to manually retrieve the
resulting object from the future, he won’t have any surprise about where his
exception is thrown.

3.3.3 Mandala

The Mandala [12] project provides the RAMI [13] package which is an asyn-
chronous RMI implementation. There are different asynchrony models more or
less transparent to the programmer, but with various limitations.

It provides both exception handling techniques: callbacks usage, and encapsu-
lation of the exception in the future. In totally transparent asynchronous mode,
the exception is handled by simply setting the result in the future to null which
will trigger a NullPointerException upon access to it.

3.4 Other Approaches

3.4.1 Proxyc

Proxyc [14] is another attempt at providing future objects in a transparent way
thanks to some bytecode rewriting. Their solution to the exception handling
problem is to make synchronous all asynchronous method calls that can throw
exceptions. They suggest to use instead some wrapper method that would handle
the exception, this wrapper would be an asynchronous call.

They propose another approach using the fact that they are rewriting the
bytecode. As they have to insert code to get the actual result from the future
object, they introduce the possibility of letting the programmer specify some
exception handling code to place at these points.

3.4.2 RMIX

RMIX[15] is a communication framework for Java, based on the Remote Method
Invocation (RMI) paradigm. Its feature of concern to us is asynchronous method
calls, and its exception handling solution is quite original. The fact that an
asynchronous method raised an exception is a sticky bit in the object, no more
asynchronous calls are accepted until this bit is cleared. The ways to clear this
bit are: either by handling an exception from a synchronous call, or by manually
resetting it.
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3.5 Summary

The conclusion we can draw after reviewing these projects are twofold. The
first one is that there is a mutual exclusion between transparently providing
a mechanism and keeping the bytecode intact. The second conclusion is that
callbacks are not enough as a solution.

4 Explicit handling of the exception mask stack

First we provide an overview of the proposed approach, then it will be shown
step by step how to use it. Its working will be detailed. The main aspect of the
mechanism is to insert some wait-by-necessity in appropriate moments.

4.1 Overview

The goal is to provide an exception handling mechanism for both functional
exceptions and non-functional ones. We also want to reuse the well known
try/catch/finally construction since this is the only way in Java to manip-
ulate (unwind) the call stack. Furthermore, nobody should be offended by an
error handling code located in a catch block.

The mechanism is useful for asynchronously launching a method call even if
its signature includes exceptions. A try/catch block is associated with this call,
not necessarily the toplevel one at the moment of the call, but as an optimization
we use the first one on the stack that can catch one of the declared exceptions. In
order not to break the semantics associated with exceptions, we add two rules.

These rules are the main principle of the system:

– when accessing the future result, the potential exception is thrown,
– we do not leave the try block associated with the method call before the

future returns.

The second rule implies that we may have to wait for some pending futures
at the end of the try block. Actually, this is not enough, as we take great care
to ensure that the exception is caught in its corresponding catch block. This
must be specifically enforced by the mechanism, for example in some nested
try/catch instances, as shown in Figure 3.

class ParentException extends Exception {}

class ChildException extends ParentException {}

try {

A a = ro.foo(); // throws ChildException

/* Here we must wait for ‘a’ */

try {

a.bar();

} catch (ParentException pe) { ... }

} catch (ChildException ce) { ... }

Fig. 3. tryWithCatch() can be a wait-by-necessity point
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If in that code, the ro.foo() call ends up with a ChildException, we
don’t want this exception to be thrown when the future is accessed through
the a.bar() call. Doing so would wrongly let the exception be handled by
the nested catch (ParentException pe) block instead of the rightful catch
(ChildException ce) one. It’s important to notice that the situation would be
the same if it were ParentException that was a subclass of ChildException be-
cause in this case the exception thrown by ro.foo() could be a ParentException.

In Java, the target catch of a given exception is dynamically determined,
so we must take care to prevent exceptions from being handled in unexpected
catch blocks.

In order to be activated, the mechanism must be called in the code to protect
at some key points, all of them shown in Figure 4.

public class RemoteObject {

public DangerousThing dangerousMethod() throws DangerousException {}

public static void main(String[] args) {

ProActive.tryWithCatch(DangerousException.class); // Here (1)

try {

DangerousThing[] dt;

RemoteObject[] ro;

for (int i = 0; i < dt.length; i++)

dt[i] = ro[i].dangerousMethod();

ProActive.endTryWithCatch(); // Here (2)

} catch (DangerousException de) { ... }

finally {

ProActive.removeTryWithCatch(); // And finally here (3)

}

}

}

Fig. 4. Complete example with the mechanism

The only goal of all those added method calls is to let ProActive know the
state of the exception mask stack. Since this information mostly pertains to the
client, it is implemented on the client side and very little is actually transmitted
on the wire.

Note that those instructions are explicitly needed because of the lack of
reification of the Java exception mask. The programmer and the middleware
runtime have no access to it.

4.2 Before the Block

Before every try willing to put at work the mechanism, ProActive must be
informed about which exceptions types will be caught in this block. This is done
using the tryWithCatch() method taking as parameter an exception class or
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an array of exception classes. These are the exceptions caught in the subsequent
catch blocks.

As we reimplement a stack unwinding based exception system, this method
pushes an exception handler on the stack. As an optimization, it also recom-
putes the current exception mask so that we know for each ProActive call if its
exceptions will be handled by the mechanism or not.

4.3 During the Block
Here, we expect to asynchronously call methods throwing exceptions correspond-
ing to the advertised exception types, otherwise the system would be quite point-
less.

If an asynchronous method call ends with an exception, it is saved in the
future in order to be thrown upon access, or when for some reason we have to
throw the current exception.

If the method call was synchronous because of its return type (primitive
type like int or a final class), the behavior is not changed from before the
mechanism: the call is synchronous and the potential exception is thrown at its
end.

In the one-way asynchronous case, the only moment where we could throw the
exception is when the method endTryWithCatch() is called. This is suboptimal
because the programmer is left with a subtle dilemma concerning one-way calls:
either he makes big try/catch blocks so that the endTryWithCatch() comes
late and a large window is left for calls in parallel before seeing the exception,
or he wants his exception soon and he has to make small try/catch blocks.

The proposed solution to this problem consists in two Java methods used to
throw an exception if one has arrived. We provide two methods because one is
blocking and the other is not. The non-blocking one (throwArrivedException())
simply consults the current state and throws the potential exception, whereas
the blocking one (waitForPotentialException()) is in some sort a barrier in
that it waits for all asynchronous calls that could throw an exception in their
return, and then throws the potential exception too.

4.4 At the End of the Block
The last instruction in the try block must be a call to endTryWithCatch(). The
job of this method is to wait for the first of those events:

– every call in the current block that could throw an exception declared in the
tryWithCatch() parameter has normally returned,

– an exception arrives.

This method also pops the current exception mask on the stack. If an excep-
tion is thrown before this call, it will be bypassed. We’ll see in a moment how
we handle this situation.

5 Implementation: Problems & Solutions

Trying to provide asynchronous exceptions in a way resembling to synchronous
exceptions is not trouble free. We identify three main problems, more or less tied
to our implementation in Java.
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5.1 Source Code Modification

Java has the refinement of presenting exceptions as first class objects, thus, giving
them all the features found in objects. Unfortunately, their handling (try, catch,
finally) is totally impenetrable. That’s why, the major part of the proposed
mechanism is to reimplement an exception stack, side by side with Java’s original.

In this situation, the main hazard to watch for is an inconsistency of the
exception stacks with respect to the actual user stack. The ProActive view of the
stack needs not be complete, only the subset containing asynchronous method
calls is needed. Nevertheless, assuming the programmer takes care to annotate its
exception stack manipulations with the aforementioned ProActive method calls,
we can be out of sync as a result of a thrown exception unwinding the stack. Not
only we cannot detect when an exception is thrown, but also we cannot figure
out up to where did we unwind the stack.

Even when we ourselves throw an asynchronous exception, we cannot be sure
at which level of the stack it will end up. This is because our view of the stack
is incomplete.

Our solution to all these problems resides in asking the programmer to add
a ProActive call in the finally block of every instrumented try/catch blocks.
When an exception unwinds the stack, every finally block on the way upward
will be executed, popping our stack at every step.

This problem has its origin in what is perceived as a Java shortcoming.
Java does not provide methods to inspect the exception mask stack. It only
provides the call stack thanks to a method, ironically, in the Throwable class
(i.e. getStackTrace()). On the other hand, this shortcoming can be accepted
if the goal is to hide the exception handling mechanism in order to optimize [16]
it in the JIT.

Another source of desynchronization is a change in the exception handling
code not propagated to the system, for example, a catch clause is suppressed,
but the tryWithCatch() call continues to advertise it. We fix this problem by
providing an automatic annotator. The annotations can be automatically com-
puted given the source code, so we wrote a tool to do exactly that. This is not
considered as a preprocessing but as a help to the programmer, that he is free
not to use.

5.2 Throwing Exceptions

In the mechanism we rely on the possibility to launch any exception at any
time, as shown by the throwArrivedException() method. On the other hand,
we are in a Java environment, which enforces the throws declaration in method
signatures to inform about the type of exceptions that can be thrown. This
aspect has been a showstopper in many attempts at asynchronous exceptions,
(as noticed by [9]).

The first point to consider in that problem is that the throws rules are
enforced only by the compiler, so if we bypass the compiler checks, nobody else
will prevent us from throwing exceptions.

The chosen approach to bypass the compiler is to dynamically create the
bytecode at runtime with the help of libraries like ASM [17]. It permits to write
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a method that throws any exception without checking the throws declaration,
that we will happily leave empty. So we write our class with ASM and we load
it thanks to the well known technique of calling defineClass() by reflection.

Now that we have our method that can throw any exception without the as-
sociated throws declaration, we have to call it. We cannot do it directly because
as it is created dynamically it does not exist at compile time, and we would end
with code that does not compile. Another solution would be to call the method
using the reflection API, but the method in this API to call any method not
only has a non-empty throws declaration but also wraps the actual exception
in a InvocationTargetException. So the reflection way is useless there.

We had to fallback on another solution, this time using Java’s dynamic bind-
ing. Let’s say we have an interface containing a single method (used to throw
an exception) with a, very importantly, empty throws declaration. The dynam-
ically built class implements this interface, and the method actually throws the
exception thanks to the lack of verification of the throws declaration. In the
code we keep an instance of this interface, so the code compiles. Then we create
an instance of the dynamically built class by reflection and we affect it to the
aforementioned variable. When we want to throw an exception we simply have
to call the method on this variable, it will compile since the method is in the
interface, and thanks to Java’s dynamic binding the dynamically built method
is the one to be actually executed.

5.3 Consecutive Exceptions

Trying to implement asynchronous exceptions, side by side with Java exceptions
can lead to strange situations. In the synchronous world of exceptions, when
something bad happens an exception is thrown and the control flow leaves the
offending stack frame, and of course the subsequent calls in this stack frame are
skipped until the block with the matching catch.

With asynchrony, the whole point is to avoid waiting for the end of the call,
so it is possible to receive two consecutive exceptions, potentially having the
same cause (e.g. a network failure occured and several remote calls aborted).

The best we can do in this case is to report the first exception, and discard
the subsequent exceptions. In the synchronous case, the second call would not
have been launched, so its exception is useless. The problem is that we may
end up in an incoherent state by launching calls even though the previous ones
threw exceptions. We rely on the wait-by-necessity semantic between futures
which produces a dependency graph in some sort to gain some correctness. Our
solution is to assume that the dependency between values is the same as the one
between exceptions, which seems natural.

Another considered approach is to throw the exception as soon as possible.
That is to say, each time a ProActive method is called, if there is a pending
exception we throw it. This is technically feasible, but can be problematic for
the programmer since exceptions can then be thrown in unpredictable ways. So
this approach is still left aside as experience is gained on the subject.
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6 Conclusion

By turning asynchronous the method call mechanism, error handling becomes
tricky. The most common solution is the usage of callbacks, but as we have
seen it is not as powerful as it seems. Our approach is to trade a little bit of
asynchrony in exchange of some control about where exceptions are caught. Of
course this solution has a cost that needs to be evaluated. This cost is application
dependent, and as before, the code needs some thinking to benefit the most from
asynchrony. Typically, the result from a method call will be used in the same
try block so as to avoid testing the result validity, this way it’s not the end of
the try block that will cause the wait-by-necessity but the return value usage.
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sité de Bordeaux 1, LaBRI (2004)
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Abstract. Server applications are expected to handle lower level faults and keep
them from bringing down the whole system. Java provides a program-level ex-
ception handling mechanism in response to error conditions (that are translated
into exceptions by Java VM). However, exception handling code is often widely
scattered throughout an application and untested. This paper presents a program
visualization tool ExTest that shows precisely all the handlers for exceptions trig-
gered by certain kinds of operations, and for each of these handlers all the witness
paths of how the operation would be triggered. Thus ExTest helps programmers
understand the exception handling behavior of Java programs and also facilitates
testing exception handling code.

1 Introduction

The Java programming language provides a program level exception handling mech-
anism in response to error conditions that happen during program execution. Subsys-
tem faults (e.g. disk failure, network congestion) are translated into exceptions (e.g.
java.io.IOException, java.net.SocketException) by the Java Virtual Ma-
chine [1]. Proper handling of these exceptions in program code is extremely important
for reliability and fault-tolerance in server applications built in Java.

An exception handling mechanism helps separate exception handling code from
code that implements functionalities during normal execution. However, exception han-
dling code that deals with certain kinds of faults is still widely scattered over the whole
program and mixed with other exception handling code, or even irrelevant code, making
it hard to understand the behavior of the program under certain system fault conditions.

Moreover, exception handling blocks, especially those corresponding to system
faults, are often left untested, for the reason that they can not be triggered by just tuning
input data of the program. In our previous work [2], we proposed a white box testing
metric for the exception handling behavior of the program. Supporting program analysis
algorithms together with a testing framework using fault injection [3] were presented.
Although very precise analysis is used in identifying exception def-uses, false positives
can not be fully eliminated. It is a tedious and difficult job to identify the real false
positives when they can not be exercised during the test.

In this paper we present ExTest – a program visualization tool built on top of
Eclipse[4]. Based on program analysis introduced in [2], it groups together handlers
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that handle exceptions triggered by a set of fault-sensitive operations1. Thus it facil-
itates navigation of the program code that relates to exceptions triggered by certain
operations of interest. It also shows all program paths via which these operations can be
reached from some call site in the try block, helping a user to understand the exception
handling structure, and to identify spurious exception def-uses.

The rest of this paper is organized as following: In Sec. 2 we give a brief overview
of exception def-use analysis that was introduced in [2]. Section 3 shows the structure
and the functionality of ExTest in detail. In Sec. 4 we discuss the related work in the
area of understanding and improving exception handling code in Java programs. Our
future research work is discussed in Sec. 5.

2 Background

In [2], we proposed a def-use testing methodology for exception handling code, which
is analogous to the all-uses metric of traditional def-use testing [5]. We repeat some of
the key concepts here: In any given program execution, each fault-sensitive operation
may produce an exception that reaches some subset of the program’s catch blocks. We
can treat fault-sensitive operations as the definition points of exceptions, and catch
blocks as uses of exceptions. We define exception-catch (e-c) links:
Definition 1. (e-c link): Given a set � of fault-sensitive operations that may pro-
duce exceptions, and a set � of catch blocks in a program, we say there is an e-c
link �����
	�� [2] between ���� and 	��� if � could possibly trigger 	 ; we say that a
given e-c link is experienced in a set of test runs � , if � actually transfers control to 	
by throwing an exception during a test in � .

Currently in the experiments conducted, we select � to contain all the native meth-
ods in JDK library that do network or disk I/O. In the rest of this paper we make this
assumption unless explicitly stated otherwise2.

Figure 1 shows the organization of our exception def-use testing system, which
composed of two kinds of program analysis: static (compile time) and dynamic (run
time) analysis. The static analysis calculates the possible e-c links for a program, which
will be introduced shortly. The dynamic analysis monitors program execution, calles
for fault injection to trigger an exception at an appropriate time, and records test cover-
age: The compiler uses the set of e-c links to identify where to place instrumentation that
will communicate with the fault injection engine during execution. This communication
will request the injection of a particular fault when execution reaches the try-catch
block of an e-c link. The injected fault will cause an exception to be thrown upon ex-
ecution of the fault-sensitive operation of the e-c link. The compiler also instruments
the code to record the execution of the corresponding catch block. The tester runs the
program and gathers the observed e-c links from each run. The testing goal is to drive
the program into different part of the code so that fault injection can help exercise all the
e-c links found in the program. Finally, the test harness calculates the overall coverage
information for this test suite: the observed e-c links vs. the possible e-c links.

1 Either a throw statement or a native method that may be affected by some fault – a hardware
or OS failure – and produce some exception.

2 The analysis and the testing framework are not dependent on the � selected.
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Fig. 1. Exception def-use Testing Framework

Next we introduce the static analysis that finds the possible e-c links in a Java pro-
gram. Two algorithms are developed: Exception-flow and DataReach analysis [2].

Exception-flow is a dataflow analysis, similar to Reaching Definitions [6], but runs
on call graphs instead of control flow graphs. Each ���� is propagated along the
call edges in the reverse direction until some try-catch block 	 is met that encloses
the call site and catches the exception thrown by � ; thus an e-c link ������	�� is recorded.
Moreover, during the propagation process, in each method (i.e. call graph node) to
which � propagates, we can record the immediately previous method, thus indicating
where � comes from. The exception propagation path can be collected on demand after
the analysis finishes.

It is obvious that using a more precise analysis for call graph construction such
as points-to analysis [7, 8] helps to reduce the number of infeasible e-c links found
by exception-flow analysis. However, in practice even a very precise call graph build-
ing algorithm introduces many infeasible e-c links. Figure 2 is an example of typical
uses of the Java I/O packages. Figure 3 illustrates how infeasible e-c links are intro-
duced even given a fairly precise call graph. As we can see, the catch in readFile
only handles exceptions result from disk failure and the catch in readNet only han-
dles those triggered by network faults. But exception-flow information is merged in
BufferedInputStream.read1() and propagated to both readFile and readNet.

We developed DataReach analysis to reduce the number of infeasible e-c links
produced. The intuition was to use data reachability, usually obtained using points-
to analysis, to confirm control-flow reachability. For example, continuing with Fig. 2,
we can prove SocketInputStream.read() is not reachable from the call site
fsrc.read() in method readFile, by showing that during the lifetime of the call
fsrc.read(), no object of type SocketInputStream may be either loaded from
any static/instance field of some class/object, or created by a new statement. In this
way we can show that all the control flow paths associated with this e-c link are not
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void readFile(String s){
byte[] buffer = new byte[256];
try{
InputStream f =new FileInputStream(s);
InputStream fsrc=new BufferedInputStream(f);
for (...)

c = fsrc.read(buffer);
}catch (IOException e){ ...}

}
void readNet(Socket s){

byte[] buffer = new byte[256];
try{
InputStream n =s.getInputStream();
InputStream ssrc=new BufferedInputStream(n);
for (...)

c = ssrc.read(buffer);
}catch (IOException e){ ...}

}

Fig. 2. Code Example for Java I/O Usage

Call Graph Edges Feasible e−c link e−c linkInfeasible

readFile readNet

FilterInputStream.read(byte[])

BufferedInputStream.read(byte[],int,int)

BufferedInputStream.read1(byte[],int,int)

FileInputStream.read(...) SocketInputStream.read(...)

Network AccessDisk Access

Fig. 3. Call Graph for Java I/O Usage

feasible, so that the infeasibility of the e-c link from SocketInputStream.read()
to the catch block in readFile is proved. In general, DataReach tries to prove the
infeasibility of each e-c link output by Exception-flow analysis, and only outputs those
that it cannot prove to be infeasible. Our experiments showed that DataReach improved
the precision of the system significantly; it reduced the number of possible e-c links by
41% on average in 6 benchmarks used in [2].

3 Visualization Tool — ExTest

In addition to being used by the exception def-use testing system, the information pro-
duced by these analysis, if carefully organized and visually displayed in an integrated
development environment (IDE), can greatly facilitate both testing and program under-
standing of the exception handling code. We developed an Eclipse plug-in – ExTest,
which invokes these analysis and organizes the output data into tree views to let users
browse e-c links and trace exception propagation paths.
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3.1 Motivation

When studying the exception handling behavior of Java programs, we found that, as
mentioned in Sec. 1, exception handlers that deal with certain kinds of faults are often
scattered in the program and mixed with handlers that take care of other kinds of error
conditions.

void readString(String s){
String buffer = s;
try{
InputStream n =new StringBufferInputStream(s);
InputStream in=new BufferedInputStream(n);
for (...)
c = in.read(buffer);

}catch (IOException e){ ...}
}

Fig. 4. Unreachable catch Block

For instance, a catch clause that handles an I/O exception may appear at each
program point where some I/O channel is active. Each of these catch clauses may
handle I/O exceptions triggered by different fault-sensitive operations (e.g. file write or
socket creation), as shown in Fig. 2. Worse, some of these catch clauses never handle
any I/O exception: Suppose in the program containing the code in Fig. 2, there is another
method readString, shown in Fig. 43. The catch block in this method handling I/O
exception will never be triggered, because the code in the corresponding try block
only reads from a string buffer in the memory – no actual I/O operation involved. Yet
the try-catch structure is necessary for the program to compile.

If a programmer wants to learn this program’s behavior under disk failure, she needs
to find all the catch clauses that may handle exceptions that result from disk faults.
Suppose a powerful lexical search tool with Java language knowledge as well as pro-
gram specific information (e.g. type) is available. Then she can easily locate all the
catch clauses that handle IOException or more general types of exceptions, but she
still has to manually inspect at least all three try-catch blocks in both Fig. 2 and
Fig. 4, and sometimes code reachable from them too, instead of just the one in method
readFile that actually handles the exception result from disk failure. The problem
becomes much more severe in non-toy Java server applications.

Using the analysis mentioned in Sec. 2, we can compute all the potential e-c links
of the program. Each e-c link ������	�� tells us the fault-sensitive operation that triggers
the exception and where it is handled. Thus, we can help solving the above problem
by grouping e-c links according to their � value. Since the number of fault-sensitive
operations that relate to disk I/O is small, one can just browse e-c links starting with

3 This program – a single Java class containing the main method calling all of these three
methods (also defined in this class) in Fig. 2 and 4 – is used as a running example in the
following discussion about ExTest.
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these operations to to get a good estimate of all the try-catch blocks that are related
to disk I/O.

Ours is a program analysis which computes a safe approximation of program be-
havior. False positives are unavoidable, which means for some of the e-c links ������	�� ,
the exception thrown at � never reaches 	 . It is up to the human programmer to de-
cide whether an e-c link is actually spurious. This is especially important for exception
def-use testing, because spurious e-c links can never be exercised during any test. Our
program analysis provides exception propagation path data for all e-c links. Display-
ing these paths visually in Eclipse IDE helps to identify the spurious ones. In order for
identifying spurious e-c links, all propagation paths for a given e-c link must be shown.

3.2 Tool Structure

Our program analysis are implemented as modules in the Soot Java Analysis and Trans-
formation Framework [8] version 2.0.1. Upon user request, ExTest (i) calculates envi-
ronments of the current working program (e.g. class paths) using Eclipse services, (ii)
starts another process running Soot with our modules enabled, and (iii) reads the output
data of the Soot modules after the process finishes.

In the Eclipse IDE, we want the users to be able to explore the e-c links (e.g. brows-
ing all the catch clauses and their relationships with the fault-sensitive operations) as
well as the witness paths that demonstrate the feasibility of an e-c link. The data gen-
erated by the Soot modules are organized in an XML file, which contains all the e-c
links found in the given program and information about the paths – needed by ExTest to
perform the intended functionality.

3.3 Browsing e-c links

Each record of an e-c link ������	�� in the output data of our Soot modules contains the
following information: the ID of � , the position of 	 in source code and the call site(s)
in the corresponding try block which may lead to the execution of � . These e-c links
can be grouped in two ways: by � or by 	 . We implemented both of them by means of
two different views in Eclipse: the Handlers view and the Triggers view.

Figure 5(a) shows the Handlers view: a tree-view in Eclipse where e-c links are
grouped by the try-catch blocks. These try-catch blocks are further grouped by
their definition positions: the methods, classes, packages in which they are defined.
Each try-catch block can be expanded to show all the fault-sensitive operations that
may trigger exceptions reaching the catch. The last try-catch block in the figure is
highlighted and expanded. It is defined in package iotest.mixed, class Mixed and
method readFile. We can see that one method call in the try block reaches a fault-
sensitive operation in the JDK: “File Read”.

Figure 5(b) shows the Triggers view, where the e-c links are grouped by the fault-
sensitive operations. By expanding the “File Read” operation we can see that only one
try-catch block in the program handles an exception thrown by read of a file. So if
a user is interested in program behavior under a disk fault, she can just concentrate on
this one catch block.
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(a) Handlers View

(b) Triggers View

Fig. 5. Tree Views of e-c links

Thanks to the environment provided by Eclipse IDE, these two tree views can be
interactively explored. The try-catch block, the statements in the try block that
may lead to the fault-sensitive operation, etc., can be opened and highlighted in the
Java source file editors, upon double click on the corresponding items in the view. For
example, in both views, we can see the actual code for the try-catch block #0 by
double clicking on the line.

3.4 Displaying All Paths for an e-c link

We also want to display the paths that show how � in an e-c link ������	�� can be reached
from the try block that corresponds to 	 . Selecting and displaying only one (the short-
est) path for each e-c link is not enough, especially with the presence of the false posi-
tives. In order for a programmer to decide that an e-c link is spurious, she has to make
sure that all the control flow paths from the corresponding try to � are actually infea-
sible. So it is necessary for ExTest to display all these paths to be practically useful. But
the total number of paths may be exponential to the size of the program [9]! Clearly, the
approach of gathering and dumping all these paths into an output file after the analysis
finishes will not scale.

As mentioned in Sec. 2, Exception-flow analysis records the propagation paths of
each ���� by annotating nodes on the call graph. These annotations can be trivially
changed into annotations on call edges. Since the set of fault-sensitive operations � is
pre-selected according to the kind of faults that are of interest to the user (not depending
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Fig. 6. Annotated Call Graph

on the program being analyzed), the size of the annotated call graph is at most linear
in the size of the original call graph. Figure 6(a) shows the annotated call graph for the
example in Figs. 2 & 4. Edges of the call graph are annotated with IDs of the fault-
sensitive operations according to the result of Exception-flow analysis.

The problem with this approach is that the results of DataReach are ignored. As
stated before, Exception-flow analysis alone would leave too many false positives in the
graph; with this data, the user must manually explore many unnecessary call edges
to decide that a certain e-c link is infeasible. So we need to take the advantage of
DataReach to reduce this workload.

Recall that DataReach proves that some of the e-c links are infeasible by showing
the infeasibility of the all the control flow paths of these e-c links. To be able to incor-
porate its result into the annotated call graph, we modified DataReach so that for each
e-c link �����
	�� , the annotations of � on all the call edges associated with ������	�� are con-
firmed only if we cannot prove the infeasibility of ������	�� (i.e. �����
	�� survives DataReach
test). During the output of the call graph, only the confirmed annotations are written
with the graph, thus many spurious annotations can be removed. Figure 6(b) shows the
annotated call graph with the unconfirmed annotations removed.

With the annotated call graph, the paths can be generated on demand in ExTest.
Suppose one user chooses to trace the paths of some e-c link �����
	�� . ExTest can retrieve
from the graph all the outgoing edges departing from the try block that are annotated
with � , and the target methods can be displayed to the user. Then the user can choose to
trace one of these methods, ExTest can retrieve all the outgoing edges from that method
that are annotated with � and display the target methods of these edges. This process
can be repeated until the fault-sensitive operation � itself is reached.

Fig. 7. Exception Propagation Path
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Figure 7 is the expanded view of the last e-c link shown in Fig. 5(b). Only one
witness path was discovered by the analysis, which precisely reflects the analysis result
shown in Fig. 6.

However, we are not always so lucky in bigger programs; paths in these programs
can get very complicated, especially inside the JDK library classes that make heavy use
of polymorphism. Figure 8 shows part of the Triggers view displayed when browsing
e-c links in one of the testing benchmarks used in [2] – a FTP server written in Java [10].
Witness paths of one e-c link are partly expanded in the figure, with the fault-sensitive
operation SocketInputStream.read() highlighted.

As can be seen from the figure, the “fan out” of some of the nodes along the paths
is large (e.g., InputStreamReader.close()). Furthermore, many of the methods
appear more than once, which indicates the possibility of recursion introducing a path
with unbounded length. Since these paths are extracted out of a call graph, expanding
the second appearance of a method on a path brings exactly the same set of children
in the tree view. This is wasteful and introduces unnecessary complexity into the view.
Manually identifying the recursion in a complex view like this is not trivial. Therefore
we have automated recursion detection in ExTest. As shown in Fig. 8, many methods
are annotated with “...” and they are not expandable, which shows that the method has
been called recursively and further expansion is not necessary.

If we only show only one witness path of the e-c link– the natural selection would
be to show the shortest one – the view can be greatly simplified, but the real complexity
of the problem would be hidden from the user. With only one path shown, the user is not
helped in identifying infeasible paths; however, expanding and highlighting the short-
est path automatically among all paths may help in understanding the overall program
structure quickly. We are now working on implementing this feature in ExTest.

4 Related Work

This paper presents a tool to help understand and maintain the exception handling fea-
ture of Java programs, based on exception-catch link analysis. There is much previous
research work in both exception handling analysis and its usage in various software en-
gineering tools. Here we will discuss only the works that are most closely related to the
tool discussed in this paper4.

There are tools built to improve exception handling in programs, for example avoid-
ing exception handling through subsumption, or finding unhandled exceptions for a
given method. Jo et. al [11] presented an interprocedural set-based [12] exception-flow
analysis for checked exceptions. A tool [13] was built based on this analysis which
shows, for a selected method, uncaught exceptions and their propagation paths. It is un-
clear from the paper whether a certain path for each exception is selected and displayed,
or if all of the paths are displayed. Experiments show that this is more accurate than an
intraprocedural JDK-style analysis on a set of benchmarks five of which contain more
than 1000 methods. Robillard et. al [14] described a dataflow analysis that propagates
both checked and unchecked exception types interprocedurally. Their tool Jex illustrate

4 More discussion about research results in fault injection, exception analysis and optimizations,
infeasible paths detection and program testing can be found in the related work section of [2].
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Fig. 8. Exception Propagation Path
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exception handling structure in application code. It analyzes exception control flow and
thus identifies exception subsumption. These analysis mentioned above are less precise
than ours. Their call graph is constructed using class hierarchy analysis, which yields
very imprecise results [15, 16]. Even if a fairly precise call graph5 were provided for
their analysis, the precision of the results would be resemble those of our Exception-
flow analysis using the same call graph. So they are not capable of identifying that the
catch clause in Fig. 4 can never be triggered.

Reimer and Srinivasan [17] introduced SABER, part of which targets at a wide range
of exception usage issues in order to improve exception handling code in large J2EE
applications and ultimately to increase robustness of the program. These issues in-
clude swallowed exceptions, single catch for multiple exceptions, a handler too far
away from the source of the exception and costly handlers. Warnings are given to the
programmer upon recognizing one of these problems. Unfortunately, analysis used to
identify these potentially problematic code areas are not introduced. Their work, if com-
bined with our analysis, might prune some of the warning messages to reduce the work-
load of user, and produce more valuable information at the same time. For instance,
suppose the catch clause in Fig. 4 is empty, since our analysis shows that it can never
be triggered, warnings relative to this catch clause can be suppressed. Moreover, when
facing a try block with many call sites that potentially throw the same type of excep-
tion, our analysis can show whether these exceptions are of the same origin and with
similar propagation paths, which in turn helps deciding whether the try block needs to
be split.

5 Conclusions and Future Work

We present a program visualization tool that facilitates navigating code related to the
exception handling feature of Java programs, based on the program analysis used in
exception def-use analysis [2]. We want to reveal all information needed to the user,
while carefully organizing the data to help human browsing and reasoning.

Despite of our current efforts, Fig. 8 shows us that exploring program code based
on conservative static program analysis results can be difficult. One way to alleviate the
situation is to use more precise analysis (but possibly more expensive) to reduce the
size of the result data.

The current implementation of ExTest only displays the results of the static analysis
in [2]. Our next step is to display visually both the static and dynamic analysis results,
because we believe that it will give user more intuition and hints when browsing. We
are working on combining two kinds of dynamic information into the current views:
testing coverage data of e-c links and dynamic call graphs/trees. Once we incorporate
these data, we can highlight e-c links not covered during the test in the e-c link views
(shown in Fig. 5) to draw the user’s attention to these untested parts of the program.
Furthermore, when a user chooses to explore the paths of a certain e-c link, with the
dynamic call graph/tree, we can graphically show which of the edges are actually exe-
cuted during the test. On this view, the users might want to concentrate on the “fringe”

5 For example, a call graph constructed using Spark, a field sensitive context insensitive points-
to analysis module in Soot.
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of the already executed edges, to see why the program is taking the wrong “branch”.
Thus Extest can help the user either to compose another test case or decide that edge is
actually infeasible.
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Abstract. The development of programs for mobile devices inhabiting
Ambient Intelligent network constellations is notoriously difficult. These
difficulties stem from the fact that the limitations imposed by the hard-
ware need to be dealt with in an ad hoc fashion. In this paper we advocate
the use of conversations as a general programming model to develop
applications for Ambient Intelligence. We illustrate how conversations
tackle the different concerns of ambient-oriented software development.

1 Introduction

The past few years Ambient Intelligence (AmI) has begun to seep into soci-
ety. Whereas the vision as a whole remains futuristic, the introduction of ever
cheaper, smaller and more powerful mobile devices – such as cellular phones
and PDAs – cannot go unnoticed. These devices also harbour the necessary
wireless network provisions that allow them to escape their isolation and col-
laborate in open, highly dynamic network settings. Whereas technically feasible,
collaboration between different devices remains cumbersome due to the sheer
complexity of the software that governs such collaborations. One particularly
challenging problem consists of finding abstraction mechanisms for the collabo-
ration between different mobile devices, with respect to the different hardware
limitations overshadowing the interaction.

This paper advocates the use of conversations [Ran75] – a well-known ex-
ception handling technique – as a programming model for developing AmI ap-
plications. Upon conducting a careful examination of the hardware limitations
imposed by mobile devices, we identify the main concerns to be addressed in
ambient-oriented software. Subsequently we investigate how conversations can
be employed to address these concerns and which extensions and modifications
are needed to obtain a full-fledged programming model for ambient-oriented
applications.

? Funded by a doctoral scholarship of the Institute for the Promotion of Innovation
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2 Motivation

This section will highlight the main differences between traditional distributed
systems and the AmI setting of collaborating devices investigated in this paper.
These differences will provide us with a means to evaluate the applicability
of conversations in an AmI environment. At present, mobile devices are often
characterised by scarce resources such as lower CPU speed, available memory
and battery lifespan. However, given the rapid evolution of these devices and
their growing resemblance to full-blown computers such as laptops, we consider
these issues not to be fundamental characteristics of AmI devices.

The characteristics that we do consider to be fundamental are directly related
to the peculiarities of the wireless networks that allow the mobile devices to con-
nect with one another. These wireless networks come in two distinct flavours:
nomadic and ad hoc networks. The former network type implies that mobile
devices roam while remaining connected through the use of dependable infras-
tructure. Ad hoc networks on the other hand can be characterised by the abso-
lute lack of central infrastructure to support the interaction. To both network
constellations the following observations can be applied:

Volatile Connections A first important difference between traditional dis-
tributed systems and an AmI setting of collaborating devices is that the
latter can no longer rely on stable network connections. For ad hoc networks
with no infrastructure available, connectivity is limited by the range of the
wireless facilities. Thus connections may be broken as users move about.
When infrastructure is available, roaming users in a nomadic network may
still choose to use network facilities periodically, for example to minimise the
cost1 or the battery consumption of upholding a network link.

Ambient Resources In contrast to their counterparts in stationary networks,
ambient-oriented applications should not rely on explicit knowledge of the
available resources. Instead the availability of resources needs to be dis-
covered dynamically, as the open network dynamically evolves due to the
unheralded joining and leaving of devices (which provide specific services).

No Presumed Infrastructure Whereas servers – reliable nodes providing a
fixed set of services for their clients – are commonplace in traditional dis-
tributed systems, ambient-oriented applications should be able to function
without them. Of course, one cannot prohibit software developers to make
use of servers in their applications, but the underlying network layer of a
programming model for ambient-oriented software should rely only on peer-
to-peer networks to accommodate ad hoc network constellations.

Natural Concurrency The need for concurrency naturally arises in a setting
populated by mobile devices. It is inconceivable to consider applications
that use the dynamics of a network of these devices as a single-threaded
application. If this were the case, the disconnection of whatever device that
currently holds the running thread would freeze an entire network of devices.

1 Typically, access to reliable network infrastructure – such as a GPRS-network for
SmartPhones – requires payment based on the time one remains connected.
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We have explored these hardware characteristics in previous work, to isolate some
characteristic features of an ambient-oriented programming language [DVM+05].
A result of this experiment was the development of AmbientTalk2, a minimal,
yet realistic3, programming language kernel for developing ambient-oriented pro-
grams. AmbientTalk introduces actors [Agh86] to encode processes which com-
municate with one another using asynchronous messages. Such asynchronous
communication limits the effects of failing communication links. AmbientTalk
additionally provides a basic service discovery mechanism that is based unifica-
tion of patterns published by the providers and potential users of a service. A
thorough introduction of the language is clearly outside the scope of this position
paper and can be found in the aforementioned article [DVM+05]. The Ambient
Actor model, which is the formal basis for AmbientTalk is detailed in [DV04].

While developing some examples in AmbientTalk, we have come across four
concerns that programmers encounter during the development of an ambient-
oriented application. The first two concerns are directly related to the exchange
of messages between different parties, whereas the latter two are related to the
particular network constellations under consideration.

Synchronisation In response to the hardware phenomena described above,
ambient-oriented languages require the use of asynchronous, non-blocking
communication primitives. However these primitives place a cognitive burden
on the programmer, who has to manually encode the synchronisation points
in his application using call-backs. This style of programming is akin to
continuation-passing style, which is traditionally considered cumbersome to
program in. Therefore an important aspect of an ambient-oriented model is
the ease with which one can express synchronisation points in the software.

Exception Handling Present-day applications typically use exceptions exten-
sively as a means to signal exceptional events. The need for exception han-
dling becomes obvious in distributed systems, where failing network connec-
tions are signalled through the use of exceptions as well. Given the dynamic
networks we are investigating, such network exceptions will occur frequently.
The well-known try-catch block cannot be aligned with asynchronous mes-
sage passing, since exceptions may be signalled to the calling device, long
after the try-catch block was exited. Because ambient-oriented programming
languages are obliged to use asynchronous communication, new means for
exception handling need to be explored.

Decentralised Distribution Since one can in principle not rely on the avail-
ability of any infrastructure whatsoever, it is important that none of the
protocols relies on the use of a reliable server infrastructure. In particular
the protocols that facilitate the synchronisation and exception handling is-
sues detailed above, should avoid being dependant on a designated leader.
Such decentralisation avoids upheaval when the leader becomes unreachable.

2 More information on the language as well as access to the experimental virtual ma-
chine is available at: http://prog.vub.ac.be/∼jededeck/research/ambienttalk/

3 The AmbientTalk virtual machine is developed in pure Java and is currently deployed
on QTek 9090 SmartPhones.
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Service Discovery Since ambient-oriented applications inhabit inherently dy-
namic open networks, one cannot encode general explicit knowledge that
describes where an object may encounter available services. Similarly, the
requirement for decentralised distribution also prohibits the use of a name
server-based architecture. Thus, when developing an ambient-oriented pro-
gram, the ability to “sense” services in one’s environment is crucial.

The concerns mentioned above will be recapitulated in section 4 to analyse
the suitability of the conversation model as a programming model for ambient-
oriented software. First, the next section provides a basic introduction to the
original conversation model and its more recent offspring the Coordinated Atomic
Action model.

3 The Art of Conversation

Conversations were introduced by Randell as an abstraction to control concur-
rency and communication between collaborating processes [Ran75]. He observed
that dependencies are created between processes as they exchange information
with one another. Consequently, the effect of a software failure in a single process
easily spreads over all dependent processes, since to restart the faulty process,
all dependent processes need to be restarted as well. To alleviate this problem,
conversations isolate a group of processes, as illustrated in figure 1.

Role

Role

Fig. 1. A traditional conversation isolates its participants from external processes

Figure 1 shows that processes may become participants of a conversation by trig-
gering a role of the conversation. This role prescribes the behaviour exhibited
by the process while it is confined in the conversation’s borders. Upon triggering
a role – and crossing the left-most barrier or recovery line – the conversation
creates a checkpoint of the participant’s state. Throughout the conversation,
participants may freely communicate with one another, but not with external
processes. Such information smuggling is prevented to avoid the creation of de-
pendent processes outside of the control of the conversation. Finally, the right-
most barrier or test line is used to detect faulty participants. If needed, the
conversation restores the checkpoints and restarts itself.
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3.1 Coordinated Actomic Actions

Coordinated atomic actions (CA actions) are an object-oriented extension of
the traditional conversations described above [XRR+95]. Whereas a thorough
discussion of all aspects of the CA action model will lead us too far, we do
highlight some of the additional concepts the model introduces.

Forward Error Recovery Whereas traditional conversations respond to errors
uniformly by retrying the conversation, the CA action model allows the pro-
grammer to specify handlers for exceptions raised by its participants. Upon
successfully completing a handler, the CA action terminates normally. Since
exceptions may be raised concurrently by different participants, a CA action in-
troduces the notion of a resolution graph which maps combinations of exceptions
to a corresponding handler. Gathering the different raised exceptions and deter-
mining the handler to be triggered by the participants is performed at run-time
by the action manager.

External Objects Participants of CA actions may communicate with external
objects, provided that these objects can guarantee transactional semantics. In
particular, such external objects should prevent information smuggling, by en-
suring that the effects of the conversation can be rolled back if necessary. In
other words, external objects “must be atomic and individually responsible for
their own integrity” [VG00].

4 Conversations for Ambient Intelligence

The CAA model described in the previous section has already been applied
to a variety of real-world problems [XRR+99,BRR+00,VGR00,ZPR03]. These
examples clearly illustrate that conversations are a powerful means of abstraction
to structure distributed systems. This section will evaluate conversations with
respect to the four concerns of ambient-oriented programming we have identified
in section 2. To make this analysis more concrete we outline a minimal AmI
scenario to illustrate the different concerns.

Alan pulls up in front of the restaurant where he has booked a table. As
Alan switches off the engine – by retracting his eKey from his dashboard
computer to his PDA – a valet approaches offering to park Alan’s car.
Through his PDA, the valet offers a certificate, which is both a proof
that he is employed by the restaurant and a ticket to reclaim the car
after the meal. When Alan’s PDA validates the certificate, it hands over
the car’s eKey to the valet.

This scenario, albeit minimal, bears many of the essential characteristics of
ambient-oriented software. First of all, the scenario features mobile devices,
which connect with one another in an ad hoc fashion. Second, the car parking
service offered by the valet is an ambient resource – it becomes available when
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Alan pulls up outside the restaurant – which needs to be discovered. Third, the
scenario is also interesting since the protocol of interaction between the PDAs of
Alan and the valet can be automated. In the remainder of this section, we will
illustrate how conversations can be adapted to make this typical AmI scenario
possible. Finally, we present some pseudo-code for the resulting conversation.

4.1 Synchronisation

The car parking scenario has two points where the two processes need to syn-
chronise and exchange information, respectively the certificate and the eKey.
Conversations provide an apt mechanism to synchronise collaborating processes,
since the conversation typically only starts when all roles are attributed to par-
ticipants. Semantically, this is a very useful property, especially if a participant
may supply data, which can be used inside the conversation by all participants,
such as the certificate supplied by the valet role4:

role valet(certificate) {
// Role body

}

Whereas semantically, synchronisation at the start of a conversation is a useful
feature, one must take into consideration that technically the actual start of a
conversation is determined by the availability of resources. Since an AmI setting
is characterised by its dynamic open network settings in which the availability of
resources cannot be predicted, the conversation may start an indefinite amount
of time after the process has signalled it wants to participate. Since concurrency
is a natural phenomenon of our setting, we propose to ensure that the process
will only be confined to the boundaries of the conversation once it effectively
starts executing its role. As such, the process may still answer asynchronous
requests while the other participants are not available yet.

4.2 Exception Handling

The car parking scenario exemplifies the use of exceptions to report on unex-
pected events, i.c. someone may pose as a valet, and present a false certificate
to steal Alan’s car. Conversations were explicitly designed to handle exceptions
in distributed systems, so it should not be surprising that conversations perform
this task adequately for ambient-oriented programs as well.

Unlike when using try-catch, it is impossible that an exception is signalled
when the context in which it was to be handled is already abandoned. This
behaviour is due to the fact that processes may not leave a conversation until
all participants have completed their role. This logical synchronisation at the
end of a conversation can be upheld equally well in an AmI setting. However,
since in ambient-oriented software network connections are inherently volatile,
blocking participants at the end of a conversation renders the conversations
4 Other role bodies may access the certificate using valet.certificate
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fragile. Therefore, non-functional exceptions [CG03]– e.g. signalling that another
participant is no longer reachable – should not be handled automatically by the
virtual machine, but rather be propagated to the conversation which can then
incorporate them in its resolution.

4.3 Decentralised Distribution

Since conversations have been widely used to tackle exception handling in dis-
tributed systems, different possibilities to distribute a conversation have already
been explored [RZ97]. Whereas Romanovsky and Zorzo suggest that both the
roles and the action manager of a conversation can be distributed, the solutions
discussed in their paper only support distribution of roles. The COALA frame-
work implements distribution of action managers, but still enforces the use of
a leader manager for coordination. Such a higher authority cannot be recon-
ciled with the AmI criterion that imposes no presumed infrastructure. Currently
we are exploring different possibilities to relax the reliance on a single leader
manager to alert all participants of raised exceptions.

Apart from finding a reliable peer-to-peer protocol to notify all parties of
failures, we are also concerned with how the distribution of a conversation-based
ambient-oriented program is achieved. We envision the development of such ap-
plications as follows: All relevant entities in the program are defined as (ambient)
actors. Subsequently, conversations are used to express the collaborations that
may occur between these exemplar actors. In the car parking scenario, the role
of a valet could thus be specified as follows:

role valet(certificate)@CPEmployeeActor {
// Role body

}

The @ syntax shown in the above example confines the participants who
wish to take on the role of a valet to the CPEmployeeActor, an exemplar actor
representing an employee of the car parking service. The exemplar actor is then
cloned to instantiate multiple employees, which can all perform the task of a
valet. These clones can then be distributed to the PDA of each employee, which
is able to trigger the conversation, if it meets a customer.

In general this mechanism implies that after specifying the different conver-
sations which the exemplar actors may participate in, copies of these exemplar
actors can be distributed to all relevant devices. When distributing these cloned
actors, one should not be aware of the possible conversations these actors may en-
gage in. The distribution model that we hint at in this section holds the promise
of being able to substantiate this vision, without requiring centralised support.

This seemingly oblivious way to obtain distributed conversations, is achieved
by introducing role slots to represent the roles a conversation attributes to the
exemplar actors5. These role slots are then used to embody the relation between
5 The use of role slots is inspired by Slate which introduces them to inform objects of

their roles in multimethod invocations [RS05].
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actors and the conversations they can participate in. Copies of the exemplar
actors contain copies of these role slots to ensure that they can engage in precisely
the same conversations as their original.

When distributing ambient actors, the marshalling algorithm will use the
role slots to ensure that all conversations in which the actor can participate are
made available at the destination node. As such the marshalling algorithm of
the language is used to ensure that both the roles and action managers of a
conversation are distributed across all nodes that may host participants.

4.4 Service Discovery

Conversations are traditionally not regarded as a means to perform service dis-
covery, yet in the scenario two people meet, exactly because they may interact
in a meaningful way. Generalising from this example, we identify conversations
as a means to perform participant discovery. This implies that processes signal
their interest in performing a particular task by participating in a conversation.
The conversation is thus conceived as a go-between which brings the process in
contact with other potential participants.

Due to the distribution model outlined above, actors are co-located at all
times with the different conversations they can participate in. Consequently,
participating processes are handled locally without using central infrastructure.
Nevertheless, the system should be aware of processes wanting to collaborate.
The service discovery system sketched below can be used to fulfil this role.

At the level of the AmbientTalk virtual machine, every device periodically
broadcasts its presence, allowing other devices to discover its availability. The
service discovery algorithm we propose, reacts to such a notification of presence
by transmitting the device’s list of active conversations – conversations with
at least one role filled in. When receiving such a list of active conversations,
the service discovery algorithm will attempt to unify the provided conversations
with the ones it hosts on it’s own device. Such a unification may produce three
different results :

– Match : The unification succeeded and all the conversation’s roles have
been assigned to participants. Upon encountering a match, the conversation
is started.

– Underspecified : The unification succeeded, yet some roles are not filled
in. The service discovery algorithm will query all reachable devices, to check
whether they can contribute in the conversation. This is necessary to allow
for conversations spanning more that two devices. If the conversation, cannot
be completed, no matching occurs. No intermediate matching is performed to
avoid problems should the partner become unreachable before the remaining
roles are filled in.

– Overspecified : The unification failed, for example because both devices
filled in the same role. Neither conversation can be started.

Concretely in the scenario, both Alan and the valet will fulfil one role in the
conversation: respectively customer and valet. When Alan then pulls up in front
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of the restaurant, the ranges of both PDAs intersect, triggering the service dis-
covery algorithm. This unification will indicate a Match, and thus initiate the
interaction between the devices.

4.5 Scenario revisited

We have analysed how conversations could be conceived as a programming model
for ambient-oriented software. Conversations currently do not address all the
concerns we have identified as crucial to ambient-oriented software development.
However, the ideas we have presented to tackle these problems only involve the
support for conversations provided by the underlying virtual machine. Given
that the proposed changes are largely invisible to the programmer, we conclude
that conversations provide a potent programming model for ambient-oriented
applications.

In conclusion of this section, we return to the scenario that has guided our
analysis. The entire interaction between Alan and the valet may be captured in
a single conversation, which is outlined below. The CarParkService conversation
essentially establishes the first synchronisation point between the valet and the
customer roles.

1 conversation CarParkService {
2

3 exception InvalidCertificate();
4

5 method validate(certificate) throws InvalidCertificate{
6 // check the certificate
7 }
8

9 role valet(certificate)@CPEmployeeActor {
10 Parking.valet(certificate);
11 }
12

13 role customer()@PersonActor {
14 validate(valet.certificate);
15 Parking.customer(self.car, self.carkeys)
16 }

As can be witnessed the valet at this point makes a certificate available to all par-
ticipants of the conversation (line 9). While executing its role, the customer will
attempt to validate the provided certificate (line 14). Provided that this valida-
tion does not throw an exception, another synchronisation point is established
between both processes when they join the nested Parking conversation.

17 conversation Parking {
18

19 role valet(certificate)@CPEmployeeActor {
20 self.park(customer.car, customer.eKey);
21 self.store(”CarRetrieveService”, certificate, customer.eKey);
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22 }
23

24 role customer(car, eKey)@PersonActor {
25 self.store(”CarRetrieveService”, valet.certificate, eKey);
26 }
27

28 }

In the nested Parking conversation, the customer hands over his car and eKey to
the valet (line 24), which uses them to park the car (line 20). Furthermore, both
participants record the relation between the certificate and the eKey (lines 21 and
25) so that the customer can retrieve his car later on.

29 resolve(exceptions) {
30 case :
31 exceptions.contains(InvalidCertificate@customer ):
32 abort();
33 exceptions.contains(TimedOut) :
34 retry();
35 }
36 }

Finally, the resolve function is called by the local action managers after all
roles have terminated and when at least one role has raised an exception. The
exceptions parameter contains all raised exceptions in a collection which can be
subsequently queried. Also note the use of the @ syntax which allows one to
distinguish exceptions based on the role of the participant that raised them.

For this particular example, we have employed default exception handlers.
Clearly, the programmer should be permitted to implement his own handler
functions to incorporate different application-specific exception handling.

5 Position Statement

This paper first identified the main differences between traditional distributed
systems and the new emerging field of Ambient Intelligence. These differences
are all related to the essentially different characteristics of the network constel-
lations encountered by ambient-oriented software. First of all, ambient-oriented
programs are targeted towards networks populated by mobile devices, between
which only volatile connections can exist. Furthermore the dynamic nature of
such networks, implies that the availability of resources cannot be provided up
front, such that the program is required to discover available resources. Finally,
the dynamic networks under consideration may be formed entirely ad hoc, which
implies that an ambient-oriented programming language should assume no in-
frastructure.

The impact of these criteria on the development of software is profound. In
this paper we have conjectured that – given an appropriate programming lan-
guage for ambient-oriented programming – the main concerns when developing
an ambient-oriented application are :
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1. Expressing synchronisation points between the different processes involved.
2. Consequently handle exceptions raised by either the processes themselves,

or the non-functional exceptions (e.g. to signal disconnection of a partner
process) raised by the distribution layer.

3. How easy is it to deploy the application on a network of mobile devices.
4. How the application can become aware of its dynamic environment.

Based on this conjecture, we have proposed the introduction of conversations
as a programming model for ambient-oriented software development. Through
the use of a simple scenario we have analysed how conversations can address the
different concerns outlined above. On the other hand, this analysis also indicated
room for improvement of the model. In particular, we explored possible ways to
tackle both the scattering of conversations over the available devices, as well
as a service discovery mechanism, which allows the scattered conversations to
reconnect. Since these improvements only involve the level of the virtual machine,
we claim that conversations should be considered as a viable programming model
for ambient-oriented software.
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Abstract. Procedures invoked across program modules to notify about
event occurences rather than to request concrete services are termed
callbacks. They are frequently used to decouple program modules. How-
ever, their use complicates exception handling, turning default exception
propagation with the established termination model unsatisfactory.

Existing advice on handling exceptions in callbacks either requires im-
plementors to provide a no-throw guarantee or to propagate a generic
exception from a callback to its invoker. We demonstrate that neither
approach supports adequate exception handling in practice.

To aid programmers, we propose a tactic which mimics default propaga-
tion in the callback-less context: If possible, handle an exception locally;
otherwise, propagate it to the invoked callback’s clients, that is, modules
affected by the callback’s failure. We suggest early explicit specification
as a means to locate such modules.

1 Introduction

The Observer design pattern [1] decouples two classes through a notification
mechanism based on a specified interface known to both classes. An instance in
the subject role notifies one or more instances in the observer role by sending them
a message at each occurence of an agreed-upon event, typically a state change in
the subject itself. The subject does not need to know the concrete type of each
notified observer.3 Also, it does not need to know the behaviour implied by the
notification. Observers register with the subject prior to notifications and may
unregister later on.

Instances of the classic Observer pattern exist in almost every GUI frame-
work, often to implement the more specific Model-View-Controller pattern. More
generally, one can employ callback mechanisms to facilitate communication be-
tween independent objects by connecting them through a bus which can support
synchronous or asynchronous messaging. This solution can be found in various
message brokers, for example in implementations of the JMS specification [2].

3 We refer to classes “knowing” things in the sense of information being available to
their programmer at design time.
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The actual terms used to describe the overall concept vary considerably: call-
backs, observers, listeners, slots, subscribers, views.

The relationship among communicating objects as defined by the Observer
pattern gives rise to the problem of dealing with exceptions which might occur
during the notification of an observer. Specifically, default exception propaga-
tion supported by imperative programming languages is inappropriate in such
context, while it suffices in the simpler case of a direct invocation dependency:

In a traditional synchronous invocation scenario, it is useful to propagate
failure information in form of an exception object back from an invoked method
to its invoker to support adequate exception handling. This is true because
the invoker is fully aware of the invoked method’s contribution to satisfying the
invoker’s postcondition. The programmer may therefore either find an alternative
way of satisfying the postcondition or broaden the recovery context by restoring
local invariants and reporting failure farther up the call chain.

2 Exception Propagation from Callbacks

In contrast with the above scenario, exception propagation from callbacks is
challenging. In this section we explain the problem and present two basic ap-
proaches which fail to provide a solution to the general case. We illustrate their
drawbacks on examples and then briefly discuss practical consequences of their
failure.

2.1 Callbacks and Information Hiding

Callbacks enforce information hiding. A callback’s invoker is, by design, aware of
neither the concrete implementation nor the abstract goals accomplished by the
executed notification. More formally, the complete postcondition of a notification
is not known at development time of the notifier.

We assume for simplicity that the precondition is empty. In reality, the noti-
fier may be obliged to satisfy certain preconditions, such as executing the notifi-
cation on a particular thread. Such preconditions can be easily specified as part
of the notification interface.

Even if the information about the nature of work performed by the notified
object is available, it should be treated as secret for the sake of reusability and
independent maintainability of the invoker implementation.

2.2 Basic Approaches

The above considerations motivate the basic approaches to exception propaga-
tion from callbacks presented next: The notified objects must either provide a
no-throw guarantee [3], or they may only supply limited information about their
failure by throwing some generic exception.
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Providing a No-throw Guarantee Imposing a no-throw restriction on each
notified object is attractive from the point of view of a notifier’s implementor, as
it frees her from any exception handling responsibilities. However, it requires that
the full information necessary for exception handling be available to the notified
object. Furthermore, it requires that the constraints on the behaviour of the
notified object allow appropriate exception handling. While the first requirement
is self-evident, the latter needs further elaboration.

As an example, consider the notification mechanism typical in event-driven
programming utilizing GUI frameworks. An application programmer provides
concrete implementations of abstract event handler methods specified by a GUI
framework, invoked to notify about key strokes and mouse movements, and to
request repainting of widgets. To maintain a responsive GUI, event handlers
must satisfy soft real-time constraints during their execution. Moreover, because
of the sequential nature of event handling, they must not rely on any service
provided by other event handlers. These constraints make it impossible to report
an exception to the user through the GUI or solicit user input directly in an event
handler.

To work around the problem while still maintaining the no-throw guaran-
tee, one must resort to asynchronous exception handling, that is, delegate the
processing of exceptions to another thread and postpone it until the remaining
registered event handlers have seen the current event.

Propagation to the Invoker If the requirement of a no-throw guarantee turns
out difficult to satisfy in practice, one might hope that the second approach
mentioned, propagating a generic exception to the notifier, has better prospects.
Alas, this is not true. To illustrate why, we depart from the domain of GUI
programming and consider a scenario in which components react to a database
update triggered by another component.

In this scenario, the updating component manages its own data stored in
a database table which is also shared with other components. The components
are unaware of each other and are coordinated by an implementation framework.
After an update of the shared table, each component is notified by the framework
to execute some component-specific action, during which an internal exception
might occur. In this case, the exception is propagated to the framework, which
in turn propagates it to the component responsible for the update.

While this approach seems reasonable at first glance, the updating component
is, by design, unable to handle any exception originating from another (notified)
component. In fact, the occurence of such an exception might not at all be
related to the update event, provided that the updater only uses the shared
table to manage its own private data. Obviously, exception propagation to the
notifier (the framework) and consequently to the event originator (the updater)
is a design flaw.

While the simplified scenario described above is constructed for the sake of
our discussion, it is inspired by a similar problem which occurs in the Eclipse
Workbench [4] when a plug-in updates a project description.

ECOOP-EHWS '05 Glasgow, UK
July 25, 2005

41



2.3 Practical Considerations

At this point, we would like to reflect on how shortcomings in the described
approaches affect the quality of exception handling in software. While imple-
mentation of GUI event handlers does not exceed the level of training normally
expected from a client-side application programmer, asynchronous exception
handling and related multi-threading concerns might well do. However, we are
not aware of any GUI framework with explicit support for handling exceptions
asynchronously. This task is left as a challenge for GUI programmers.

Unfortunately, the transition from the expected (easy) to the actual (difficult)
nature of event-driven GUI programming caused by exceptions rapidly leads to
inadequate exception handling in real code. Rather than expend a considerable
amount of effort, it is more likely that implementors will skip the issue of ex-
ceptions altogether. A quick-and-dirty solution to the problem involves logging
exceptions, optionally followed by propagation to the GUI framework’s default
handling mechanism. The latter can obviously do nothing more than display a
cryptic error message or terminate the program. Such shortcuts are often taken,
because leaving out exception handling seems natural when prototyping GUIs,
and its importance continues to be neglected while a prototype evolves into a
final product.

3 Proposed Solution

We have described two unsatisfactory approaches to exception handling in call-
backs. In this section we present a more sophisticated approach.

Our solution is based on the already mentioned observation that exception
propagation in the sequential call chain without callbacks proves sufficient and
effective. In short, exceptions should be propagated towards computational con-
texts which fulfil at least one of the following requirements:

1. The context is (negatively) affected by the exception’s occurence (“do not
withhold bad news”).

2. The context is capable of compensating for the negative consequences of
the exception (“do not carry your problems to a place where no help is
available”).

3. The context is capable of removing the exception’s cause to prevent its future
occurences (“treat the disease, not the symptoms”).

Note that with these rules we neither specifically prescribe nor forbid prop-
agation of an exception to the immediate invoker of a method, as the previous
approaches do. After introductory definitions we explain the above recommen-
dations in greater detail.

3.1 Definitions

We adapt the terminology defined by Cristian [5]. Sequential programs (e.g.,
object methods) are invoked to cause transitions from an initial storage state
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to an intended final storage state. A storage state is a mapping from object
identifiers to object values; these values may model states of real-world entities.
A standard specification, or postcondition, of a program is a predicate over the
required initial and intended final storage states. Storage states in the domain
of a postcondition form the corresponding precondition.

Exceptions are run-time events that occur when a program’s execution di-
verges from its standard specification, regardless of whether the divergence is
detected or not. The divergence occurs as soon as a storage state is entered such
that the continued execution of the program cannot result in fulfilment of the
standard specification.

In another sense, exceptions are named entities which may be used by a soft-
ware developer to signal detection of divergences described above. Exceptions
should be raised to indicate the impossibility of providing a program’s specified
standard service, in other words, to report a violation of its standard specifi-
cation, or the program’s failure. Exceptional specifications may be written to
describe the intended final storage state reached by a program upon occurence
of a named exception.

We would also like to stress that exceptions are undesired events. Their sig-
naling should not be used for implementing functional requirements of software,
but rather for addressing unavoidable threats that endanger the correctness of
a specific implementation. This definition supplements the former one in that it
discourages some uses of exception handling mechanisms (cf. [6], [7]).

3.2 Impact of Exceptions

As background information for our first rule of propagating exceptions from
callbacks towards affected computational contexts, we now consider the possible
consequences of such exceptions.

A callback’s standard specification has to be understated at invoker’s de-
sign time, such that concrete callback implementations may become proper be-
havioural subtypes [8]. The standard postcondition of a callback, as specified in
the callback interface, may be simply true, or it may reflect restrictions imposed
on its behaviour. In any case, a concrete callback may (and will) only strenghten
the standard postcondition.

If an exception occurs during a callback’s execution, its standard specification
is violated. Thus, the entered final storage state differs from the intended one.
Additionally, the entered state may be internally inconsistent, even if exception
safety is guaranteed at the level of individual objects. The global consistency
requirements for a system can be specified as a predicate over allowable storage
states at well-defined points of execution. The predicate can be also viewed as
a conjunction of system invariants, of which object invariants are a special case
restricted to specifying relationships between a single object’s representation
variables. The traditional notion of exception safety is restricted to preserving
object invariants.
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We next provide a realistic example of a case in which an exception leads to an
unintended yet consistent storage state, as well as one in which an inconsistency
occurs.

Exception With Preserved System Invariants A preferences dialog in a
desktop application lets the user modify some preferences and finally click the
“Apply” button to persist them. The “Apply” button then becomes disabled to
indicate no outstanding changes. If an exception occurs in the “Apply” event
handler, the system will not advance to the next correct state, even though
invariants of all objects are preserved (i.e., the “Apply” button remains enabled).
The final storage state, even though internally consistent, is unacceptable for the
user, who expects that preferences have been saved.

Exception With Broken System Invariants In an application using the
MVC pattern, different state aspects of a model object are visualised by separate
views. After an exception occurs during state change notification, a view might
no longer reflect the model state and no longer show content synchronised with
other, successfully updated views. Two system invariants are broken in this case:
one over the model and view state, and another one over the state of all views.

3.3 Determining Affected Code

We have shown how an exception occurence in a callback leads to entering an
unintended storage state as its immediate consequence. In an object-oriented
context we are interested in determining methods with preconditions that be-
come impossible to satisfy through normal execution continued from the entered
exceptional storage state. Knowing these methods, one can notify their enclos-
ing objects before their next regular invocation. The rationale is that the objects
may then switch over to an alternative implementation, or at least prepare to
fail gracefully. This is analogous to propagating an exception to the invoker of a
service method.

More formally, we need to find elements of two object sets:

1. M , the set of objects modified during the callback’s invocation
2. D, the set of callback’s clients, defined as objects dependent on the updated

state of elements from M

For a failed method invocation in a sequential program without callbacks,
M typically consists of objects known to the invoker and D contains the in-
voker itself or objects controlled by the invoker. Members of these sets can be
determined by following the next execution steps that would be taken after the
failed invocation. Accordingly, it makes sense to refer to the invoker as the failed
method’s client [6]. However, when callbacks are employed, the method’s invoker
steps out of its usual client role.

To avoid the algorithmically difficult computation of M and D from the
source code alone, we suggest that both sets are specified by the programmer
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when the callback’s purpose becomes known. The specification should be written
regardless of whether exceptions are expected to occur during callback invoca-
tions or not. In programming languages which support specification of postcon-
ditions, M does not require to be explicitly enumerated, because it follows from
a postcondition. However, D still has to be specified explicitly. With this prepa-
ration, when later implementations of the invoked methods signal exceptions,
the exceptions can be propagated to callback’s clients as an early warning that
the state on which they depend has become inconsistent or outdated.

To illustrate why the up-front specification of M is worthwhile, we describe
an informal, labour-intensive procedure for reconstructing it from source code:

Let M be an initially empty set of affected objects. For every statement si

of the callback implementation:

1. Let C be the set of method invocations from si.
2. For every method invocation cj from C:

1. Let oj be the object on which cj is invoked and P the set of objects
passed in as formal parameters.

2. If cj does neither modify the state of oj nor of any object from P , proceed
to cj+1, otherwise:

3. Add the object(s) with modified state to M .

Finding out whether a method modifies an object’s state, lacking specifica-
tion, requires analysis of all transitively invoked methods. This task becomes
non-trivial and error-prone when the invoked methods are themselves callbacks,
configured and registered at some other point of execution. On the other hand,
if an accurate specification is available for a (callback) method, the analysis of
its implementation is not required, speeding up the process.

Updated objects from M could theoretically be examined for their partic-
ipation in system invariants affected by the callback’s invocation in order to
construct the callback’s clients set D. However, we are unaware of practical ap-
proaches for reconstructing system invariants based on static analysis of source
code alone (for a brief description of a dynamic approach, see section 4.1). We
must therefore assume that informal understanding of the intended role of each
element from M and the relationships between them and other objects is utilised
in this process. However, such understanding is only likely to exist at the time
when the callback is originally added to the system.

These observations highlight the need for early specification of callback ef-
fects. However, two related problems remain as topics for further research:

1. The proposed declarative specifications concern the callback’s clients, which
could in principle remain hidden if we disregarded exception handling. The
trade-off for achieved explicitness is a decrease in modularity.

2. The proposed declarative specifications may be difficult to maintain as pro-
grams evolve.
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3.4 Exception Handlers

According to our second proposed rule (“do not carry your problems to a place
where no help is available”), not every exception originating from a callback
should be directly propagated to its clients defined in the previous section. Before
such propagation occurs, an attempt should be undertaken to find exception
handlers that can reduce or even completely eliminate the signaled exception’s
consequences.

In practice every exception-throwing callback should be wrapped into one
that catches all exceptions and decides about their propagation. The wrapper
object communicates exception occurences to handlers which can be either spec-
ified statically or registered at run-time. If required, notification of handlers may
be performed asynchronously, like in the GUI example from section 2.2.

There are two basic courses of action for handlers: restoration of system
invariants and enforcing the original callback’s postcondition (cf. section 3.2).

The effort expended on the restoration of system invariants is related to
the amount of damage present when the exception is signaled. If available, a
description of the damage should be encapsulated in the exception itself. Both
roll-back and roll-forward recovery can be performed to restore the consistent
storage state. It is even more preferable for the callback to perform the necessary
clean-up actions before signaling the exception, however, it may not be always
possible nor sufficient.

The original postcondition can only be enforced by retrying the callback’s
invocation if the exception’s cause was removed by a handler. Otherwise, a less
satisfactory exceptional postcondition may still be enforced. The exceptional
postcondition may be functionally inferior to the original one, which calls for
a redesign by weakening of system invariants, or it may offer lower quality of
service (e.g., use a more robust, but slower algorithm).

Depending on the handlers’ achievements, (some of) the callback’s clients
may still need to be notified about the exception’s occurence. The communi-
cated information should include relevant countermeasures undertaken by the
handlers.

Deciding whether and which clients should be informed, and to what extent,
depends on a specific application. For example, if a maskable disk failure occurs
in a RAID array, clients which depend on the immediate success of the IO
operation do not need to be notified about the exception, however, it is prudent
to notify a monitoring client so that the faulty disk is replaced (cf. [9]).

3.5 Removing Causes of Exceptions

Exception handlers can provide two kinds of service: temporary workarounds
and permanent fixes.

The first category implies a degradation of service level, which may or may
not be noticeable to the clients, like in the above RAID array example.

The “permanent fix” category is more interesting. It requires both determin-
ing and removing the fault which causes an exception—two tasks which may be
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sometimes economically infeasible. In simple cases, easy configuration changes
may be all that is required. In complex cases, significant investments in hard-
ware redundancy and improved system design may be necessary. Execution of
permanent fix handlers may require human intervention, and a system may enter
prolonged exceptional storage states while the permanent fix is being prepared.
To reason about exception handling in this context, explicit specification of per-
sistent exceptions [10] becomes important. Such exceptions can be caused by
faults in system configuration or data that exist independently of any executed
program. They do not fit well into the traditional programming-language-centric
view of exception handling.

Unfortunately, we cannot at present offer sound advice on techniques for
removing faults. One step in the right direction would be constructing their tax-
onomy based on examination of real-world systems. After faults are classified
into well-defined categories aligned with strategies applicable to their removal,
design patterns and components might be conceived to not just handle resulting
exceptions, but often to avoid the need for exception handling altogether. It is
worth pointing out that even if this succeeds largely, exception handling mech-
anisms will still remain useful for addressing unpredictable, dormant faults.

4 Related Work

In this section, we briefly point out related work from the research community
and articles published by software developers.

4.1 Academic Research

The concept of uniform programmatic exception handling was popularised by
Goodenough [7]. Goodenough informally describes a syntax and a proposed no-
tation for both the termination and the resumption model of exception handling.
Our suggested way of handling exceptions in callbacks relies only on the more
popular termination semantics, but it replaces the default exception propagation
when necessary.

Cristian [5] provides a formal semantics for the termination model. He focuses
on an examplary direct invocation scenario and does not specifically consider
callbacks, though he briefly discusses exception propagation from an indirectly
invoked method.

Meyer [6] defines guidelines for using exceptions according to the termination
model under the label “organised panic” in his textbook on object-orientation.
Like Cristian, he does not address propagation of exceptions from callbacks, nor
does he elaborate on how (and when) contracts should be specified for them in
order to successfully apply his proposed basic rules of exception handling.

Our described problem can be viewed as a specific instance of the general
conflict between exception handling and object-oriented abstraction discussed by
Miller and Tripathi [9]. However, their paper does not provide guidance with re-
spect to balancing information hiding for modularity and exposure for exception
handling.
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Buhr [11] points out the problems resulting from premature specification of
exception lists for routines invoked through pointers (i.e., callbacks) and poly-
morphic methods. His observations support our view that specification of excep-
tions is not practical at the level of callback interfaces and must be delayed until
implementation.

Awareness of system invariants aids determining code affected by a callback’s
failure. Ernst [12] proposes a dynamic approach for reconstructing invariants
from executed code and provides a related tool, Daikon. Only relatively low-
level invariants are recognised automatically, however, they may provide valuable
hints for the programmer about more abstract invariants.

Barnett and Naumann [13] propose a methodology for specifying invariants
across object ownership boundaries, which could be potentially adopted as a
formalism for expressing specifications suggested in our paper.

Borgida [10] proposes a language for describing and handling persistent ex-
ceptions in object-oriented databases and points out that a relationship exists
between run-time exceptions and flaws in data maintained by information sys-
tems. Our argument that exception handling in a broad sense should ultimately
aim at removing the causes of exceptions is based on similar observations.

4.2 Software Industry

The Observer pattern is one of the very basic patterns commonly taught to
software engineering students and widely applied in practice. Accordingly, one
would assume that the problems described above were already addressed by re-
searchers and practitioners. A survey of articles on “best practices” in exception
handling reveals the opposite.

Doshi [14] does not address the issue at all, while he provides the following
advice: “When a method from an API throws a checked exception, it is trying to
tell you that you should take some counter action. If the checked exception does
not make sense to you, do not hesitate to convert it into an unchecked exception
and throw it again”. This is wishful thinking, as should be obvious from our
previous example.

Shenoy [15] follows the EJB specification [16] by distinguishing between ap-
plication and system exceptions. The latter are handled by the EJB container
in a default way (logging, aborting the current transaction). Shenoy suggests
that application exceptions which have been propagated to unaware components
should be caught and converted to system exceptions. He does not address the
inappropriateness of propagation of such exceptions, but rather treats them as
a “real-world complexity”.

5 Conclusions and Future Work

Important practical problems remain that make the proper application of es-
tablished exception handling concepts difficult for programmers using today’s
object-oriented programming languages.
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We have presented one such problem—exception handling in callbacks—and
provided a set of relevant examples based on the Observer design pattern. We
have also shown that existing simple guidelines available to programmers for
solving this problem are either overly restrictive or leave the most challenging
decisions open. Finally, we have described a more sophisticated alternative ap-
proach based on the early specification of callback effects combined with the
well-established concept of exception propagation.

The remaining issues to be addressed by future research include:

1. Syntactic and semantic description of our suggested additional specifications
in the context of a chosen object-oriented programming language: An ap-
proach similar to [13] could be taken for specifying system invariants which
cross object boundaries. We also plan to evaluate the support offered by
existing tools for static and dynamic control and data flow analysis [17].

2. Empirical evaluation of the proposed additional specifications’ usefulness:
Metrics have to be defined that measure the amount of work expended on
exception handling and its quality in software products. Such metrics should
build upon prior research on misuse of exception handling.

In a broader view, we feel that exception handling needs tools and techniques
beyond simple syntactic checks such as determining missing or empty handlers.
In addition, discovery of failure modes, intent, and stakeholders of a software
application should be made possible. Offered solutions should fit into a bigger
framework for building dependable software by recognising the role of other
quality-of-service attributes and multiple programming languages.

The problem described in this paper is not at all restricted to small object-
oriented programs employing specific design patterns, as could be subsumed from
our simple examples and definitions. It prominently figures in component-based
system development (CBSD), where it is a basic assumption that independently
developed software artefacts are combined and configured at a later time in
flexible ways to obtain desired functionality.

Deployed components may invoke each other either as services or to deliver
notifications. All invocation relationships cannot be determined until integra-
tion time. For these reasons, approaches which position exception handling in
the programming domain or request that exceptions are explicitly specified by
developers as part of component interfaces [18] appear too limited.

Instead, we feel that the specification of exceptions and implementation of
handlers need to be delayed until all required information about possible ex-
ception sources and propagation paths becomes available. It could be shortly
before deployment or (re-)configuration of a component-based system. Develop-
ing methods and tools for realising this vision represents our long-term research
goal.
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Handling multiple concurrent exceptions in C++

using futures

Matti Rintala, matti.rintala@tut.fi

Tampere University of Technology

Abstract. Exception handling is a well-established mechanism in se-
quential programming. Concurrency and asynchronous calls introduce
the possibility for multiple simultaneous exceptions, which complicates
exception handling, especially for languages whose support for exceptions
has not originally been designed for concurrency. This article discusses
these problems and presents a mechanism for concurrent exception han-
dling in C++.

1 Introduction

Exceptions have become more and more common as a means of handling error
situations during the last decade, especially because commonly used program-
ming languages now support exception handling as a language feature. However,
the basic ideas behind exception handling are far older [1]. Exceptions are now
considered a “standard” way of signalling about exceptional situations and they
have widely replaced the use of specially coded return values, additional boolean
state flags etc.

Basically exception handling is about separating exception handling code
from the “normal” code. This improves readability of the code by structuring
it logically. Exception handling also introduces its own error handling flow-of-
control to the program, so that the normal code does not have to explicitly
prepare for every error situation and divert the program to appropriate error
handling code.

Because exception handling is essentially about flow-of-control, concurrency
cannot be added to a programming language without affecting exceptions. Con-
currency introduces several (usually independent) threads of execution, each of
which has its own flow-of-control. This causes several problems, some of which
are analysed in [2]. Asynchronous calls and futures (delayed return values) com-
plicate the problem even further.

There are several ways to add exception handling to a concurrent object-
oriented language, all of which have their benefits and drawbacks [3]. However,
when adding concurrency to an existing programming language (like C++), the
exception handling mechanism has already been fixed, and the added concur-
rency features should be designed to be as compatible with the existing mecha-
nism as possible. This unavoidably means some compromises to the elegance of
the system.
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This article shows how to add support for multiple concurrent exceptions
to C++. The solution is library-based and does not extend the normal C++ syn-
tax. The mechanisms described in this article are as compatible with normal
C++ exceptions as possible, and allow the programmers to choose the exception
handling strategy best suited for their programs. The solution described in this
article is part of KC++ [4], a concurrent C++ system based on active objects.

2 Asynchronous calls and futures

Futures are a mechanism to achieve concurrent asynchronous calls which return
a value. They were originally introduced in Multilisp [5], but have since been
used in many other languages, like wait-by-necessities in C++// [6] or IOUs in
the Threads.h++ library [7]. The current Java 5 also provides futures.

Futures are placeholders for an eventual return value from an asynchronous
call. In C++ they can be implemented as templates parametrized with the type of
the return value. When an asynchronous call is made, the caller immediately gets
an “empty” future object representing the return value, while the call continues
to execute concurrently. When the call completes, its return value is transferred
to the future, from where the caller can fetch it. If the value of the future is
asked for before the call is completed, the future suspends the execution of
asking thread until the value is available.

In KC++ futures can also be copied and assigned without waiting for their
values, and they can be passed to other execution threads. When the call is
completed, the return value is automatically propagated to all futures copied or
assigned from the original future.

Normally futures get their value when an asynchronous call completes and
returns. However, sometimes its practical to delay the future even further, until
the completion of another call for example. For this purpose KC++ has future
sources. An indefinite number of “empty” futures may be created from a future
source, and these futures may be returned as return values. These futures receive
their value when the bind method of the future source is called. This allows
manual and explicit synchronisation using futures.

3 Issues caused by asynchrony

Introducing asynchronous calls (concurrency) affects also exception handling.
It changes the way control-flows work in a program, and this has to be taken
into account when designing exception handling in such a system. This section
describes some of the main issues caused by asynchrony.

If exceptions are propagated from an asynchronously call back to the caller, it
is not self-evident where they should be handled. The caller has already continued
after making the call, and may in fact have terminated its execution. Usual
exception handling mechanisms in sequential languages bind exception handlers
to a specific part of the code (try-blocks etc.). An exception caused by an
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asynchronous call may occur at any part of the calling code, so it is not obvious
which exception handlers should be considered.

Several asynchronously executing threads also introduce a possibility for sev-
eral exceptions raised simultaneously in different threads. If these exceptions are
sent to other threads, this can result in more than one exception being active
in a single thread — a situation which is problematic and forbidden in many
programming languages (for example C++).

If return values of asynchronous calls are handled with futures, that also
affects exception handling. In a sense, an exception is a return value. In syn-
chronous calls return values and exceptions do not conflict, because if an excep-
tion is thrown from a call, a normal return value is not created. However, futures
are created in advance, and the represent a return value of an asynchronous call.

If an exception is thrown from an asynchronous call, a future for the return
value already exists and may in fact have been copied and assigned to other
futures as well, maybe even sent to other threads. If exceptions are regarded as
another form of return value, they have to also affect the way futures work.

Finally exceptions from asynchronous calls become a synchronisation issue.
An exception also represents the termination of a call, so all other threads wait-
ing for the call to complete (through futures or some other mechanism) should be
signalled. The question then becomes whether these threads should also automat-
ically receive the thrown exception. This question becomes especially interesting
if there are more than one thread waiting, because normal exceptions are not
duplicated, but propagating an exception to several threads would unavoidably
mean duplication of the exception.

4 Exceptions and futures

If an exception occurs during the execution of an asynchronous call, it must be
propagated to the caller. Since the call is asynchronous, the only way for an
exception to propagate is through futures.

The simplest situation arises when an exception is thrown from an asyn-
chronous call. When this happens, the KC++ library code responsible for han-
dling the asynchronous call catches the exception. It marshals the exception
object and embeds the data to the call’s reply message which is sent back to the
caller.

When the caller side KC++ code receives a message containing an exception,
an appropriate future object is first created. Then a copy of the exception object
is created from the message data and a pointer to this exception object is stored
inside the future.

If the future object is assigned to other futures or copied, resulting local copies
of the future share the future’s data structure and therefore also the exception
object. If the future is sent to another process, the future’s marshalling code also
marshals the exception object using the same mechanisms as before.

Whenever the value of a future is needed, the future checks whether it con-
tains an exception object instead of a value. If this is the case, the future’s value
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method throws the stored exception, which is then handled using normal C++
exception handling mechanisms.

Although this mechanism makes it possible to propagate exceptions from
asynchronous calls, it has some differences to normal C++ exception semantics.
Normally a thrown exception can only be caught once (unless an error handler
re-throws an exception). However, in KC++ the value of the same future may be
requested several times (either through the same future or other futures copied
from it) and in several concurrent execution threads. Although this behaviour
is logical and practically the only option, programmers must consider its impli-
cations in the program logic — the same exception may get thrown many times
and in several execution threads.

Even though future sources do not represent actual return points from calls,
it is still possible that an error situation occurs and the holder of the future
source wants to inform others of this situation. For this reason future sources
provide a way to propagate exception objects manually (i.e. without initially
throwing the exception object) to futures generated from the future source.

Usually future sources are given their value using the bind method, which
stores the value in the future source and also sends it to all generated futures. In
addition to this, future sources contain a method called bindThrow. This method
takes an KC++ exception object as its parameter. The method copies and stores
the exception object inside the future source and also sends to it all generated
futures as an exception. When the value of these futures is needed, the futures
throw the exception as described previously. The same applies also to all futures
that are generated from the future source after bindThrow is called.

5 Multiple simultaneous exceptions

Asynchronous calls make it possible to end up in a situation where several ex-
ceptions are active simultaneously. If the caller continues its execution while a
call is active, both execution threads may end up throwing an exception, and
these both these exceptions may end up in the calling thread. The C++ language
cannot handle more than one exception in the same try-block (although “nested”
exceptions are possible) [8, § 15.5.1], which forces some compromises to be made
in KC++.

One problem is caused by the fact that the C++ exception model makes it
impossible to return to the try-block after an exception is handled. When the
C++ exception handling mechanism searches for a correct exception handler, it
permanently exits from try-blocks, destroying their local variables. This includes
the try-block which contains the correct handler. After the exception is handled
program execution continues from the point after the try-catch-compound con-
taining the chosen exception handler.

If several exceptions occur simultaneously, only one of them can be handled
normally. However, since handling of even one exception means abandoning try
blocks (and their respective catch-handlers), it would be impossible to search
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handlers for the rest of the exceptions, because the same catch-handlers are no
longer available (the program execution has already left the try-block).

Another problem with handling concurrent exceptions one at a time would be
to choose the order in which the exceptions should be handled. Exceptions may
be thrown from several (mutually independent) locations, so deciding the correct
handling order would either require a global priority scheme for exceptions, or
mean that there would have to be a mechanism for informing the relative priority
of a thrown exception (and maybe change it during exception handling when the
exception is propagated to other parts of the program). Unfortunately this kind
of simple priority scheme is not enough in every situation [2].

The third and maybe most important aspect in concurrent exception han-
dling is the fact that several concurrently thrown exceptions may in fact be
caused by the same abnormal situation. If the exception objects would just be
copies of each other, they could be easily reduced to one exception. However,
sometimes the nature of the actual exceptional situation may be only understood
by analysing all of the component exceptions it causes, in which case it is impor-
tant that the exception handling mechanism can cope with several exceptions at
the same time. Sometimes it would also be beneficial to be able to replace a set
of exceptions (caused by the same exceptional situation) with a new exception
which represents the abnormal event that actually happened.

Writing exception handling becomes easier if these reductions of exceptions
can be performed before an exception handler is chosen, because then exception
handlers may still catch single exceptions whose static type represents the ex-
ception type. Since it is impossible to give a global rule for reducing multiple
exceptions to one, it is important that the program can provide its own algo-
rithms for the reduction (and have different reduction algorithms for different
exception contexts).

Figure 1 show the structure of KC++ exception handling mechanism. It is
based on futures and future sources, as well as future groups for collective syn-
chronisation, compound exceptions for handling multiple simultaneous excep-
tions, and reduction functions for analysis and reduction of exceptions. The
behaviour of the mechanism is described in the following sections.

5.1 Compound exceptions

The C++ language can only handle one exception at a time on one level. Another
exception may be raised during stack unwinding triggered by the first exception,
but these additional exceptions must be handled to conclusion before stack un-
winding proceeds further. In a concurrent program this limitation is problematic,
because several exceptions may be propagated to a try block from asynchronous
calls.

KC++ provides a compound exception class to represent a set of simultaneous
exceptions. It is a normal KC++ exception class, but it may contain an unlimited
number of other KC++ exceptions. This approach is somewhat similar to Java’s
chained exceptions, where each exception object may also contain a reference to
its cause, which is another (single) exception object.
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Fig. 1. Structure of KC++ exception handling

As compound exceptions are handled as part of normal KC++exceptions, they
can be passed between execution threads. The interface of compound exceptions
allows addition of new exceptions and removal of existing ones. In addition to
this, all exceptions may be moved from one compound exception to another.
This makes it possible to combine compound exceptions in reduction functions
or error handlers. KC++ also provides iterators which can be used to iterate
through all exceptions in a compound exception.

Compound exceptions are mostly used to store exceptions from asynchronous
calls and collect them for further analysis and reduction. Future groups (ex-
plained in Section 5.2) are used to mark a set of futures whose exception status
must be analysed together. These future groups collect exceptions to a com-
pound exception, where the set of exceptions can be reduced using reduction
functions explained in Section 5.3.

Usually exceptions in a compound exception are also stored in futures, whose
lifetime may or may not have been ended when the exceptions are added to
the compound exception. Sometimes the futures may be destroyed as part of
stack unwinding during exception handling, sometimes they may still exist after
exception handling has been completed. For this reason sharing is used between
futures and compound exceptions. They both share the same exception object
and use reference counting to find out when it is safe to destroy the object. The
sharing means however, that even after exception handling has been completed
using the compound exception, the futures will throw the same exception object
again, if their value is asked for.

In addition to actual compound exceptions, KC++ allows any KC++ exception
object to contain a set of other exceptions. This makes it possible to select the
most suitable exception from multiple exceptions (using reduction functions)
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and then embed the rest of the exceptions in the selected one. This way upper
level error handlers can also have access to all necessary exceptions.

5.2 Future groups

Normal C++ exception handling is based on try blocks surrounding the code in
which exceptions may occur. Asynchronous calls make this approach problem-
atic. As the calling code does not wait for the call to complete, it is quite possible
and even likely that it will exit the try block before all possible exceptions have
occurred. This makes it hard to combine conventional-looking error handling
code with asynchronous calls. Exceptions from the asynchronous calls are stored
in futures, which may be copied and sent to entirely other parts of code before
values of the futures are asked and the stored exceptions are thrown.

Sometimes these “delayed” exceptions are exactly what the programmer
wants, but in many cases it is necessary to write one or more asynchronous calls
within a try block and not leave the block until possible exceptions have occurred.
Checking each future separately would be awkward and not even straightforward
in case of multiple exceptions. For these reasons KC++offers future groups to help
with synchronisation and exception handling.

Future groups are objects to which futures may be registered. They have
an operation synchronise, which waits for the futures to receive a value (or
exception). Normally future groups wait for all their futures to become ready,
making future groups similar to barrier synchronisation [9, Ch. 4] or future sets
in ES-Kit [10].

If exceptions are found in the futures during synchronisation, the future group
collects the exceptions in a compound exception. This compound exception is
either The future group’s internal object or an external object provided by the
programmer. The exceptions in the compound exception can then be reduced us-
ing reduction functions (Section 5.3), and an exception suitable for the situation
can be thrown.

When the program asks for a value of a future belonging to a future group,
the future first waits for the asynchronous call to complete, if necessary. Then,
if the call ended with an exception, the future asks for its future group to per-
form synchronisation. This makes sure that all necessary exception information
is available before exception handling is started. Finally, necessary exception re-
duction is performed and an appropriate exception is thrown. If the asynchronous
call did not end with an exception, the future directly returns the call’s return
value, since synchronisation or reduction is not needed. An alternative strategy
would be to perform synchronisation in this case also.

If the future group is destroyed before its synchronisation method is called,
the destructor of the group performs synchronisation automatically. This makes
future groups very close to the useful RAII (Resource Acquisition Is Initialisa-
tion) design idiom [11, Ch. 14] which is very common in programs using C++
exceptions. In RAII each resource is wrapped inside an object whose destructor
releases the resource, preventing the possibility of resource leaks even in case of
exceptions. Future groups represent a need to synchronise with certain futures
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(asynchronous calls). Future groups make sure that exceptions propagating from
futures are not silently ignored if the future is not used elsewhere.

The following code demonstrates the use of future groups:

Future<int> f1;

try {

FutureGroup group;

f1 = aobj.call1(); // An asynchronous call

group.add(f1); // Register f1 to the group

// Request synchronisation without storing future:

group.add(aobj.call2());

int i = f1.value(); // Synchronises with group first

} // Destruction of group synchronises with all futures

catch (const E1P& e1)

// ...

5.3 Reduction functions

As mentioned previously, especially in concurrent programs several exceptions
may be thrown in several execution threads by a single exceptional situation. In
that case it would be beneficial if these exceptions could be reduced to a single
exception object representing the complete error situation. Even if there are sev-
eral independent active exceptions simultaneously, finding “the most important”
of these exceptions depends very much on the program in question.

Because there is no single all-purpose way to reduce a set of exceptions to a
single exception or a smaller set of exceptions, KC++ does not force programs to
adapt to any single behaviour. Rather it allows programs to register reduction
functions to compound exceptions. Reduction functions can analyse the current
set of exceptions, alter it, and select an appropriate exception to be thrown.
KC++ provides several ready-made reduction functions to cover most common
reduction strategies. Reduction functions can also be composed from ready-made
parts using template metaprogramming.

Reduction functions are function objects which can be registered to a com-
pound exception. After a future group synchronises with its futures, it collects
possible exceptions from those futures to a compound exception object. Then
it calls the reduction function. The compound exception and information about
the current exception handling status is passed to the reduction function as
parameters.

The reduction function may use these parameters to decide how to simplify
or modify the set of exceptions given to it. It may add or remove exceptions to or
from its parameters. If no prior exceptions are currently in effect, the reduction
function may return an exception, which it regards the “most important” of the
given exceptions. Alternatively it may create a completely new exception object
representing the current exception situation and return it. The possibilities for
reduction functions have been kept as open as possible in order not to restrict
different reduction needs found in different programs.
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There is one limitation — a reduction function may not throw an exception if
another exception has already been thrown. This is dictated by the C++ language
itself. It is impossible to replace an exception object with another before it
has been caught in a catch-clause. However, since KC++ futures automatically
perform synchronisation and reduction, usually reduction is performed before
any exceptions have been thrown. KC++ also offers a macro which can be added
to the end of a try-block in order to catch KC++ exceptions and call a reduction
function afterwards to handle already thrown exceptions.

The following code shows a simplified way to handle multiple exceptions in
a loop, using a reduction function to decide on what exceptions to throw:

CompoundExcp ce(myReductionf); // Compound with custom reduction

while (!ce.reduced()) // While something to reduce

try {

FutureGroup fg(ce); // Future group using ce as compound

// Use futures and register them to group

fg.synchronise(); // Excplicit synchronisation

ce.reduce(); // Reduces and (possibly) throws

}

catch (MyException1& e) { // Error handling

continue; // Deal with next exception, if any

// or: break; // Continue, abandon the rest of exceptions

// or: throw; // Abandon rest of exceptions, rethrow

}

6 Restrictions in the KC++ exception model

KC++ exception handling is implemented using standard C++ and without modi-
fying the C++ exception model (and compiler) in any way. This means that KC++
exceptions have to cope with the restrictions caused by the C++exception model,
which has been designed without thinking about issues caused by concurrency.

One problem with reduction functions and multiple exceptions is that C++
does not allow replacing a thrown exception before it has been caught in a
catch clause. This means that reduction functions can freely choose a suitable
exception only if reduction happens prior to throwing any exceptions. KC++
futures do this automatically by synchronising with their future group before
throwing exceptions. For other situations KC++ provides a macro mechanism to
catch an already thrown exception and perform necessary reduction.

Standard C++ has a library function std::uncaught_exception [8, § 15.5.3]
which is intended to be used in destructors to find out whether exception han-
dling is in progress. However, it is widely known that this function is not as useful
as it could be, and many books recommend to avoid it in most cases [12, 13].
KC++ exception handling uses this function in certain rare cases to find out
whether exception handling is already in progress. Therefore special care should
be taken if KC++ exceptions are used in destructors or code called from destruc-
tors.
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7 Related work

Problems with asynchrony described in this article have been solved differently
in different programming languages. This section lists some languages and how
the combination of exception handling and concurrency has been implemented
in these languages.

The strategy used in the Ada language [14] is quite common in other lan-
guages too. In Ada new tasks (threads) can be created, and the new tasks start
executing asynchronously with their creator. Problems with asynchronous ex-
ceptions have been avoided by declaring that if an exception tries to leave the
task body (i.e. if the task does not handle the exception locally), the exception
is not propagated further and the task in question is simply terminated. Com-
munication between tasks happens using the rendez-vous mechanism, in which
one tasks calls a service on another task, which explicitly accepts the call. If
an exception occurs during the rendez-vous, the exception is propagated from
the accepting task to the calling task. However, this causes no problems because
normally rendez-vous is a synchronous operation, so the calling task is waiting
for the call to complete.

Ada-95 also defines an asynchronous accept statement. However, this is not
an asynchronous call, but rather a way to execute a sequence of statements
while waiting for a rendez-vous call to be accepted. When acceptance happens,
the normal execution of the statements is immediately aborted. This mechanism
does not suffer from the exception problems of asynchronous calls, but introduces
its own problems, for example because the abortion just mentioned can occur in
the middle of exception handling.

The Argus language implements asynchronous calls using call-streams and
uses a very future-like construct called a promise to handle return values from
asynchronous calls [15]. In Argus promises are strongly typed and represent
the result of the asynchronous computation including possible exceptions. The
type of the promise identifies the type of the return value and lists all possible
exceptions which the promise may contain. Every asynchronous call returns a
promise, which the caller can either poll periodically or start waiting for the call
to complete (“claim” the promise). Waiting for the result of a promise either
returns the normal return value of the call, or raises the exception the call has
raised. If the same promise is claimed again, it re-returns the return value or
re-raises the exception.

The Java language [16] has built-in concurrency. The exception handling
strategy in the language is very close to the Ada approach. All exceptions are
handled locally inside a thread, and they are lost if the thread does not contain
an appropriate exception handler. All Java inter-thread communication happens
either through shared objects or synchronous method calls (like RMI, Remote
Method Invocation), so it involves no asynchrony.

Even though Java does not provide asynchronous method calls by default,
there are several extensions to the language for this purpose. One of these is
Java ARMI (Asynchronous Remote Method Invocation) [17] which is built on
normal synchronous Java RMI. ARMI uses futures to represent results of asyn-
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chronous calls. For exception handling, ARMI provides two alternative methods.
The Delayed Delivery Mechanisms (DDM) embeds the possible exceptions in-
side futures like in Argus. The exceptions are thrown from the future when the
return value of the asynchronous call is requested. The second choice called the
Callback Mechanism (CM) allows the programmer to attach special exception
handlers to the future. Each exception handler is capable of handling a spe-
cific type of exception. If that exception occurs, ARMI automatically calls the
appropriate attached exception handler.

Another asynchronous extension to Java is JR [18]. JR implements asyn-
chronous calls via send and forward statements. Exceptions are handled by
requiring that each send and forward statement also specifies a handler object.
Handler objects must implement the Handler interface and provide a method for
each possible exception type, with the exception object as a parameter. When an
exception occurs in an asynchronous call, an appropriate method in the handler
object is called. The handler methods cannot throw any additional exceptions
and they have to be able to completely handle the exceptional situation. The JR
compiler statically checks that the handler object is able to handle all possible
exceptions the call may throw. [19]

In the programming language Arche [20] asynchrony and synchronisation
have been implemented quite differently. Every object in the language has its
own thread of control, and every method call is synchronous. However, concur-
rent objects can communicate and co-operate asynchronously using multimeth-
ods (invocation of a method in a group of objects). Exception handling problems
are solved by attaching to each multimethod a coordinator, which controls the
overall action. The coordinator may have a resolution function which receives
exceptions from all participants and computes a concerted exception representing
the resulting “total” exception. [21]

8 Conclusion and future work

This article has shown how support for multiple exceptions under asynchronous
concurrent calls can be added to C++. This is down with futures, future groups,
compound exceptions and reduction functions. All this can be achieved using
a library-based approach without changing the C++ syntax or the underlying
compiler.

The mechanisms described in this article have been implemented in KC++, a
concurrent active object based system implemented on top of C++. Optimisations
and performance measurements of reduction function based exception handling
are still in progress.
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Abstract. Two new optimizations using whole-program analysis are
presented for languages using try-catch exceptions clauses (such as Java
and C#) – farhandlers reduce the time needed to locate the handler for
a thrown exception, and throwsite reduction eliminates unnecessary run-
time overhead at throw instructions. Also presented are experimental
results from a Java VM modified to implement these optimizations.

1 Introduction

Exceptions and their handling occupy an odd place amongst the set of program-
ming-language constructs in languages such as Java. Exceptions are absolutely
necessary in that Java’s API simply requires their use in many cases, the most
notable being for I/O. At the same time, however, exceptions are deemed to be
rather expensive, and so in dispensing practical advice regarding performance
Java programmers are encouraged to avoid them if at all possible in their own
code [Shir00]. The advice seems reasonable especially given the run-time ex-
pense of exceptions – for instance, with many implementations of the Java VM
the time taken to throw and catch a NullPointerExceptionwhen dereferencing
a null pointer is thousands of times more expensive than explicitly comparing an
object reference with the value null [Zast05]. Nor can programming-language
implementors be blamed for this run-time expense as they have been led to be-
lieve that exceptions are rare, and given the complexity of compilers, interpreters
and VMs, they (rightly) choose to concentrate on what they consider to be more
profitable optimizations. Indeed they often follow the advice given by designers
of the programming language, a rare exemplar of which is shown here in text
taken from the Modula-3 report [Card89, p. 17]:

Implementations [of Modula-3] should speed up normal outcomes at
the expense of exceptions (except for the return-exception and exit-
exception). Expending ten thousand instructions per exception raised
to save one instruction per procedural call would be defensible.

The result for most languages appears to be something of a classic “catch-22”:
Before exception implementations become faster there needs to be more pro-
grammers using exceptions, yet programmers tend to avoid exceptions because
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of their negative impact on program performance. Therefore there exists a dan-
ger that the innovative uses of exceptions in the structuring of programs may
not get much purchase amongst practitioners if the run-time costs are deemed
to negate the gains to program clarity and expressibility.

Our contribution to breaking out of the “catch-22” is to propose two opti-
mizations that reduce the run-time cost of exceptions. These optimizations do
not require programmers to write their code any differently than they would
when using exceptions, nor are programmers expected to supply special annota-
tions or pragmas. The optimizations are also applicable when throw and handler
sites are located within different methods. We introduce the first of these, called
farhandlers in the next section. After that we introduce the second technique,
called throwsite reduction. Next appears some experimental results obtained from
a modified Java VM, and this is followed by a brief description of related work.

2 Farhandlers

Consider the callgraph in Figure 1. If the site calling a method is enclosed within
an exception handler, then the edge corresponding to that method call is labelled.
For example, there is a call to method b within method a, and this call occurs
within a handler for exceptions of class E. In this particular callgraph there
appear four different handlers for exceptions E; handlers are numbered within
parentheses. (Note: This numbering is not programmatic – that is, a programmer
does not provide this numbering.) The question posed by the diagram is: If an
exception of class E is thrown in method m, which of the four handlers will catch
it?

a

b c

d

e f g

h

i j k

m

E (1)

E (2)

E (3)

E (4)

Fig. 1. Callgraph example
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The answer depends, of course, on the path through the graph from node a to
node m, and here we assume that there is no handler for E local to m. In practice
most exception-handling mechanisms unwind the stack : a local handler for E in
m is sought at run-time, and if one is not found, the search continues within the
method that called m, with the search proceeding through the callstack until a
local handler is found.

The goal of a farhandler table is to reduce both the number of handler-table
lookups and the number of times stack-unwinding occurs by taking into account
information about the callpath available on the runtime stack. For example, if
an exception of class E is thrown on an invocation of m, then we can examine the
return address stored for that invocation. If this return address indicates a call
from either i or j, then unwinding to the first invocation of h is needed to help
determine the location of a handler. However, if the return address indicates a
call from k, then the handler location is known (that is, we unwind to the most
recent invocation of h and transfer control to the first instruction in the handler
E(4)). Therefore even if an exception-handler table exists in nodes i or j (that
is, for other exception classes), we do not examine the tables; as we need not
check for such tables, we can unwind the stack faster than if we had to examine
the tables.

Extending the example somewhat, consider the callpath a, b, d, f, h,

j, m. The callgraph indicates that if such a path has been followed at runtime,
handler E(1) would be the appropriate handler when an instance of E is thrown
in m. At runtime, however, we would normally be able to piece together the
callpath only by examining the call stack one frame at a time. (The implica-
tion here is that we choose not to keep a copy of the callpath separate from
the call stack itself as that would introduce possibly unnecessary work at each
method invocation.) That being the case, what is the smallest number of distinct
unwind/lookup steps needed to locate the handler? Here the answer is “3”:

1. At the invocation of m, the return address stored indicates that m was called
from j; therefore we unwind to h.

2. Now that we are in h’s context, the return address stored here indicates that
this invocation of h is the result of a call from f; therefore we can unwind
to d.

3. In d’s context, we discover from the return address stored here that d was
called from b, and that b itself was called from a and this from within a
handler to E (handler 1 from the callgraph). Therefore we can unwind to a

and then transfer control to the first instruction in E(1).

To implement this new form of handler lookup we introduce a farhandler

table; the name is meant to suggest an aid for finding non-local handlers. Such
a table for the example callgraph appears in Table 1. Here are a few items to
observe about this table:

– Each row in this table has an edge in the callgraph (i.e., one-to-one mapping
from edges to row).

ECOOP-EHWS '05 Glasgow, UK
July 25, 2005

65



– At exception-throw time, the current stackframe context (i.e., the node) and
the return address stored in the context are used to find a single row in the
table.

– Each row in the table has either an entry in the Dispatch Address column
or in the Handler Info column, but not both.

Entries in Dispatch Address indicate both an unwind point and an address to
which control flow is transferred. For example, PC(E1) denotes the first location
in handler E(1). No further lookups or unwinding are necessary after using in-
formation in Dispatch Address. If the location of a handler is not yet known,
then Handler Info is used to indicate the point to which the stack must be un-
wound. For example, the first step given the program path above would result in
a lookup of the second-to-last row, and this contains H(h) – therefore the run-
time stack is unwound to the earliest instance of h and handler lookup continues
in h’s context.

Node Return Address Dispatch Address Handler Info

a — — H(a)
b PC(a.b())+4 a:PC(E1) —
c PC(a.c())+4 — H(c)
d PC(b.d())+4 a:PC(E1) —
d PC(c.d())+4 c:PC(E2) —
e PC(d.e())+4 — H(d)
f PC(d.f())+4 — H(d)
g PC(d.g())+4 — H(d)
h PC(e.h())+4 e:PC(E3) —
h PC(f.h())+4 — H(d)
h PC(g.h())+4 — H(d)
h PC(k.h())+4 h:PC(E4) —
i PC(i.i())+4 — H(h)
i PC(i.h())+4 — H(h)
j PC(h.j())+4 — H(h)
k PC(h.k())+4 h:PC(E4) —
m PC(i.m())+4 — H(h)
m PC(j.m())+4 — H(h)
m PC(k.m())+4 — H(k)

Table 1. Program-wide handler table for callgraph example

Computing these tables is relatively straightforward and consists of three
separate steps:

1. For each node, a set of reachable handlers for a given exception class is
computed; set items are denoted by a triple of the form 〈ns, Σ, nd〉, where
ns is a calling (or source) node, nd the called (or destination) node, and Σ the
exception handler enclosing the call of m to n. (i.e., these are representations
of labelled edges in our callgraph). The sets of reachable handlers from a node
such as m, i.e., those later in the call sequence, are larger than a node such
as d, i.e., those earlier in the call sequence.
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2. We then identify those nodes where control-flow paths merge together. These
nodes are called mergehandlers. In our callgraph example, such nodes are d,
h and m; the root node of a callgraph is considered to be a trivial merge
node (i.e., a in our example). All other nodes can be reached from only
one other node. Each node in the callgraph will have associated with it a
mergehandler, which is either the node itself (if the node is a mergehandler)
or the first mergehandler encountered when traversing up the callgraph (i.e.,
towards the root node).

3. With the previous two items we can now construct the farhandler table row
by row. Each callgraph edge corresponds to a table row. The first field in
the row is the edge’s destination node. The second field is the return address
corresponding to the callsite (i.e., next instruction following the callsite in
the edge’s source node). If there is exactly one item in set computed for the
destination node in (1) above, then the corresponding handler is used to fill
in the third field. Otherwise the third field remains blank and the fourth
field is filled with the mergehandler for that node.

Farhandler tables can be extended to deal with more than one exception type by
adding extra columns to the table and repeating the analysis for each additional
exception type.

There has been no mention of finally clauses so far. Previous work has
shown that these clauses are rare in practice [Ryde00]. We nevertheless have
described one way of dealing with such clauses in [Zast05].

3 Throwsite Reduction

The actual run-time cost of throwing and catching an exception can be broken
down into approximately four separate categories:

– the effort required to allocate an exception object on the heap;
– the construction of a stack trace;
– the cost of unwinding the stack; and
– other activities such as handler table lookup, actions of the VM, garbage

collection during unwinding, etc.

These activities can often take surprisingly long periods of time, and one or two
of these consume large proportions of the overall effort needed for throwing and
catching [Zast05]. For example, stack-trace construction on the Java Classic VM
(version 1.4.2) makes up at least 50% of the effort, and the deeper the callstack
the longer the time required (i.e., the complete stacktrace comprises information
starting at program’s main entry point and leading down to the throwing method
itself).

What is somewhat more shocking is that there is no requirement stating
a handler must use the exception object, nor need the handler even reference
the stacktrace itself. Many handlers in fact do not use the exception object
to transfer information from the throwsite to the handler, and instead depend
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upon exceptions as a form of control-flow transfer. Therefore we propose an
optimization called throwsite reduction, implying that the work performed at
the throwsite (such as exception-object creation and stacktrace construction) is
eliminated if certain facts are true about handlers reachable from the throwsite.

P() {
01 try { Q();
02 try { R(); }
03 catch (F f) { use; T(); }
04 T();

}
05 catch(E e) { discard }
06 catch(F f) { discard }

}

Q() {
07 try { S(); }
08 catch (F f) { discard }

}

R() {
09 S();

}

S() {
10 switch (condition) {
11 case 1: try { S(); }
12 catch(F f) { use }

break;
13 case 2: try { S(); }
14 catch(F f) { discard }

break;
15 case 3: T();

break;
16 default: throw new E();

}
}

T() {
17 throw new F();

}

P

Q TR

S

01 02

03

04

07 09 15

11 13

(a) code (b) call graph

Fig. 2. Code and callgraph

Consider the code appearing in Figure 2 and the corresponding callgraph
appearing to the right of the code. The labels on callgraph edges now correspond
to line numbers in the code example (i.e., the edge from R to S corresponds to
line 09 where R() makes a call to S()). Nearly every call is enclosed by some
try block. The start of handler blocks are notated with either the word use

or discard; this indicates whether or not the exception object is used by the
handler. The questions raised by this code are: Does an exception object need
to be created at the throwsite on line 16? or on line 17?
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If all handlers that can catch an exception thrown at line 16 do not use the
object, then we can annotate the throwsite at line 16 as being eligible for tsr

(throwsite reduction). When the bytecode corresponding to line 16 is evaluated
at runtime, a virtual machine could check if a tsr annotation exists for this
athrow bytecode, and if this does exist then a dummy placeholder object is
pushed onto the virtual machine’s operand stack.

Code inspection in this case reveals there exists no handler in the example
which would use an exception objected created at line 16. The same cannot be
said, however, for the instance of F thrown at line 17: As T is reachable from S

– via a call to S in line 11 followed by a call to T in line 15 – and as the handler
at line 12 uses the exception object, we cannot mark line 17 as tsr.

The computations for determining tsr annotations uses some of the interme-
diate values prepared for farhandler tables (i.e., the set of reachable handlers for
each node in step 1). We need add only one extra bit of information about each
handler – that is, whether or not the exception object is used by the handler –
and use the following for each throwsite:

1. If a local handler around the throwsite for the exception class exists, then
check if the handler uses the exception object. If so, then the throwsite cannot
be annotated tsr and we proceed to examine the next throwsite.

2. Otherwise we examine all of the handlers for the exception class reach-
able from the throwsite. If no handler uses the exception object, then the
throwsite is annotated as tsr and we proceed to the next throwsite.

3. Otherwise the throwsite is left unannotated.

The usefulness of the tsr annotations, not to mention that of handler in-
formation in farhandlers, is directly affected by the analysis used to build the
callgraph. In the following section we present experimental results where call-
graphs were built using a flow-insensitive analysis, and we can do better than
this but only if we are willing to pay the extra cost at compile time to perform a
flow-sensitive analysis. The analyses now available for object-oriented program-
ming languages (such as Class Hierarachy Analysis [Dean95]) can provide an
even greater levels of precision (i.e., fewer callgraph edges).

4 Experimental Results

We implemented both farhandlers and throwsite reduction using an analyzer
based on the Soot bytecode-manipulation framework [Vale99] and modified an
existing Java virtual machine called SableVM [Gagn01]. Timings provided in the
next two subsections were produced on a Pentium 3 running at 750 MHz and
128 MB RAM running RedHat Linux 7.2. Our experiments were in two groups:
the first was our validation group in which we used the SPECjvm98 benchmarks,
and the other exception-idiom usage group in which a standard algorithm was
converted into an exception-handling style of code.
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4.1 Validation group

As with medical doctors who must administer treatment to patients, our modifi-
cation of the VM should follow the rule from medicine of primum non nocere—
“first of all, do no harm.” Therefore our modified VM should not produce poorer
performance for programs, regardless of whether or not they use exceptions. The
SPECjvm8 benchmark suite allows us to check for this; the version of we used
is maintenance release 1.04, but with two omissions:

– 227 mtrt (a ray-tracing program) raises a ClassCastException that causes
program failure when run with either the unmodified VM or the modified
VM. (The same error occurs when using the HotSpot VM from Sun.)

– 213 javac (Sun’s Java compiler from JDK 1.0.2) causes our Soot-based
analyzer to fail from an OutOfMemoryException (one of life’s little ironies!)
and therefore no farhandler tables or tsr annotations can be generated.

Of the SPECjvm98 benchmark programs tested here, only 228 jack makes
significant use of exceptions, and even then its programmers appear to have
taken special care to eliminate a lot of exception-handling overhead (i.e., the
thrown exceptions are previously created objects, with the object creation cost
amortized over the many throws which use it).

Each benchmark was run on four different VM configurations:

– original: This is the unmodified SableVM;
– fh: modified VM using only the farhandler table;
– tsr: modified VM using only the tsr annotations;
– fh+tsr: modified VM using both the farhandler table and the tsr annotations.

The timings are shown in Table 2. Only 200 check and 228 jack throw any
exceptions at all; the former throws 104 exceptions caught by local handlers,
while the latter throws 241,876 exceptions caught by non-local handlers. What
the results show is that the benchmarks run as fast—if not faster—under the
modified VM as they do under the unmodified VM.

We make two general observations about this data:

1. Only 228 jack throws a significant number of exceptions—all of them to
handlers outside of the throwing method—and the benchmark’s speed is
improved (about 1% on average, with 0.7% in the worst case and 1.2% in the
best case). This gain is significant considering that much other computation
is being performed by the benchmark program.

2. For all of the other benchmark programs, there is no observable difference
(i.e., “no harm”).

4.2 Exception-Idiom Usage group

As a test of the effect of our two optimizations on a practical problem, we
have chosen one for which a file of words must be examined, and a histogram
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Benchmark original fh tsr fh+tsr
200 check 49 49 50 49
201 compress 111635 111418 111475 111564
202 jess 122402 122380 121380 122362
209 db 212402 210672 209706 211114
222 mpegaudio 505410 504821 504667 504856
228 jack 68933 68131 68270 68432

Table 2. SPECjvm98 benchmark timings (milliseconds)

of those words produced (as might be needed by a compression algorithm, for
instance). As each word is input, a binary tree is searched. If the word is found,
the corresponding tree node’s frequency field is incremented. If the word is not
found, then a new node must be created and linked into the existing tree.

Several versions of the program were written:

– SearchLocal uses exceptions to transfer control to node-creation code when
a word is first encountered; all searching of the tree and node creation occurs
within the same method.

– SearchNonLocal also uses exceptions as mentioned above, but now the tree
is searched recursively. Control-transfer for new words now entails unwinding
the stack.

– SearchLocalX and SearchNonLocalX do not use exceptions and perform
searching local and via recursive calls, respectively. These should be the
fastest versions of the programs.

Text files from the Calgary Compression Corpus provided the workload for var-
ious programs [Bell90]. Timing results for for SearchNonLocal are in Table 4.
Each of the individual tests in the corpus corresponds to a table row. The column
labelled “w/o exceptions” is the time (in milliseconds) taken by the unmodified
VM to process the test file with an algorithm that does not use exceptions. There
follow two pairs of columns: the first pair is for a version of the VM not using
the optimizations described here, while the VM of the second pair does support
both farhandlers and throwsite reduction. Each of the “exception cost” columns
represents the contribution made by exceptions to processing a file (e.g., when
computing the histogram for words in bib, exception-handling in the original
VM results in a program running 353% longer than the version of the program
without exceptions, while in the modified VM exception-handling the program
runs only 0.3% longer).

The modified VM is clearly a win. The overhead of using exceptions (i.e.,
the time difference between an exception-free program and exception-rich one)
is low, ranging from .3% to 1.1% for SearchNonLocal. A pleasant surprise from
SearchLocal (results not shown here) is that in some cases there is a speedup

as in that for book1 of about 0.6% [Zast05].
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Using original VM Using modified VM, fh + tsr

file w/o exceptions w/ exceptions exception cost w/ exceptions exception cost
bib 2,445 11,081 353% 2,453 0.3%
book1 20,661 73,255 254% 20,731 0.3%
book2 15,240 48,962 218% 15,338 0.6%
geo 819 2,279 178% 821 0.2%
news 8,645 42,262 388% 8,725 0.9%
obj1 223 1,095 391% 226 1.3%
obj2 2,737 14,949 447% 2,762 0.9%
paper1 1,198 5,895 392% 1,210 1.0%
paper2 1,941 8,269 326% 1,958 0.9%
paper3 1,028 5,922 476% 1,049 2.0%
paper4 276 1,596 478% 279 1.1%
paper5 266 1,573 491% 269 1.1%
paper6 916 4,167 354% 921 0.5%
progc 823 4,160 405% 828 0.6%
progl 1,426 5,281 270% 1,434 0.6%
progp 805 3,644 353% 809 0.5%
trans 1,647 6,713 307% 1,655 0.5%

Table 3. SearchNonLocal timings (milliseconds, 10,000 iterations)

5 Related Work

Some optimizations for improving exception-handling performance are applied
to cases where the throwsite and its handler are within the same method, as in
the LaTTe system [Lee99]. If some method inlining is acceptable, then Exception-

Directed Optimization may be suitable; paths through a callgraph are profiled,
and those paths with a high execution frequency are inlined into one large
method and local optimizations then applied [Ogas01].

A stack-unwinding optimization was proposed by Drew et al. [Drew95] in
which as little state as possible is restored when moving from a frame to its
calling procedure’s frame. State is instead restored incrementally, i.e., only when
a handler is found is the complete state of a procedure’s context restored.

6 A word about Just-In-Time compilation

The results described in the previous section were obtained using a VM sup-
porting only interpreted bytecode. Much recent work on improving the run-time
performance of languages such as Java and C# have focused on Just-In-Time

compilers, i.e., where individual methods are compiled such that they run at
the speed of the underlying machine’s native code (or more precisely, the inter-
preted VM may invoke both bytecode and native-code version of methods). One
assumption therefore may be that the cost of exceptions can be eliminated by a
JITter without any extra analysis or algorithms.

Unfortunately this assumption is woefully inaccurate. Without extra analysis,
a JIT may lead a programmer to believe that exception-handling has an even
higher cost relative to code written without exceptions. This is due to the way
in which a language’s runtime deals with exceptions, i.e., non-local exceptions
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Fig. 3. Interaction of JIT-compilation with optimizations

invoke code within the interpreted VM for transferring control from the throwsite
to the handler. One way of visualizing this is shown in Figure 3; each of the
quadrants represents the contribution to the overall cost of the execution (in
this case the processing of bib from the Calgary Compression Corpus in the
experiments just described). If a JIT produces a modest five-fold increase in
execution speed for JIT-compiled methods and exceptions are still dealt with as
previously, then what the programmer experiences appears in the left side of the
diagram – the relative contribution of exceptions relative to the “unexceptional”
code – appears much larger even though the absolute contribution is unchanged.

We argue that our optimizations are even more important for a JIT compiler
than for a purely interpreted VM. This can be seen in the right-hand side of
Figure 3 where the exception cost is now very small, such that the five-fold
increase in performance offered by the JIT is – for all intents and purposes –
achieved in the presence of exception handling.

7 Conclusion

We have presented two new optimizations which are designed to improve the
performance of exception handling. Our main goal, however, is to make the use
exceptions more attractive to practioners such that they need not be concerned
about the runtime cost (or at least not unduly concerned). We have shown that in
cases where exceptions are used to express control flow, nearly all the overhead of
exceptions can be eliminated. Extensions to these techniques to cover a larger set
of cases, such as those where some handlers use the stack trace but not all do (lazy
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stacktrace construction), or where some handlers use the exception object but
not all do (lazy exception-object creation). Our current analyses require access to
the whole program, but a more incremental approach towards farhandler-table
construction (and tsr annotations) would combine well with JIT technology
(i.e., perform analysis as classes are loaded into the VM). However, much work
is still needed to improve the performance of code in the presence of exceptions,
specifically analyses to mitigate the negative impact of exceptions on traditional
compiler optimizations (for example, Factored Control-Flow Graphs [Choi00].
There also remains the hard work of convincing programmers that exceptions
can improve the readability and maintainability of programs, and perhaps this
can be achieved via the identification of useful exception idioms or exception

patterns.
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Abstract. Exception handling has been proven to be the most general
fault tolerance technique as it allows effective application-specific recov-
ery. If exception handling is to make programmer’s work more productive
and less error-prone, however, it requires adequate support from the pro-
gramming and execution environments. Scoping is a dynamic structuring
technique which makes it easier for the developers to deal with the com-
plexity of system execution by narrowing down the context visible for the
individual system components. In this work we are specifically interested
in scoping that supports error confinement and allows system error re-
covery to be limited to the area surrounding the error. The approach we
propose aims at assisting in rigorous development of structured multi-
level fault tolerant agent systems.

1 Introduction

Intrinsic virtues of mobile agents such as mobility, loose coupling and ability to
deal with disconnections can make them look promising for structuring large-
scale distributed systems. Yet agents have to face all kinds of communication
media failures as well as failures of software in their fellow agents and, of course,
internal failures. System openness brings even more concerns, such as interop-
erability, security and trustworthiness. The types of mobile agent system failure
can be roughly grouped into the following categories:

1. failure to deliver service by the hosting environment;
2. failure in one of the collaborating agents;
3. internal agent failure;
4. an environment failure.

While a similar classification is discussed in [2], in this paper we are introduc-
ing different categories of faults in order to focus on the interoperability issues
more and to capture in a more practical and detailed way all possible kinds of
the environment failure.

Failures of the first category include all types of transient failures, such as
disconnection, migration, spawning, inability to deliver messages, etc. Such fail-
ures may be caused by changes in the environment, for example those due to
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migration, and are better handled by application logic. It has often been said
that recovery actions for such situations must be developed at the initial stages
of agent design. And, unlike traditional software, mobile agents have, thanks to
mobility and code migration, a whole new kind of recovery possibilities.

The second category consists of failures of a very interesting kind. One of the
appealing features of mobile agents is dynamic composition. Agents do not have
to know what other agents they will cooperate with, and this allows extreme
flexibility in agent system design. In open systems, where agents discover their
partners dynamically and where each agent has its own interest in cooperation,
there must be some mechanism to encourage communication among matching
agents and prevent it among incompatible ones. In addition to the means of com-
munication among agents, we also need means for inter-agent exception propa-
gation and cooperative exception handling. We believe that this is essential for
a disciplined and fault-tolerant composition of mobile agent systems.

The abnormal situations of the third category are detected inside an agent.
All the traditional recovery techniques developed for sequential programming can
be used to deal with them. If an agent fails to recover from a failure individually,
then there is a need for cooperative exception handling by all the involved agents.

The last category of failures corresponds to exceptional situations in the
environment that are beyond the control of a mobile agent. Examples of this
are failures of hardware components, administrative restrictions, software bugs
in the underlying middleware and in the core components of the environment.

All these failures are typical of the domain of mobile agent software and mo-
bile agents usually cannot anticipate or avoid this kind of malfunctions. In this
paper we are focusing on the second category of failures and propose two fault
tolerance solutions. The first one is an exception handling technique for coordi-
nation space-based mobile agents. The second solution is a scoping mechanism
for mobile coordination spaces. In our approach we combine these two solutions
in one fault tolerance development method.

Exception handling has been proven [1] to be the most general fault toler-
ance technique as it allows effective application-specific recovery. If exception
handling is to make programmer’s work more productive and less error-prone,
however, it requires adequate support from the programming and execution en-
vironments. Scoping is a dynamic structuring technique which makes it easier
for the developers to deal with complexity of system execution by narrowing
down the context visible for the individual system components. In this work we
are specifically interested in scoping that supports error confinement and allows
error recovery to be limited to the area surrounding the error.

2 Related Work

MobileSpaces [12] is a middleware with a hierarchical organisation of agents.
The notion of agent nesting and the approach proposed to migration is similar to
those used in the Ambient Calculus [13] algebra. An agent in MobileSpaces com-
municates only with its parents or descendants (nested agents). Whole branches
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of the agent tree can migrate, changing their parent nodes. This approach
presents quite a flexible form of isolation.

In Mole [9] inter-agent communication is based on the publish/subscribe
model called Object Management Group (OMG). OMG introduces channels
through which events can be propagated among agents. Channels can be created
during run-time and it is the creating agent who decides to whom pass the
channel reference. This encourages closed group work among several agents.
However event channel is not an isolation mechanism since it can pass events
to other channels and also receive external events interesting to the channel
subscribers.

Paper [8] discusses an extension of the publish/subscribe scheme with the
scope concept. Scopes can be nested and they regulate event propagation and
publishing. Agents can create, join and leave scopes dynamically. The purpose of
scopes in this model is to limit visibility of published events to a subset of agents
from the same tree of scopes (all scopes in the system form a forest). Another
important implication of the scope notion is the introduction of the administrator
role. Administrator is a utility agent that controls event flow inside a scope and
across its boundaries according to the rules statically defined for the scope.

A different approach is taken in ActorSpace [10, 11], where communication
space is structured using actorSpace - an abstract agent container. Special enti-
ties called managers may control visibility of agents and actorSpaces with respect
to some other actorSpace. Each agent has a set of patterns describing its inter-
ests. There are three basic ways of sending a message: using a pattern to non-
deterministically describe a destination agent, using a unique agent name and a
pattern-based broadcast which delivers messages to all the agents satisfying the
specified pattern. In addition it possible to create arbitrary complex visibility
structures by placing a reference to an actorSpace in another actorSpace.

Coordination with Scopes [14] discusses a scoping mechanism for Linda tuple
space built in way similar to ActorSpace. However scope here is not a container
but a viewpoint of an agent on otherwise flat tuple space. The most interesting
aspect is possibility of dynamically create new scopes by using several predefined
operations on already known scopes forming a kind of scope algebra. In addition
to the obvious joining and nesting operations, scopes can be also intersected and
subtracted. This gives extreme flexibility in structuring tuple space and adapting
it to an agent needs. A dedicated scope initially known to all agent is used to
exchange scope names.

3 Coordination with Scopes

3.1 CAMA Model

The cama (context-aware mobile agents) system consists of a set of locations.
Active entities of the system are agents. cama agent (further agent) is a piece
of software that conforms to some formal specification. Each agent is executed
on its own platform. Platform provides execution environment and interface to
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the location middleware. Agents communicate through the special construct of
coordination space called scope. An agent can cooperate only with agents par-
ticipating in the same set of scopes. Agents can logically and physically migrate
from a location to a location. Migration from a platform to a platform is also
possible using logical mobility. An agent is built on the base of one or more roles.
Role is a formal functionality specification and composition of specifications of
all the roles forms the specification of an agent. A role is the result of the de-
composition of an abstract scope model and a run-time scope is an instantiation
of such abstract model. After this point we will use term scope to refer to a run-
time scope in coordination space. More details on building formal specification
of roles using the B Method and general description of the cama system can be
found in [3].

3.2 Scoping mechanism

After analysing a number of existing approaches to introducing structuring of
mobile agent communication (see Section 2.1) we have found that the best way to
do it for the purpose of dealing with complexity of the system behaviour during
rigorous system development, and, in particular, with supporting behaviour and
information hiding for fault tolerance is to structure agent activity (dynamic
behaviour). This automatically introduces communication structuring however
with a much cleaner semantics and a number of other benefits discussed below.

Structuring activity means arranging agents in groups according to their
intentions and afterwards configuring the means of their communication to adapt
to the requirements of the agent group. Reconfigurations happen automatically
thus allowing agents (and developers) to focus solely on collaboration with other
agents. The distinctive features of this approach are

– higher-level abstraction of communication structuring;
– impossibility to create incorrect, malfunctioning or cyclic structures;
– strong relationship with interoperability and exception handling;
– simple semantics facilitating formal development.

In a very basic view scope is a dynamic data container. It provides an iso-
lated coordination space for compatible agents by restricting visibility of tuples
contained in a scope to the participants of the scope. Concept of compatibility is
based on the concepts of role and scope. A set of agent is compatible if there is
a composition of their roles that forms an instance of an abstract scope model.

Agents may issue a request for a scope creation and, at some point, when all
the precondition are satisfied, the scope is atomically instantiated by a hosting
location. Scope has a number of attributes divided into categories of scope re-
quirements and scope state. Scope requirements essentially define type of a scope,
or, in other words, kind of activity supported by the scope. Scope requirements
are derived from a formal model of a scope activity an together with agent roles
form an instance of the abstract scope model. State attributes characterise a
unique scope instance.
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Requirements State

- list of roles - currently enrolled roles
- restriction on roles - owner

- name

In addition to the attributes, scope contains data, that in case of coordination
space are tuples. Along with data there may be subscopes to match nested ac-
tivities that may happen inside of a scope.

Restrictions on roles dictate how many agent roles there can be for any given
role of a scope. Requirements are defined by two numbers - a minimum required
number of agents for a given role and a maximum allowed number of agents
for a given role. A scope state tracks the number of currently taken roles and
determines whether the scope can be used for agent collaboration or not.

R1 Rmin
1 Rmax

1

R2 Rmin
2 Rmax

2

...
Rk Rmin

k Rmax
k

Rmin
i ≤ NRi ≤ Rmax

i (taken roles)
n (scope name)
A (owner)

Fig. 1. Scope requirements (left). Scope state (right)

In addition to obvious Rmin
i ≤ Rmax

i we also require that Rmax
i > 0.

There are three important states of a scope. Their summary is given on Table
2. A scope in the pending state does not allow agents to communicate because

State name Definition

pending ∃r · (r ∈ R ∧Nr < rmin)
expanding ∀r · (r ∈ R ⇒ Nr ≥ rmin) ∧ ∃r · (r ∈ R ∧Nr < rmax)
closed ∀r · (r ∈ R ⇒ Nr = rmax)

Fig. 2. Three important states of a scope

there are some essential roles missing. When all the required roles are taken
the scope becomes expanding or closed. In the expanding state a scope supports
communication among agents while still allowing other agents to join the scope.
In the closed state there are no free roles and no additional agent may join the
scope.

Some scope configurations present interesting cases. A scope with zero re-
quired number of agents for all the roles is called blackboard. It persists even
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without any participating agents and all the contained data also persist. With
this scope type agents do not have to wait for any other agents to communicate,
they may put some information into a blackboard scope and leave. Note, that
there is an important difference between a blackboard scope and a generic tuple
space. For a blackboard scope only agents implementing the roles specified by
the blackboard scope requirements may enter and put or read any data whilst in
a tuple space anyone can always put and read any tuples. Container is a scope

Scope class Definition

blackboard ∀r · (r ∈ R ∧ rmin = 0)
container card(R) = 1 ∧ (r ∈ R ∧ rmin = rmax = 1)
bag card(R) = 1 ∧ (r ∈ R ∧ rmin = 0 ∧ rmax = 1)
unrestricted ∃r · (r ∈ R ⇒ rmax = ∞)

Fig. 3. Some interesting classes of scopes

with a single role for which only single agent is allowed and required. This is an
important case since such kind of a scope can act as a private and protected data
container of an agent. A variant of container scope that can survive change of
owners without losing all the contents is called bag. Bags can be used to privately
pass some bulk data between two agents.

Unrestricted scope permits an unlimited number of agents for one or more
of its roles. It can be used for client-server models when there are no restrictions
on number of clients.

In global view scopes form a tree. Due to the specifics of our approach the
tree is mostly shallow and wide since the depth is determined by the nesting
level of actions that is usually not large. All the high-level scopes are united by
the dedicated scope λ. Any scopes other than λ are subscopes of λ. Scope λ has
two predefined roles: role λA of agent requesting services from location and and
role λL of location. Functionality of role λA is arbitrary and defined by agent
developers. However there is a fixed set of operations called λ0

L that must be
included into implementation of each λL. λ0

L operations are described below.
Since the cama system allows agent to communicate in several locations at

the same time we include location name to disambiguate reference to a scope.
Moreover scope names have to be unique only inside the containing scope. Thus
the full name of a scope includes the names of all the containing scopes. We are
omitting name of λ scope for convenience of notation. Sometimes we have to
explicitly state in what location a scope is contained and what are its parents
(the containing scopes). In this case location name is the initial part of a name,
then follows the outermost containing scope and so on up to the name of the
scope we deal with.

λ0
L operations:
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– engage(id) - issue a new location-wide unique and unforgeable name for
agent id. This name as agent identifier in all other role operations.

– disengage(a) - issued name a becomes invalid.
– create(a, n, R)@s (n 6∈ l.s) - creates a new sub-scope of scope s with

the name n and given scope requirements R. The created scope becomes a
private scope of agent n.

– destroy(a, n)@l.s (n ∈ l.s ∧ a is owner of l.s.n) - destroys sub-scope
with the name n contained in the scope s. This operation always succeeds
if the requesting agent is the owner of the scope. If the scope is not in the
pending state then all the scope participants receive EDestroy exception as
the notification of the scope closure. This procedure is executed recursively
for all the subscopes contained in the scope.

– join(a, n, r)@s (n ∈ l.s∧r ∈ n∧n is pending or expanding) - adds agent
a into scope n contained in l.s with roles r. Succeeds if scope l.s.n exists
and it is possible to take the specified roles in the scope. This operation may
cause state change of the scope.

– leave(a, n, r)@s (a is in l.s.n with role(s) r) - removes agent roles r
from scope l.s.n. The calling agent must be already participating in the
scope. This operation may also change the state of the scope.

– put(a, n)@s: advertises scope n contained in scope s thus making it a public
scope. A public scope is visible and accessible by other agents. contained in
scope l.s and supporting role(s) r.

– get(a, r)@s: enquires names of the scopes contained in scope l.s and sup-
porting role(s) r.

– handshake(a, t)@s: allows agents to safely exchange their names.

3.3 Naming issues

In the following discussion we discuss certain assumptions on how names of
various resources are used and passed between agents. One essential requirement
is that a scope name can be known to an agent only if the agent joins the
parent of the scope. A scope name passed as a message between two agents
may violate this rule so we have to take special care of the names used by
agents. However we still allow agents to learn names of other agents, scopes,
locations and traps (discussed further below) through communication with other
agents. To make it impossible for an agent to use incorrect names and pass
names without permission to do so to third parties we do not use any absolute
names or references. Instead the naming mechanism is based on tickets issued
by location. Whenever an agent needs to have a name for some resource (e.g. a
new scope created by its request) a location generates a new structure consisting
of the agent name and the resource reference. This structure is associated with a
random ticket number which is passed to the agent. The ticket issuing location is
the only entity that can decode ticket numbers into resource references. Location
has the full control over name passing and prevents issuing and usage of incorrect
names. Note that a legitimately owned name may become invalid if a resource
is destroyed or the agent no longer has rights to access it. Assuming that agent
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names are unforgeable (we need some additional scheme to ensure agent names
validity) tickets numbers can be exposed without any risk for the owner. When an
agent wants to share or pass a resource to another agent it requests the location
to issue additional ticket for another agent. The major advantage of this scheme
is that the agent requesting a new ticket still has, being the owner of the ticket,
the full control over the resource access which this new ticket allows. At any
moment it can send a request to the location to invalidate the ticket which will
have an immediate effect on the ticket user. In addition an owner of a resource
can add other agents to the list of owners and remove itself from the list. When
an agent becomes a resource owner it can control resource usage and issue new
tickets.

This procedure cannot be used to exchange agent names since to do that
agents would have to already know the names of each other. For this purpose
we introduce the handshake operation which implements secure and atomic
exchange of names within a group of agents. Each agent receives names of all its
peers made specifically for the agent. Each name is a ticket number usable only
by the agent and referring to a name of another agent. The second argument
of handshake operation is the list of tuples received from fellow agents within
one scope. Location knows how to identify agents from tuples they produce (see
[5]). handshake operation must be executed symmetrically by all the agents for
the same list of agents (although tuples in the list may be different for each
agent). The operation fails for all agents if there is at least one not executing
the handshake at all or executing it with a different set of agents. Unsuccessful
handshakes are unblocked after a timeout determined by the location.

4 Exception Propagation via Coordination Space

Previously we have developed a mechanism for propagating exceptions among
independent, anonymous and asynchronously-communicating agents. In this sec-
tion we give only a general and brief overview of the work to allow us to discuss
problems of exception propagation between scopes, introduced in section 5. The
detailed discussion of the mechanism and its experimental implementation for
the Lime mobile agents system [7] can be found in [5].

The mechanism of the exception propagation is complimentary to the appli-
cation-level exception handling. All the recovery actions are implemented by
application-specific handlers. The ultimate task of the mechanism is to transfer
exceptions between agents in reliable and secure way. However the enormous
freedom of behaviour in agent-based systems makes it impossible to guarantee
reliable exception propagation in a general case. Although we can clearly identify
the situations when exceptions may be lost or not delivered within a predictable
time period. If an application requires cooperative exception handling at certain
moments then for that time, agents behaviour must be constrained in some way
to disallow any unexpected migrations or disconnections.
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There are three basic operations available to agents to receive and send inter-
agent exceptions. They are supplementary to the application-level mechanism
and their functionality do not overlap.

throw wait check

The first operation, throw, propagates an exception to an agent or a scope.
Important requirements is that the sending agent prior to sending an exception
must have got a message from the destination agent and they both must be in
the same scope. These two variants of the operation has the following form:

– throw(m, e) - throws exception e as reaction to message m. The message is
used to trace the producer and to deliver the exception to it. The operation
fails if the destination agent has already left the scope in which the message
was produced.

– throw(s, e) - throws exception e to all the participants of scope s.

The crucial requirement to the propagation mechanism is to preserve all the
essential properties of agent systems such as agents anonymity, dynamicity and
openness. The exception propagation mechanism does not violate the concept
of anonymity since we prevent disclosure of agent names at any stage of the
propagation process. Note that the throw operation does not deal with names
or addresses of agents. Moreover we guarantee that our propagation method
cannot be used to learn names of other agents.

Also the mechanism itself does not restrict agent activities in any way.
Though agent dynamicity and reliability of exception propagation are conflicting
concepts we believe that it is the developers who must take the final decision
to favour either of them. Notion of openness is the key for building large-scale
agent systems. Proper exception handling was proved to be crucial for consistent
and reliable component composition. It is even more so for mobile agent systems
where composition is dynamic and parts of the system are developed indepen-
dently. To support large-scale composition of exceptions-enhanced agents we are
going to elaborate a formal step-wise development procedure.

Two other operations, check and wait are used to explicitly poll and wait
for inter-agent exceptions.

– check - if there are any exception pending for the calling agents raises ex-
ception E(e) which is a local envelop for the oldest pending exception.

– wait - waits until any inter-agent exception appears for the agent and raises
it in the same way as the previous operation.

We also redefine semantics of blocking Linda operations so that unblock when-
ever a coordination space exception appears and throw this exception inside of
the agent.

4.1 Traps Mechanism

The propagation procedure expressed only with the primitives above would be
too restrictive and inflexible for mobile agent systems. To control the propa-
gation process in a way that accounts for various agent behaviour scenarios we
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introduce a notion of trap. A trap is a set of rules created by agents that controls
exception propagation and exists independently of the creating agent. Traps are
stored and manipulated by a location that provides the coordination space. A
trap is essentially a list of rules that chose reaction for a coordination space
exception. It can be represented as a case construct where rules are associ-
ated with exceptions (see Figure 4). Exception matching and comparison are
non-trivial issues usually dictated by the language of choice.

case e is

when E1 => op1

when E2 => op2

. . .
when En => opn

when others => abort
end case

Fig. 4. Trap is a CASE-style construct

A trap can be enabled when there is an incoming message for the agent
that created the trap. Agent may have several traps and traps are automatically
organised into an hierarchical structure. When an exception appears, the most
recently added trap is activated. If the trap fails to find a matching rule for the
exception, the exception is propagated to the second most-recent trap and so on.
Agents can dynamically create, add and remove traps. The following operations
are used to express trap structure:

– deliver - delivers the exception to the destination agent. The exception is
stored until the destination agent is ready to react to it or the containing
scope is destroyed;

– relay(t) - propagates the exception to a trap t which may be a trap of
another agent. Name of a trap can be only learnt through negotiations with
the trap owner. Owner of the trap becomes the destination the propagated
exception;

– abort - leaves the current trap and transfers control to the next trap in the
hierarchy.

– if (condition) then ac - action ac is applied conditionally;
– . (concatenation) - forms a new action by concatenation of two other actions.

The deliver operation was designed to be able to tolerate agent migration and
connectivity fluctuations. It introduces some level of asynchrony and makes the
whole exception propagation scheme more suitable to the asynchronous commu-
nication style of coordination space. The relay operation is a tool for building
linked trap structures supporting a disciplined cooperative exception handling.
Discussions and examples related to this approach can be found in [5].
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Preconditions for the if operation are formed from the following primitives:

– local - holds if the owner of the trap is joined to the current scope
– local(a) - holds if agent a is joined to the current scope
– tuple(t) - holds if there is a tuple matching template t

– ¬, ∨, ∧ - logical operations that can be used on the predicates above

Rule preconditions and concatenation provide a very expressive mechanism
that may form traps for many interesting and useful scenarios. For example,
a rule in a trap could make multiple deliveries to involve several agents, or,
depending on the locality of the trap owner, another agent or even a trap in a
different location.

5 Exception propagation through scope boundaries

The exception propagation mechanism described above works well within the
boundaries of a scope. However in many cases a scope corresponds not to a
completely isolated activity but rather forms a part of a more general activity of
the containing scope. In such a case a failure of a scope may disrupt activity of
the containing scope and require agents of the containing scope to execute some
recovery actions. In this work our intention is to introduce exception propagation
through scope boundaries in a way that is smoothly integrated with the concepts
of the scoping and exception propagation mechanisms discussed above.

It is very natural to try and take the advantage of the scope nesting mech-
anism to build a scope-based exception recovery. However the specifics of the
mobile agents and the scoping mechanism bring unexpected complications. First
of all, scope nesting does not necessarily correspond to a logical nesting of scope
activities and this presents problems in interpreting exceptions propagated from
inner scopes. Another complication is that different kind of scopes - nested, at
the same level or even unrelated and from different locations, can be linked
by a common global state of an agent. Hence, in addition to the hierarchy of
scopes introduced by the scoping mechanism, we have to take into consideration
relations between scopes introduced by agents.

Currently we are looking into possible realisations of the propagation mech-
anism for the cama system. Below we briefly present several promising ap-
proaches. They can be classified into the two categories - the first one looks at
the problem from the viewpoint of a failed scope and the second one discusses
recovery schemes for a containing scope.

Case 1. Throwing an external exception. One possible solution is to allow agents
to throw an external exception which results in the immediate termination of the
failed scope. When this happens the scope closes and all other scope participants
get a notification of the scope failure.
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Case 2. Common root trap tree. Agents create a common root trap tree to prop-
agate exceptions in a disciplined manner outside a scope. Through a negotiation
process they exchange trap names and put them together in a common trap tree
structure. For example, this tree may be initially created by one of the agents
and then updated by others. An exception indicating the scope failure (as clas-
sified by the traps) is propagated through the chain of traps and finally arrives
to some or all of the agents. If it during this propagation it arrives to the root
of the common tree, the scope is terminated with an external exception. This
solution is more general and flexible than the first one because different recovery
scenarios can be built for different types of exceptions and agent groups.

Case 3. Internal propagation. Taking into account the fact that each agent par-
ticipating in a nested scope is also present (though does not necessarily active) in
the containing scope we can propagate exceptions through the internal state of
an agent and, if required, trigger recovery actions in the containing scope. In this
case after an unsuccessful cooperative recovery in the failed (nested) scope each
participant throws an exception in some of its active scopes. Exception propa-
gation here is fully controlled by an agent and does not necessarily relate to any
existing scopes structure. We believe that offering such flexibility may be danger-
ous and, besides, it is becoming very hard to analyse systems formally. However
some situations may require such propagation style. For instance, when an agent
acts concurrently in two scopes and these activities are interrelated (say it buys
something in one scope and sells it in another). An exception thrown in the
scope where the agent sells may require actions in the scope where it buys (but
never vice versa as there is one-direction information flow between these scopes).

Another part of the problem is developing a recovery scheme for a containing
scope. An important point to note here is that the activities of a containing and
a nested scopes in a general case are asynchronous. Some effort must be taken to
put agents in the containing scope into some correct state suitable for recovery
actions caused by the failed sub-scope. We discuss here two possible solutions.

Case 1. Throwing to everyone. Whenever an exception from a nested scope
appears it is thrown to each participant of the containing scope. This triggers
normal trap mechanism which involves all the usual recovery procedures that
would take place in a case of a local exception. In other words an external
exception from a sub-scope appears as a new local exception for all the agents
although it may be distinguished as an sub-scope exception by its type.

Case 2. Throwing to the failed scope participants. According to the previous
approach, whenever a sub-scope exception is thrown each agent of the containing
scope may be interrupted and involved in handling the exception. However we
can exclude those agents that are not associated with the failed contained scope
from the recovery initial recovery actions because their involvement may be
superfluous in the situations when recovery can be done by the nested scope
participants. In this case we still must ensure that the exception is propagated
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to all the agents of the containing scope if that group of agents fails to recover
themselves.
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Abstract. Complex fault-tolerant distributed systems have a growing
need of new functional and quality requirements. An immediate con-
sequence of this is an increasing need of new methods for developing
complex fault-tolerant distributed applications.
Coordinated Atomic Actions (CAAs), making use of exception handling
mechanism, offer an approach to ensure the needed requirements of reli-
ability, availability and fault tolerance.
Unfortunately, there is currently no method for the high-level modeling
of such systems. In this paper, in order to offer an instrument for mod-
eling exception handling, we propose a UML2.0 Platform Independent
Profile for CAAs that allows designers to describe complex systems sepa-
rating the specification from the implementation on a specific technology
platform.

1 Introduction
Implementing complex fault-tolerant distributed applications is labor intensive
and error-prone. Such systems have increasingly new functional and quality re-
quirements. An immediate consequence of such evolutions in the requirements of
systems is an increasing need of new methods that assist in these systems devel-
opment. Furthermore, there is a growing interest in the area of application-level
fault tolerance and cooperative exception handling as the main paradigm for de-
veloping structured fault-tolerant architectures. Unfortunately, there is currently
no method that assists the software engineer in developing such systems.

This situation has motivated the investigation of a UML-based, generative
and architecture-centric method to support cost-effective, disciplined and high-
level development of complex fault-tolerant distributed systems families. This
effort is conducted by the Software Engineering Competence Center of the Uni-
versity of Luxembourg (SE2C) in the context of the CORRECT project [2]. The
CORRECT project makes use of Coordinated Atomic Actions (CAAs) [9] that
offer approaches for error recovery and of the framework called Dependable Re-
mote Interacting Processes (DRIP) [10] that embodies CAAs in terms of a set
of Java classes.

UML [6] provides a standard-based high-level specification language as well
as the possibility to clearly separate concerns at different development phases.
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Model-driven Engineering (MDE) advocates separating the specification of sys-
tem functionality, the “what”, from the implementation of that functionality
on a specific technology platform, the “how” [5]. Platform Independent Mod-
els (PIMs) specify the structure and functionality of a system while abstracting
away technical details. Platform Specific Models (PSMs) specify how the func-
tionality has to be realized on a selected platform. MDE takes benefits of PIMs
and PSMs for generating the executable code of a system by deriving PSM speci-
fications from PIMs by (formal) refinement, and then transforming PSMs to code
for a specific platform. This approach allows relating design to requirements and
analysis, as well as verifying and testing the application, and generating code
for different technologies by transforming PIMs.

In this paper we focus on the “what”, i.e. on the specification of the system, by
proposing a UML Platform Independent Profile for CAAs. This work refers to a
previous work [3] where has been proposed the FTT-UML, a CAA-based UML
profile for modeling fault-tolerant business processes. We fix some discovered
problems and we propose a new UML2.0 profile for CAAs, able to model fault-
tolerant systems on any domain. In other words, the proposed profile provides
the necessary features for modeling “pure” CAAs.

After an introduction on CAA in Section 2, we present the FTT-UML profile
in Section 3 highlighting the problems driving the definition of the proposal
profile, that is explained in Section 4. We make use of a simple example to show
how all aspects of a CAA can be modeled with the proposed profile. Conclusion
and future works close the paper.

2 Coordinated Atomic Actions

Coordinated Atomic Actions (CAAs) is a fault-tolerant mechanism using excep-
tion handling to achieve dependability in distributed and concurrent systems [9].
Thus, using CAAs we can develop systems that comply with their specification
in spite of faults having occurred or occurring.

This mechanism unifies the features of two complementary concepts: con-

versation and transaction. Conversation [7] is a fault-tolerant technique for per-
forming coordinated recovery in a set of participants that have been designed to
interact with each other to provide a specific service (cooperative concurrency).
These participants are called roles in the context of CAAs. Transactions are
used in order to deal with competitive concurrency on external objects, which
have been designed and implemented separately from the applications that make
use of them.

Every external object should be under the control of the transactional system
to guarantee the ACID (atomicity, consistency, isolation and durability) proper-
ties. Anyway, there are some external objects that, because of their own nature,
could not be rolled back. Therefore, they must be managed in a special way to
guarantee the ACID properties on them. The external objects that can be rolled
back are called recoverable and those that require explicit manipulation to be
left in a consistent state are called unrecoverable. This categorization of external
objects allows us to satisfy the ACID properties on them.
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A CAA is the basic element of this technique, which characterizes an orches-
tration of actions executed by a group of roles that exchange information among
them, and/or access to external objects (which at the same time are shared with
other CAAs) to get a common goal. A CAA starts when all its roles have been
activated and finishes when all of them have reached the CAA end. If for any
reason an exception is raised in at least one of the roles belonging to the CAA,
appropriate recovery measures have to be taken. Facing this situation, a CAA
provides a quite general solution for fault-tolerance that consists of applying
both forward and backward error recovery techniques in a complementary or
combined manner.

CAA2
R1

R2

R3

CAA1

O1O1

CAA3

R2’

R3’

R1’

O4

O2 O2O2

CAA4

R2’’

R3’’

R1’’

O7

E1

E2

Time

O3

O3

O5 O5 O5

O1

external recoverable object waiting role

access to 
external object

access to
internal object

external unrecoverable object

shared object

E raised exception

normal behavior

Forward Error Recovery

Backward Error Recovery

normal role

O6 O6

O6

E5

O5

Fig. 1. Coordinated Atomic Actions.

Figure 1 shows how CAAs can be designed in a recursive way using nesting

and/or composing. Nesting is defined as a subset of the roles of a CAA (CAA1)
defining a new CAA (CAA2) inside the enclosing CAA (CAA1). The roles of
CAA2 (R1 and R2) are the same roles that have been defined for CAA1, but
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the operations that they are doing inside CAA2 are hidden for the other roles
(R3) (and other nested or composed CAAs) that belong to CAA1. Accesses to
external objects within a nested CAA are performed as nested transactions, so
that, if CAA1 terminates exceptionally, all sub-transactions that were committed
by the nested (CAA2) are aborted as well. Any role of a CAA can only enter
one nested CAA at a time. Furthermore, a CAA terminates only when all its
nested CAAs have terminated as well. Note that if the nested CAA2 terminates
exceptionally, an exception is signalled to the containing CAA1.

Composed CAAs are different from the nested in the sense that we can reuse
the CAAs designed in other contexts. Thus, composition allows us to develop
open distributed systems. A composed CAA (CAA3) is an autonomous entity
with its own roles (R1

′, R2
′ and R3

′) and external objects (unrecoverable O5).
The internal structure of the composed CAA3 (i.e., set of roles, accessed external
objects and behavior of roles) is hidden from the calling CAA1. A role belonging
to CAA1 that calls the composed CAA3 synchronously waits for the outcome.
Then, the calling role resumes its execution according to the outcome of the
composed CAA3. If the composed CAA3 terminates exceptionally, its calling
role (which belongs to CAA1) raises an internal exception which is, if possible,
locally handled. If local handling is not possible, the exception is propagated to
all the peer roles of CAA1 for coordinated error recovery.

If the composed CAA3 has terminated with a normal outcome, but the con-
taining CAA1 has to roll back its effects (abort operation), the tasks that were
done in the composed CAA3 are not automatically undone. Thus the CAA1, in
order to guarantee the ACID properties on the external object, needs to carry
out a specific handling, which may have a composed CAA (CAA4) to abort (or
compensate, if there is at least one unrecoverable external object) the effects
that have been done by the CAA3.

In order to formally express the semantics of each possible kind of CAA out-
come (normal, exceptional, abort and failure), we use statecharts [4](Figure
2). The specification is composed of two state machines, which are running in
parallel. The machine on the left side represents the System which evolves ac-
cording to the events that are sent (events with a line over them) by the state
machine that is on the right side and represents a CAA.

A CAA is designed to provide a service, which is called by the users of the
System where the CAA is embedded. The invocation of the service is represented
by the event Op. We can assume that this event comes from the environment.
The W state represents the execution of the service. If the service is able to
satisfy its post-conditions, then the CAA terminates normally. Therefore, the
CAA reaches the OK state, publishing at the same time the normal event, thus
the System goes to the well defined s1 state.

The state of the CAA is defined as the state of the System plus the state
variables that are used to deliver the service. Thus, the CAA could be in an
unspecified (not well defined or inconsistent) state, but the System is left in
a specified (well defined or consistent) state. If the CAA does not normally
finalize (because the post-conditions are not met), then each role must signal an
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exception to indicate the outcome. The roles should agree about the outcome,
and each role should signal the same exception. In this case, the CAA emits the
event exceptional and it goes to an unspecified state. When the System receives
the event exceptional, it goes to any well defined state, even if the specific service
that is provided by the CAA could not be delivered satisfactorily.

Fig. 2. Outcomes of a CAA and their semantics.

If an exception is raised during the normal execution of the CAA (s0 state),
then a process of exception handling is triggered. This exception handling process
is defined as a combination of Forward (FER) and Backward Error Recovery
(BER). The FER mechanism is represented by the FER state and, depending on
how successfully it can recover from the exception, the CAA may still terminate
normally. In any case (W or FER states), if the CAA finalizes not normally
and the roles disagree about the outcome, then the CAA attempts to abort the
action by undoing the effects through the BER mechanism.

If the post-conditions cannot be reached through the FER or an exception is
raised again thought this recovery process, the CAA must attempt to roll back
the state through BER (BER state). If BER is applied successfully, the CAA
publishes the event abort and it goes to the initial state (Init). The System
receives this event and moves to the same state (s0 ) where it was before calling
the CAA.

If the BER is unsuccessful, then the CAA must publish the event failure. In
this case, both the CAA and the System are left in a unspecified state.

3 FTT-UML: a UML-profile for Fault-Tolerant

Transactions
The FTT-UML Profile has been presented at OTM Workshops in 2004 [3] and
constitutes an important step towards modeling dependable complex business
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processes since it provides means in order to manage exceptions and in order to
describe nested transactions in e-business distributed contexts.

FTT-UML privileges Activity Diagrams and Class Diagram among all the
UML 1.5 diagrams available: Activity Diagrams in order to model the behavior of
the business process and Class Diagrams in order to model the business domain
data structure. In this section we present a list of FTT-UML elements directly
related to CAA concepts. The starting point for this list has been [1]. FTT-UML
has been proposed in e-business context and therefore it provides also means in
order to model typical e-business situations, such as filling a form, but these
aspects are, in our context, not crucial.

– Activity Diagram: an Activity Diagram represents a CAA.
– Partition: a partition, which is a vertical solid line dividing an Activity Dia-

gram, represents a CAA role. Each partition contains the actions performed
by the corresponding role.

– Object Flow State: data structures are modeled using UML class dia-
grams. The corresponding data are used in activity diagrams exploiting ob-
ject flow states represented by rectangles. Subsection 3.3 of [3] provides more
detailed information about the data manipulation primitives provided by this
notation.

– Action state: a role performs actions, represented by action states (corner-
rounded rectangles). A state has pre- and post-conditions (first paragraph
in section 3 of [3]). An action is executed when all its pre-conditions are
satisfied, and then it offers a token to all its outgoing edges. Action states
represent method calls on objects. The name of this state refers to the fol-
lowing topology: objectName.method() where objectName is an accessible
object (from the role point of view) and method is a visible method of this
object. Arguments of this call are represented by the name of the objects
inside the parenthesis, or by linking objects to the action state (subsection
3.4 of [3]).

– Transition: a transition represents the execution flow (solid lines) or the
data flow (dotted lines).

– Final PseudoState: represents both a normal outcome (if the activity does
not produce outputs) and an implicit synchronization point among roles. In
CAA, in fact, roles have to synchronize themselves in the exit and agree
about the outcome.

– Initial PseudoState: represents the only starting point of the CAA in the
case of synchronous roles. It means that CAA starts when all the role are
activated. In cases in which asynchronous roles are present, more than one
initial node has to bes used in order to model the asynchronous activation
of the roles themselves.

– ObjectFlowState with stereotype ≪output≫: represents a normal out-
come with an output.

– Final PseudoState with stereotype ≪except≫ and labeled with the

exception name: represents an exceptional outcome without parameter.
– ObjectFlowState with stereotype ≪except≫ and labeled with the

exception name: represents an exceptional outcome with a parameter.
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– Sub-activityState: a sub-activity state models a nested CAA.
– ActionState with the stereotype ≪invited≫: represents a role in an

enclosing CAA that does not contain the sub-activity node (representing a
nested CAA), but participates in that nested CAA.

– ObjectFlowState with an edge to the sub-activity node: represents
providing an input to a nested process.

– Transition with the stereotype ≪compensate≫ going to the nested

process sub-activity state: represents undoing the effects of a nested
process.

– Activity diagram having the stereotype ≪compensate≫: represents
a compensation, it undoes the effects of a nested process already successfully
terminated, whose effects are requested to be undone inside the running
CAA.

– Action state with stereotype ≪raise≫ and named by the exception

to raise: represents a role of a CAA that wants to raise an internal exception.
Such a state must not have outgoing transitions.

– Partition with the stereotype ≪ExceptionResolution≫: represents a
graph whose purpose is the resolution of concurrent exceptions into a single
exception to raise. Such a partition contains an oriented graph, where action
states represent exceptions.

– Action state with the stereotype ≪handler≫ and named by the

exception name: indicates the starting point of a subset of a role activities
that represents a handler for one of the exceptions of the exception resolution
graph. (variants: for a parameterized exception, the action ≪raise≫ has an
incoming edge from an object flow state and the action ≪handler≫ has an
outgoing transition to an object flow state representing the parameter).

3.1 The Discovered Problems

Inside a CAA three phases may be distinguished: one in order to describe the
normal behavior, one in order to capture the exception handling behavior and
finally, one in order to capture the roll back behavior. It should, anyway, be clear
that the last behavior is a special case of exception handling.

In FTT-UML these three behaviors are not well defined. Only the normal
one is well defined and detailed, while the other two are only sketched and
never illustrated. By reading the profile explanation, it comes out that there are
two particular stereotypes, one called compensate which stereotypes an Activity
Diagram and should be used in order to undo effects when roll back is needed,
and one, called handler, in order to describe exception handling behavior.

These two stereotypes however are never illustrated and therefore it is not
clear if they have to be used in a particular partition or not. Suppose, for ex-
ample, to put the ≪handler≫ stereotype in all the partitions (roles) that may
have a handler in order to manage an exception; the resulting diagram would be
overloaded.

Moreover CAAs could be composed and nested and this difference does not
appear in the FTT-UML profile.
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Roles of an enclosing CAA may, in FTT-UML, change their name by entering
in a nested process. This possibility in CAA theory is not present. In nested
CAAs in fact still appear roles that were already part of the enclosing CAA.
Different roles are only possible in the case of CAA composition.

Logically, a CAA starts when all roles have been activated (though it is an
implementation decision to use either synchronous or asynchronous entry proto-
col) and finishes when all of them reach the action end (see [8]). In FTT-UML
profile the user may also model implementation details by defining synchro-
nous/asynchronous roles. A CAA model, however, in order to ensure a good
separation of implementation and business concerns, should not contain imple-
mentation details.

4 Improving the FTT-UML profile

Taking the FTT-UML Profile as basic reference to represent CAA by UML 1.5,
we have defined a new one (called CAA-UML), which has as main improvement
the fact that it supports completely and purely CAA semantics. Supporting only
the basic features of CAAs avoids embedding characteristics for any specific
domain, which would be a bias of our target.

Using the last version of UML (2.0) as our notation language also allows us
to find a better representation for some basic CAAs aspects, i.e. detecting and
handling exceptions, as well as the definition of context where an exception may
happen.

In the following, we give the detailed list of elements that compose the CAA-
UML Profile explaining improvements and solutions with respect to the problems
found on its predecessor profile. To better explain the new proposed profile
we provide an example of its use (Figure 3), which corresponds to the CAAs
described in Figure 1.

– CAA: this is represented by an Activity Diagram. In Figure 3, CAA1 and
the nested CAA2 are examples of how an Activity Diagram describes a CAA.

– Role: this is represented by a Activity Partition. In Figure 3, R1 and R2

and R3 are partitions that represent roles of CAA1, Nested CAA2 and FER

for exception E1.
– Nested CAA: as shown in the Figure 1, several roles of CAA1 can enter

into a nested CAA2, which defines an atomic operation inside the enclosed
CAA1. This is represented by one, and only one, Call Behavior Action with
stereotype ≪Nesting≫. This stereotyped Call Behavior Action has an in-
coming control flow arrow for each role that is participating in the nested
CAA. These incoming flow arrows do not need labels like in the previous
profile, because it is not required to change the names of the participating
roles in the nested CAA.
The Nesting Call Behavior Action must be in one of the roles belonging to
the nested CAA. Since there is no defined semantics in order to choose where
to put the nested CAA, the designer must put it in one of the involved roles
(it does not matter in which one).
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The nesting of CAA2 in CAA1, represented in Figure 1, becomes, in the
profile, Call Behavior Action with the stereotype ≪Nesting≫, called CAA2,
that is inside R1 belonging to CAA1 (see Figure 3).

– Composed CAA: composition is the other kind of relationship that we
can use to design CAAs. This is denoted by a Call Behavior Action with
the stereotype ≪Composition≫ and represents the creation of a completely
independent CAA (CAA3 in Figure 1) with its own roles and objects. The
composed CAA is called by a role belonging to the enclosing CAA (CAA1 in
Figure 1). In Figure 3, inside R3 of CAA1, this representation can be found.
Thus, according to the last two elements presented, there are two different
well defined ways to describe nesting and composing of CAAs. This feature
is not present in the previous profile.

– Outcomes: the profile must be able to represent the four kinds of outcome
that a CAA can return. The normal outcome is represented by a Final

Activity Node. The exceptional outcome is represented by an Final Activity

Node with the stereotype ≪Exception≫. The name of the stereotyped Final

Activity Node represents the exception that is signalled to the enclosing
context. It can happen when the post-conditions of the CAA are not met
and every role agrees with the exception to signal. The representation of
these elements can be found in Figure 3 in each CAA and in the FER as
well.
The outcome abort and failure are used to notify how successfully the
BER has been (“abort” if the effects can be undo, otherwise it must be
“failure”). The BER is part of the Coordinated Error Recovery mechanism,
so these outcomes are generate automatically according to how well this
mechanism could be applied with respect to the handled exception. The en-
closing context (CAA1 in Figure 3), from where the nested (CAA2) or com-
posed (CAA3) CAA has been called, receives the corresponding not normal
outcome (“exception”, “abort” or “failure”) through an exception, which is
represented by an Accept Event Action Object Node with an outgoing Inter-

rupting Edge. The node must be stereotyped with ≪Abort≫ (AbortEx, in
Figure 3) or ≪Failure≫ (FailureEx, in Figure 3) according to the outcome.
The Interrupting Edge must be incoming to the associated handler (Call

Behavior Node called CAA3 with stereotype ≪BER≫) for the exception
that has been detected (details about the handler can be found in the next
point).

– Coordinated Error Recovery mechanism: this mechanism allows de-
signers to describe the substitution of the normal behavior execution by an
exceptional behavior. This exceptional behavior starts to execute when an
exception is detected. Firstly, the designer has to declare the area in which
an exception could be detected and then specify the exceptional behavior.
This area is represented by an Interruptible Activity Region. This region must
have associated a set of exception handlers, one of which is called when one
of its related exception is raised.
As explained in the representation of the outcomes, an exception is repre-
sented by an Accept Event Action Object Node with an outgoing Interrupting
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Fig. 3. UML representation of CAAs.
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Edge. The exception handler, that is attached by the Interrupting Edge, is
represented by a Call Behavior Action. The Coordinated Error Recovery
mechanism allows us to combine FER and BER (Call Behavior Action with
stereotype ≪FER≫ and ≪BER≫, respectively). Since there is no defined
semantics in order to choose where to put the nested CAA, the designer puts
it in one of the CAA roles (it does not matter in which one).

According to the exception semantics of CAA, if an exception is raised when
the FER is executing (E5, in Figure 3), the BER mechanism must be started.

A Call Behavior Action with stereotype ≪BER≫ and without name rep-
resents the classic roll back (the System is restored to its previous state).
Otherwise, if the BER has a name, it means that a specific behavior must be
executed to undo the effects that have been done by the CAA. In Figure 1,
the BER uses the composed CAA4 to leave the Object4 in a consistent state.
In Figure 3, it is represented by the Call Behavior Action with stereotype
≪BER≫ and name CAA3. Since BER is a special case of FER the modeling
way does not change therefore there is no need here to introduce another
figure to represent it.

It is important to stress that an exception (represented by an Accept Event

Action Object Node) with a stereotype ≪Abort≫ or ≪Failure≫ could only
be found inside an Interruptible Activity Region where there is at least a
nested or composed CAA (R1 of CAA1 has the nested CAA2).

– External unrecoverable object: in this case we want to represent an
external object that cannot be restored to its initial state after the operations
applied inside the CAA. This kind of object is represented by an Object Node

with the stereotype ≪Unrecoverable≫ (Object5, in Figure 3). We must use
a special handling to be sure that the ACID properties on this kind of objects
are satisfied.

– External recoverable object: this is represented by an Object Node with
the stereotype ≪Recoverable≫ (O2, in Figure 3), and the meaning is the
complement of the previous kind of object. Thus, the state for every object
with this stereotype, can be restored to the last well defined state known just
before the CAA starts. This kind of objects has full transactional support,
therefore ACID properties are satisfied.

– Local shared object: this is represented by an Object Node (O1,6, in Figure
3). This kind of object is used by the roles of a CAA to exchange informa-
tion among them. A local shared object can become either a recoverable or
unrecoverable external object depending on its recoverable or unrecoverable
characteristics. In Figure 1, O1 is local to CAA1, but it becomes external
recoverable for the nested CAA2 (the fact that is recoverable could be seen
in Figure 3).

– Exception Resolution tree: this is represented through a class diagram in
which every class represents an exception and it is related to other exceptions
by a generalisation relationship. By moving from the leaf to the root it is
possible to find out how to manage exceptions in case of concurrency.
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5 Conclusion
In this paper we presented a UML 2.0 profile for CAAs. The work is based on
a previous work and, by putting in evidence the weak points of that approach,
we have justified the introduction of a new one, based on UML 2.0. This profile
is completely platform independent, separating the specification of system func-
tionalities from the implementation of them on a specific technology platform.
Thus, this paper represents an important contribution for high-level design of
fault-tolerant complex distributed systems. Finally, through a theoretical ex-
ample, we showed how a software engineer can model these systems detailing
normal and exceptional scenarios.

On the future work side we are interested in integrating this profile in a de-
velopment process from a high-level system description to the system implemen-
tation, through suitable refinements, able to preserve fault tolerance properties.

Acknowledgments This work has benefited from a funding by the Lux-
embourg Ministry of Higher Education and Research under the project number
MEN/IST/04/04. The authors gratefully acknowledge help from A. Campéas,
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Abstract. Exception specifications can aid in the tasks of writing cor-
rect exception handlers and understanding exceptional control flow, but
current exception specification systems are impractical in a number of
ways. In particular, they are too low-level, too heavyweight, and do not
provide adequate support for describing exception policies.

We propose a novel and lightweight exception specification system that
provides integrated support for specifying, understanding, and evolv-
ing exception policies. Our tool, implemented as an Eclipse plugin for
Java, combines user annotations, program analysis, refactorings, and
GUI views that display analysis results. Using our tool, we analyzed six
programs and observed a 50 to 93% reduction in programmer-supplied
annotations.

1 Introduction

Exceptions can be very useful for separating normal code from error handling
code, but they introduce implicit control flow, complicating the task of under-
standing, maintaining, and debugging programs. Additionally, testing is not al-
ways effective for finding bugs in exception handing code, and these bugs can be
particularly problematic (for example, a program that crashes without saving
the user’s data).

For programmers to write correct exception handlers, they need precise infor-
mation about all exceptions that may be raised at a particular program location.
Documentation is inadequate—it is error prone and difficult to maintain. On the
other hand, precise information can be obtained through a whole-program anal-
ysis of exception flow (including analysis of all libraries used), but this is not
a scalable solution. Moreover, this would complicate team development; if one
programmer changes exception-related code, the control flow in apparently un-
related parts of the program may change in surprising ways.

We believe that exception specifications are a useful tool for reasoning about
exceptions (see, for example, [15, 13, 2, 7]). They serve to document and enforce
a contract between abstraction boundaries, such as method calls. This facili-
tates modular software development, and can also provide information about
exception flow in a scalable manner.

However, current exception specification systems are either impractical or
flawed in one or more ways. In these solutions, specifications are either too
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low-level, too heavyweight, or do not provide adequate support for describing
a high-level exception policy. We believe that a good exception specification
system should be lightweight while sufficiently expressive, and should facilitate
creating, understanding, and evolving specifications.

We have implemented a tool, ExnJava, which provides practical and inte-
grated support for exception policies. It combines user annotations, program
analysis, refactorings, and GUI views that display analysis results. ExnJava
raises the level of abstraction of exception specifications, making them more
expressive, more lightweight, and easier to modify.

Note that we focus on the problem of specifying various properties of excep-
tion behavior, rather than a proposal for a new exception handling mechanism.
The problem of specifying such properties exists independently of the excep-
tion mechanism, though of course some details of our solution would not apply
directly to languages whose exception handling mechanism is significantly dif-
ferent than that of Java. The goal of our work is to shed light on properties that
are important for an exception specification scheme, regardless of the handler
mechanism.

In the next section, we describe the essential properties of a practical ex-
ception specification system; in Sect. 3 we describe how previous solutions have
failed to meet one or more of these criteria. We describe the details of our system
and how it meets these criteria in Sect. 4.

2 Practical Exception Specifications

If an exception specification system is to be practical, we believe that it must
posses several essential properties; we enumerate these here. We use the general
term “exception policy” to refer to programmers’ design intent regarding how
exceptions should be used and handled. An exception policy specifies the types
of exceptions that may be thrown from a particular scope and the properties
that exception handlers must satisfy.

In our view, a good exception specification system, which may include both
language features and tools, should be lightweight while sufficiently expressive,
and should facilitate creating, understanding, and evolving specifications.

Specification Overhead. The specification system must be lightweight. Pro-
grammers are not fond of writing specifications, so the benefits must clearly
outweigh the costs. Additionally, incremental effort should, in general, yield in-
cremental results. If a specification system requires that an entire program be
annotated before producing any benefit, it is unlikely to be adopted.

Expressiveness. The system should allow specifying exception policies at an
appropriate level of abstraction. It should support the common policy of limiting
the exception types that may be thrown from some scope. Such scopes need not
be limited to a method or a class. Rather, they could consist of a set of methods,
a set of classes, or a module.
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As a motivating example, suppose some module provides support for man-
aging user preferences. Suppose also that its implementation should hide how
the preferences are actually stored (e.g., files, a database, etc). Accordingly, its
exception policy is that exceptions pertaining to these implementation details
(e.g., FileNotFoundException, SQLException) should not be thrown by any of
its interface methods. Rather, perhaps such exceptions would be wrapped by a
higher-level exception type, such as PreferenceStoreException. If a low-level
exception is erroneously thrown by an interface method, clients cannot write a
meaningful exception handler without knowing the modules’s implementation
details.

Specifications could also include high-level properties of handlers while re-
maining lightweight.1 Note that these policies need not be exposed to clients, as
they may express implementation details. Such policies (for a particular scope)
could include the following: handlers for exceptions of type E should be non-
empty; thrown exceptions of type E should be logged; exceptions of type E
should always be wrapped as type F before they escape the interface of this
scope.2

Additionally, there should be a way to specify a policy independently of its
implementation, though an implementation may perhaps be generated from a
policy (e.g., code to log exceptions, or wrap some exception and rethrow). So-
lutions that make it easy to implement a policy are useful, but they do not
obviate the need for one. Until it is possible to generate all desired implemen-
tations automatically—which may not ever be fully achievable—we believe that
the distinction between specification and implementation is an important one.

Ease of Creating and Understanding Policies. The solution should provide
tools that aid programmers in creating new exception policies and understanding
existing policies. Without the aid of such tools, reasoning about exceptions is
difficult due to their non-local nature. Such tools may, for example, include
information on exception control flow.

Maintainability. The specification scheme should support evolving specifica-
tions as the code evolves, possibly through tool support. This differs from the
property of being lightweight; a system may be lightweight but inflexible. The
cost involved in changing specifications should generally be proportional to the
magnitude of the code change.

In Java and in other commonly-used languages, exceptions automatically
propagate up the call chain if there is no explicit handler. A specification system
for these languages should take these semantics into account, so that small code
changes do not require widespread specification changes.

1 Supporting these high-level properties is the subject of our future work.
2 A common practice recommended by Bloch [2], among others.

ECOOP-EHWS '05 Glasgow, UK
July 25, 2005

102



3 Related Work

Previous solutions have failed to meet one or more of the criteria described
above; we describe each of these here.

Specifications. One well-known exception specification scheme is that of Java,
which requires that all methods declare the checked exceptions that they directly
or indirectly throw.3

Though we believe it is useful to separate exceptions into the categories of
checked and unchecked (see, for example, [12, 2]), the Java design has a number
of problems that make it impractical. Java throws declarations are too low-level;
they allow specifying only limited exception policies at the method level. This
leads, in part, to high specification overhead. It is notoriously bothersome to
write and maintain throws declarations. Simple code modifications—a method
throwing a new exception type; moving an handler from one method to another—
can result in programmers having to update the declarations of an entire call
chain.

There is anecdotal evidence that this overhead leads to bad programming
behaviors [5, 23, 9]. Programmers may avoid annotations by using the declaration
throws Exception or by using unchecked exceptions inappropriately. Worse,
programmers may write code to “swallow” exceptions (i.e., catch and do nothing)
to be spared the nuisance of the declarations [16, 11].

But even if programmers use checked exceptions as the language design-
ers intended, exception declarations quickly become imprecise4 as code evolves;
statements that throw or handle exceptions will invariably be modified. In our
study of several open-source Java programs (the subject programs are listed in
Table 1), we found that between 16% and 81% of exception types within throws
declarations were imprecise (with an average of 46%). Aside from illustrating the
difficulty of maintaining throws declarations, this casts doubt on whether they
are even a good tool for understanding exception flow and exception policies—
though advocates often claim that this is one of their very benefits [8, 22, 2, 21].

Eclipse5 provides a “Quick Fix” for updating a method’s throws declaration
if it throws an exception that is not in its declaration, but this can only be
applied to a single method at a time. Consequently, programmers would have to
3 In Java, the class Exception is the supertype of all exception types. One of its

subtypes is RuntimeException, which represents unchecked exceptions. Exceptions
that are a subtype of Exception but not a subtype of RuntimeException are checked
exceptions; subtypes of RuntimeException are unchecked exceptions. A method must
declare all checked exceptions that it throws (directly or transitively) in its throws

declaration; unchecked exceptions may be omitted.
4 For a method m, the declaration throws E is imprecise if m does not throw the

exception E, though it may throw subtypes of E. The case where m throws neither
E, nor its subtypes is an interesting one, as this is perhaps less likely to be an inten-
tional design decision. However, due to space limitations, here we do not distinguish
between these kinds of imprecision (though our tool does provide this capability).

5 Available at www.eclipse.org.
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iteratively update declarations until a fixpoint was reached. Eclipse also includes
an optional warning that will list methods whose throws declaration is imprecise,
but this too applies to a single method at a time.

There are several proposals for specifying method post-conditions on excep-
tional exit [6, 13, 1], but these are even more heavyweight than Java throws
declarations. These solutions do, however, provide powerful verification capabil-
ities. Whether such benefits will outweigh the significant cost of annotating an
entire program, however, is unclear.

Other Work. There are several languages and language extensions which ease
the task of implementing a policy, but provide no way to specify the policy.
These include languages with first-class exception handlers [4] and languages
that allow applying handlers to some set of methods or classes [10, 14]. However,
unless new tools are created, these features will further complicate the task of
reasoning about exceptions. It is also unclear how these schemes would work
with programmer-supplied specifications; as far as we are aware, this problem
has not been addressed.

Robillard and Murphy [18] provide a good methodology (though not a tool)
for specifying exceptions at module boundaries; our tool builds on this work. A
number of researchers have developed exception analysis tools [19, 20, 3], but
they all perform a whole-program analysis, which does not scale [17]. For the
task of understanding exception flow, Sinha et al. propose a set of views that
display the results of their exception analysis, but for these they provide only a
high-level design.

4 Features of ExnJava

We have designed and implemented an exception specification system for Java
1.4 that satisfies the initial criteria outlined in Sect. 2. Our design raises the level
of abstraction of exception specifications, while remaining lightweight.

In developing our system, we found that Java classes and packages are not
always appropriate units of abstraction; accordingly, we have designed a simple
module system to be overlaid on standard Java code. A module consists of a set
of Java classes or interfaces; each Java class or interface belongs to exactly one
module (a default module is included for convenience). We add the following
accessibility rule: methods may be accessed outside their module if and only
if they are visible by standard Java accessibility rules and they are marked as
module-public. Such methods are interface methods, as they effectively comprise
the interface of the module; all other methods are internal methods.

We are in the process of implementing support for modules. Consequently,
our current simplifying assumption is to equate modules with packages; each
package is a separate module. Thus, methods with public or protected visibility
are interface methods; private and package-private6 methods are internal meth-

6 Also known as “default” or “friendly” access.
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ods. To emphasize our design goals, in the discussion below we use the term
“module” rather than “package.”

Our system, ExnJava, is implemented as an Eclipse plugin. It contains one
language change: the Java rules for method throws declarations are relaxed
such that only module interface methods require a throws declaration. ExnJava
also includes module-level exception specifications, checked on every compila-
tion. This is implemented as an extra-linguistic feature. Additionally, there is
a Thrown Exceptions view to facilitate creating and understanding exception
policies. Three refactorings help programmers evolve specifications: Propagate
Throws Declarations, Convert to Checked Exception, and Fix Imprecise Declara-
tions. In the subsections below, we describe each of these features, and our initial
empirical results.

4.1 Specifying Exception Policies

In ExnJava, programmers specify exception policy at the module level. We be-
lieve this is a more appropriate level of abstraction than the low-level declarations
of previous solutions, such as method-level declarations in Java. A module has
two kinds of exception policy: one applies to each individual interface method,
the other to the module as a whole.

Interface Method Policies. The exception policy of interface methods is spec-
ified using Java throws declarations. In contrast to Java however, the declara-
tions for internal methods need not be specified—they are inferred by ExnJava.7

Consequently, this design raises the level of abstraction of throws declarations.
To determine the checked exceptions thrown by internal methods, ExnJava

performs an intra-module dataflow analysis. Within a module, the implementa-
tion of our analysis is similar to the whole-program analyses of previous systems
[19, 20]. However, our analysis is scalable, as it depends on the size of each mod-
ule rather than the size of the entire program. The results of this analysis, as
well as additional information about exception control flow, are displayed in the
Thrown Exceptions view, described below in Sect. 4.2.

There are several advantages to this scheme. First, annotations are more
lightweight. As we describe in Sect. 4.4, in our subject programs we found that
inference reduces the number of required declarations by a range of 50% to 93%.
Also, inference gives programmers more precise information. Rather than exam-
ine Java throws declarations, programmers use the Thrown Exceptions view to
determine the checked exceptions thrown by internal methods. And, in contrast
to a pure exception inference tool, programmers can enforce exception policies
by specifying throws declarations on interface methods.

7 It may sometimes be useful to include throws declarations on internal methods; this
is supported.
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Module Policies. It is also useful to specify and enforce a policy that applies
to all of the interface methods of a module. In ExnJava, for each module, pro-
grammers specify the set of exception types that may be thrown by its interface
methods. This ensures that exceptions that are logically internal to a module
are not leaked to its clients.

Module exception specifications thus ensure that the exception policy of
each interface method (the types of exceptions that they throw) also con-
forms to the general exception policy of the module. Recall the example of
Sect. 2 where the storage details of the user preferences module were to be
hidden from clients. For such a module, its specification would include perhaps
PreferenceStoreException but would not include FileNotFoundException.

4.2 Understanding Exception Policies

The Thrown Exceptions view (Fig. 1) displays the details of exception control flow,
to help programmers understand the implemented exception policies. Without
the information provided by this view, we believe that it would be difficult to
correctly create and modify exception policies. Based on some anecdotal evi-
dence, as well as our own programming experience, we believe that the general
difficulty of programming with exceptions is partly due to lack of information
on a program’s exceptional control flow.

Fig. 1. The Thrown Exceptions view in method level mode.

The Thrown Exceptions view displays information computed by either a
whole-project analysis or a per-module exception analysis; the former will pro-
vide more information, but the latter is more scalable. The view has two modes:
method level and module level. The method level view, inspired by the work of
Sinha et al [20], displays a tree view of the project’s methods, grouped by pack-
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age and class. For each method, the checked and unchecked exceptions8 thrown
by the method are listed, as well as the lines of code that cause the exception
to be thrown. Using this view, the programmer can jump to method definitions
that throw exceptions, and can also quickly jump to the ultimate sources of a
particular exception (i.e., the original throw statements or library method calls
that caused an exception to flow up to this part of the code.) Additionally, for
each exception that a method throws, the view displays all catch blocks that
may handle that exception. (This is limited, of course, to catch blocks in code
available to the analysis.)

The module level view displays, for each module, the checked exceptions
that are thrown by its interface methods. For each exception type, the methods
that throw the exception are listed, as well as the detailed exception information
described above. The module view can be useful for creating a module’s exception
policy and can also be used to discover possible errors in the exception policy. For
example, if a particular exception type is only thrown by one or two methods, it
is possible that the exception should have been handled internally or wrapped
as a different exception type.

4.3 Evolving Exception Policies

Our system raises the unit of abstraction to which an exception specification
applies; this alone makes it easier to evolve specifications. If the set of excep-
tions thrown by an internal method changes, no throws declarations need to be
updated, unless one or more interface methods throw new exceptions. This often
occurs when an exception handler is moved from one method to another in the
same module. Though this is a conceptually simple modification, a number of
internal methods may now throw a different set of exceptions. In standard Java,
the throws declaration of each of these methods would have to be manually
updated.

Propagating Declarations. Still, if a code change causes an interface method
to throw new exceptions, the same “ripple effect” of Java throws declarations
may result—requiring changes to the declarations of the transitive closure of
method callers. To avoid this problem, ExnJava provides a Propagate Throws
Declarations refactoring (accessible as an Eclipse “Quick Fix”) that will propa-
gate declarations up the call graph (see Fig. 2). The goal of this refactoring is to
help programmers find the correct location for new exception handlers, rather
than tempting them to carelessly propagate declarations to every method that
requires them. To this end, the refactoring displays a checkbox tree view of the
call graph (which includes only methods whose declarations need to be changed),
which is initially collapsed to show only the original method whose declaration
needs to be updated. The programmer then expands this one level to display
8 Information on unchecked exceptions will not be complete, due to the fact that a

whole-program analysis (including all libraries used) would be required. However,
even partial information on unchecked exceptions can be useful.
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the method’s immediate callers (and callers of the methods that it overrides),
and so on for each level in the tree. Checking a particular method in the tree
will add the declaration to both that method and all the overridden superclass
methods (so as not to violate substitutability).

Fig. 2. The dialog for propagating throws declarations. Methods that are typeset
in italics are those for which the module specification does not allow throwing
this particular exception type.

The refactoring also incorporates the module exception specification; if up-
dating the throws declaration of a particular method would violate the module
specification, the method is displayed in a different color, with a tooltip describ-
ing the reason for the inconsistency. The declaration for the method can still
be changed, but ExnJava will display an error until the package specification is
modified.

Unchecked Exceptions. Sometimes, unchecked exceptions are used where
checked exceptions are more appropriate. In fact, some programmers prefer
to use unchecked exceptions during the prototyping phase, and then switch
to checked exceptions later. ExnJava includes a Convert to Checked Exception
refactoring which changes an exception’s supertype to Exception and updates
all throws declarations in the program accordingly.

Imprecise Exceptions. As previously noted, throws declarations can become
unintentionally imprecise as code evolves: they may include exception types that
are never thrown or types that are too general. (We realize, of course, that
sometimes imprecise declarations are an intentional design choice, to provide for
future code changes. Our tool allows programmers to retain such declarations.)
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When a catch block is moved from one module to another, for example, a
number of interface methods may include an exception type that they will con-
sequently never throw. New callers of these methods will then have to include
handlers for these exceptions—which would be dead code—or must themselves
add superfluous exceptions to their throws declarations. Such problems do occur
in actual code; for example, Robillard and Murphy found a number of unreach-
able catch blocks in their analysis of several Java programs [19].

To solve this problem, ExnJava includes an Fix Imprecise Declarations refac-
toring, which can be run on a module or set of modules. The refactoring first
lists the exception types which appear in imprecise declarations; the program-
mer chooses an exception type from this list. The exception type is chosen first
so that the view can show the propagation of this exception declaration. For
this exception, the view displays all methods where that type appears in an im-
precise declaration. The view displays a call graph tree (similar to that of the
Propagate Throws Declarations refactoring) showing the propagation of imprecise
declarations. This allows the programmer to determine the effect of fixing (or
not fixing) a particular imprecise declaration. Initially all methods are checked,
indicating that their declarations will be updated; the programmer can choose
to not change the declarations for particular methods by unchecking them. (We
chose this design as we hypothesize that most imprecise declarations are out-of-
date rather than intentional design choices.) The view ensures that a consistent
set of methods is chosen; if a method is unchecked, all of its transitive callers
will also be unchecked.

Our tool could be extended to include a “Fix Imprecise” refactoring at the
module specification level, to inform the programmer of specifications that may
no longer be valid. Such a tool would display each module whose specification
lists one or more exceptions that are not actually thrown in the implementation.

4.4 Empirical Results

We analyzed six open-source programs to determine the feasibility of interface
method and module specifications; results are in Table 1. Even with the rough
estimation of each package as its own module, we found that when the declara-
tions of internal methods are inferred there are considerable annotation savings.

We first refactored the visibility modifiers of methods, making them as re-
strictive as possible. This was to simulate a good module design that hides as
many implementation details as possible. (Of course, it is likely that some of the
methods that were not currently used outside their package were intended to be
accessible for future use, but we hope that this inference provides a reasonable
estimate.) We found that after refactoring, the throws inference results in a
50% to 93% reduction in declarations. Also, since many imprecise declarations
appeared on internal methods, inference reduces imprecision by 42% to 78%.
(That is, internal methods contained 42% to 78% of all imprecise declarations.)
Before refactoring, 12% to 56% of declarations were inferable.
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Using modules would very likely increase these annotation savings, since we
expect that most modules will consist of several packages. In such a case, there
likely would be more internal methods (and therefore more inferred declarations).

We also computed the average number of exceptions thrown by the interface
methods of packages in our subject programs. In most applications, packages
generally throw few distinct exception types—fewer than 2 exceptions per pack-
age, on average. This strongly suggests that module exception specifications have
a low annotation overhead.

Table 1. The subject programs studied, number of lines of code, percentage of
declarations that could be inferred (i.e., appeared on internal methods) before
and after refactoring to reduce visibility of methods, percent reduction in im-
precise exceptions after refactoring (i.e., percentage of imprecise exceptions that
appear on internal methods), and average number of exceptions types thrown
by the interface methods of packages.

Inferable decls Exceptions thrown
LOC Before refactoring After refactoring Imprecise reduction per package

LimeWire 61k 45% 72% 53% 2.1
Columba 40k 44% 50% 42% 1.3
Tapestry 20k 12% 75% 68% 0.45
JFtp 13k 44% 93% 59% 0.88
Lucene 10k 56% 81% 75% 1.9
Metrics 7k 23% 72% 78% 0.5
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Invited Lecture 
Exception Handling: The Case Against 

Andrew P. Black  
Portland State University, USA 

 
Abstract  

 
In the early 1980s, Andrew Black wrote his doctoral dissertation at  Oxford 
University; the title was "Exception Handling: The Case  Against".  The 
thesis was in part a reaction to the growing complexity of language design, 
epitomized by the contemporary  proposals for what became Ada.  The case 
that the thesis made against  exception handling was that (a) exceptions are 
not an abstract  concept capable of rigorous definition, but a subjective  
classification of program behaviour, and that (b) such a  classification could 
usually be carried out by general-purpose  language constructs more 
effectively than by a special purpose  exception handling mechanism. 
 
In this talk, Professor Black, will re-examine this argument in the  light of 
more than twenty years of experience, and attempt to  convince you that the 
remainder of this workshop should be cancelled.  Ample time will be allowed 
for questions and discussion 
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Exeption Handling Issues in Context AwareCollaboration Systems for Pervasive Computing
Anand R. Tripathi? Devdatta Kulkarni, and Tanvir Ahmedftripathi, dkulk, tahmedg�s.umn.eduDepartment of Computer Siene,University of Minnesota, Minneapolis, MN 55455 U.S.A.

Abstrat. The fous of this paper is on identi�ation of failure asesin building spei�ation driven ontext aware ollaborative appliations.We �rst present a model for building ontext-based ollaborative systemsin pervasive omputing environments from high level spei�ations. WeidentifyUser Partiipation Failures in Roles, Coordination Failures,Obli-gation Failures, Resoure Disovery and Binding Failure, and ResoureAess Failure as the failure ategories arising in this approah. Exep-tion based approahes to handle these failures are also presented in thepaper.
1 IntrodutionThere is a growing interest in building pervasive omputing environments thatallow mobile users to seamlessly aess their omputing resoures to performtheir ativities while moving aross di�erent omputing domains and physialspaes. A typial user is generally involved in many ativities suh as oÆeworkow tasks, distributed meetings, ollaborative tasks, personal ativities suhas shopping or entertainment. The resoures required for it generally depend onthe user's ontext [1℄ suh as physial loation, network domain, time of day,proximity to other users or some spei� objets. Moreover, the resoure aessmay be ontrolled by dynami seurity poliies that depend on the ontext.The nature of ollaborative interations among users an range from ad hoand unstrutured to highly strutured and oordinated. Moreover, many times agroup of individuals or autonomous organizations may need to form virtual or-ganizations for some ommon mission. User privileges to aess shared resouresand perform tasks generally depend on their roles [2℄ in the ativity as well astheir urrent ontext [1℄.We have developed a programming framework for building ontext-aware ap-pliations in pervasive omputing environments for supporting ollaborative in-terations among users and system-level ambient agents [3, 4℄. In this framework,ontext-aware ollaborative appliations are built from their high level spei�a-tions expressed in XML and realized through a distributed middleware [5℄. The? This work was supported by NSF grant 0411961
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spei�ation model provides the abstration of roles for users and environmen-tal agents to partiipate in an ativity. This spei�ation model is essentiallya omposition framework for integrating users, appliation-de�ned omponents,and infrastruture servies to build the runtime environment of a ollaborativeappliation. From the spei�ation of an ativity, the middleware derives poliiesfor role-based user interations, poliies for dynami resoure binding and aessontrol, and integrates these poliies with the appliation level omponents andsystem level generi omponents to onstrut the runtime environment.The fous of this paper is on the exposition of exeption handling issues insuh environments. We disuss here the nature of the various kinds of auses forexeptions that an arise in a ollaboration ativity. In the past, other researhershave disussed exeption handling problems in ollaboration and workow sys-tem [6℄ and proposed modeling of dynami strutural hanges in the workowenvironments [7℄ . Most of those issues are also relevant in our environment.Moreover, we also outline here issues that arise due to seurity and oordination,and the issues that are related to dynami disovery and binding of resoures.We divide the auses of exeptions in the following ategories: user partiipationfailures in a role, failures in dynami resoure binding, resoure aess exeptions,and exeptions raised by appliation objets and servies integrated through theollaboration framework. We provide an exposition of these issues in this paper.In our urrent researh we are exploring solutions for these problems.Setion 2 desribes our spei�ation model along with a set of examplesof ontext-based dynami resoure binding and aess ontrol. In Setion 3 wedisuss the exeption handling issues in this model and propose extensions tothe our urrent spei�ation model in Setion 4.
2 Spei�ation ModelWe present an overview of the ollaboration spei�ation model whih we havedeveloped [4, 3℄ . The exeption handling issues are disussed in the ontextof this model. In our ollaboration model, an ativity de�nes how a group ofusers ooperate towards some ommon objetives by performing tasks involvingshared resoures and infrastruture servies. A user joins one or more roles inthe ativity, and a role represents authorization of its members to invoke a setof operations representing tasks in the ollaboration spae. Therefore, admissionof users into a role needs to be ontrolled aording to the seurity poliies.The shared resoures/servies required by an ativity may be disovered inthe environment and bound to the objets de�ned in the ativity. Moreover,resoures may also be reated within an ativity or passed as parameters to it.Within an ativity, the poliies for oordination among partiipants as well asbinding and aess ontrol of shared resoures/servies may depend on ontext-based requirements.A role de�nes a set operations that are exeuted by role members. A roleoperation may involve exeution of some ations on objets de�ned within theativity. A role operation an only be invoked by a member in the role. A role
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Ativity ativityNamefParameter objNamegfObjet [Colletion℄ objName RDD rddSpe gfBind Binding-De�nitiongfReation Reation-De�nitiongfRole Role-De�nitiong Fig. 1. Ativity Syntax
operation an have preondition that must be satis�ed before the operation isexeuted. Within an ativity some operations may need to be automatially exe-uted when ertain onditions beome true. Suh operations are termed reation.Context-based aess ontrol poliies and oordination onstraints are spei�edas operation preonditions.We have developed an XML shema for pervasive ativity spei�ations.Here, rather than using XML, we use a notation that is oneptually easy tofollow. In Figure 1, the syntax for the XML shema for ativity de�nition isshown, where [ ℄ represents optional terms, f g represents zero or more terms,j represents hoie, and boldfae terms represent tags for elements and at-tributes in XML shema. We have developed an XML shema, termed ResoureDesription De�nition (RDD) whih is similar to RDF (Resoure DesriptionFramework) and WSDL (Web Servie De�nition Language) to desribe the re-soure and servies required as part of the ativity spei�ations. An RDD for aresoure inludes the attribute-value pairs desribing the resoure, the interfaes,and the events that are exported by the resoure.2.1 Spei�ation of Context-Based ConditionsPreonditions are spei�ed for role operations to enfore required oordinationand seurity onstraints. Suh onditions are expressed in terms of prediatesbased on events ourring within the ativity, role memberships of partiipants,and query methods of the environmental resoures representing external ontextinformation.Internal ontext-related events are generated by exeution of operations andreations within an ativity. Internal events are generated as part of the exeu-tion of operations and reations. These events are represented by the names ofthe orresponding operation or reation. Eah operation event has two prede-�ned attributes: invoker and time. All the events related to previously exeutedoperations and reations represent an event list. The spei�ation model sup-ports various funtions on event lists. The ount-operator # returns the numberof events of a given type that have ourred so far, and a sublist of these eventsan be obtained by applying a seletor prediate. For example, the expression#(opName(invoker=member(Chairperson))) returns the number of times a memberof the Chairperson role has invoked the operation alled opName. Some preon-ditions may depend on the ontext and the previous operations exeuted by the
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role member who is urrently invoking an operation. We use the pseudo variablethisUser in the spei�ation model to identify suh a role member.A boolean funtion member(thisUser, roleId) in the preondition of a roleoperation heks if the user invoking the operation is present in the spei�ed role.The funtion members(roleId) returns the role member list. Set operations anbe performed on role member lists. A ount operator, #, an be applied ona member list. The ount of the members in a role is #(members(roleId)).Within a role operation, a role member is referred to as thisRole.External ontext events are generated by the objets in the environment.For example, an ativity an speify exeution of resoure binding diretives orreations when ertain events our in the environment. Examples of suh exter-nal events inlude user-presene detetion, hanges in the physial environment,and noti�ation of resoure utilization status. To express preonditions that de-pend on the ontext information represented by an objet in the environment,a ondition an inlude funtions whih query the objet state. These queryinterfaes are also delared as part of the RDD. For example, the method isP-resent(userId) supported by a room objet an be invoked to hek if a spei�user is present in the room. Preonditions an also inlude funtions that querya user's membership in a role.2.2 Role Spei�ationThe poliies for oordination and dynami seurity are spei�ed in the form ofpreonditions assoiated with role operations and member admission. Figure 2presents the syntax of a role de�nition. The objets delared within a role rep-resent a separate namespae reated for eah member in the role, and bindingof these names is performed independently for eah member.
Role roleNamefObjet [Colletion℄ objName RDD rddSpe gfBind Binding-De�nitiong[Admission Constraints Condition℄[Ativation Constraints Condition℄fOperation Operation-De�nitiongfReation Reation-De�nitiongFig. 2. Syntax for role de�nition

Spei�ation of Admission and Ativation Constraints: Assoiated witheah role, there are two types of onstraints that are imposed on all role mem-bers: Role admission onstraints must be satis�ed when a user is to be admittedto a role. Role ativation onstraints must be satis�ed for performing any roleoperations and reations. Both these onstraints an be based on the history of
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the operations previously exeuted, the ontext of the user, suh as the user'smembership in other roles, or state of an objet. Consider a Meeting ativityonsisting of a Aountant role and a Chairperson role. The role admission on-straint for the Chairperson role in this ativity are presented below. There arethree onstraints in this example: (1) there an be only one member in the Chair-person role, (2) at the time of joining this role, the user must be present in themeeting room, and (3) only a member of the Manager role an join this role.Role ChairpersonAdmission Constraints#(members(thisRole)) = 0 & room.isPresent(thisUser)& member(thisUser,Manager)Following is an example of role ativation onstraints in the Seretary rolein the Meeting ativity. Based on the spei�ed onstraints, a member of theSeretary role an perform operations only when at least one member of eah ofthe Manager and the Aountant roles are present in the room.Role SeretaryAtivation Constraintsroom.isAnyPresent(members(Manager))& room.isAnyPresent(members(Aountant))
Operation Spei�ation: Members of a role an perform a role operation onlywhen the operation preondition, if any, is satis�ed. As part of a role operationmethods are invoked on objets. The ation part of an operation may inludeinvoation of methods on shared or private objets in the ollaboration spae.The Aountant role member an perform the DisplayFinanialData opera-tion. In this ativity a ontext-based seurity poliy requires that the aountantis allowed to display �nanial data only when three onstraints are satis�ed: (1)the Chairperson role must have exeuted the operation ApprovePresentation,(2) the member of the Aountant role who performs the operation has to bepresent in the meeting room, and (3) the person in the Chairperson role mustalso be present in the room. The operation spei�ation with these preonditionsis shown below.Role AountantOperation DisplayFinanialData fPreondition#(Chairperson.ApprovePresentation) = 1& room.isPresent(thisUser)& room.isPresent(member(Chairperson))Ation projetor.display(data)gIn ontrast to an operation, a reation is not invoked by a user but is auto-matially exeuted when ertain events our. Similar to an operation, a reationis exeuted only when its preondition is true.
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2.3 Binding Spei�ationResoures and servies required as part of the ativity an be spei�ed usingdi�erent Bind primitives as shown below.1. Binding to a new objet: The binding primitive with new spei�es that anew resoure of the spei�ed odebase type should be reated. For examplein a meeting ativity, a whiteboard objet is reated and bound to the namewhiteboard as:Bind whiteboard �nal With new(//odeBase/WhiteBoard)2. Binding to an existing resoure through URL: This form of binding primitivewith diret spei�es that the resoure identi�ed by the given URL should beused in binding. For example, within an ativity the URL of the loation serviemight be well-known.Bind loationServie With diret (//LoationServieURL)
3. Binding through disovery: This form of the binding primitive is useful whena resoure with a partiular set of attributes is needed to be disovered in theenvironment. In the example below, we present spei�ation of a museum infor-mation desk ativity. In this ativity, the audio hannel of user's devie needs tobe bound with the audio player based on the user's loation and also taking intoonsideration the user's hoie of the language. In this example, the audioChan-nel objet is re-binded when there is a hange in the user's loation. Disoverprimitive used in binding of the audioChannel objet spei�es the loation at-tribute and the preferred language in the Audio-Channel-Desription to be usedduring resoure disovery.Ativity Museum InfodeskObjet loationServie RDD Loation-Servie-DesriptionParameter userPrefereneBind loationServie With diret(//LoationServieURL)Role VisitorObjet audioChannel RDD Audio-Channel-DesriptionBind audioChannel When loationServie.loationChange(thisUser)With disover(<loation=loationServie.getLoation(thisUser),language=userPreferene.preferredLanguage>)
3 Exeption Handling Issues
We identify here the auses of various kinds of exeptions that an arise in apervasive ativity. The broad ategories of these auses inlude failures in userpartiipation in roles, failures in resoure disovery and aess, and exeptionsraised by appliation level objets and system level resoures/servies.
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3.1 User Partiipation Failures in RolesIn our previous work we explored use of model heking tehniques based onSPIN for stati veri�ation of seurity and oordination spei�ations of an a-tivity [8℄. The task-ow within an ativity onsisting of sequene of role oper-ations is modeled using PROMELA (a Proess Meta Language). The desiredseurity and oordination poliies spei�ed as safety and liveness properties ofrole operations are expressed through LTL (Linear Temporal Logi). SPIN thenveri�es the required properties over the model. Model heking would detet ifa role operation would be never exeutable. This veri�ation is based on theassumption that role members do not abnormally leave their roles. However, inreality this possibility always exists, i.e. a user either departs or is removed fromthe role due to administrative ations. This an lead to a number of di�erentkinds of failures within the ativity as disussed below.
Coordination Failures: The departure of a member from a role an auseoperations in the same or other roles to beome inexeutable forever unlesssome orretive ations are taken. If the departed member was the only memberto be ever present in the role, none of the operations of that role would beever exeuted in the future. Consider the following workow example, wherea member of the PurhaseOÆer role submits an invoie, the Manager roleexeutes ApproveInvoie, and �nally the Aountant role exeutesMakePayment.Suppose that the Manager role has only one member and that person leavesthe role prematurely before approving the invoie. Suh a ondition needs tobe deteted and it should then enable an alternate approver role, suh as theDiretor, to approve the invoie. Another potential ause of failure in a workowtransation an our when seurity poliies require that some spei� set ofations in the transation must be performed by the same person. For example,in a business ontrat transation the person who prepares the bid must also bethe one to sign the �nal agreement on the ontrat. In suh ases, any prematuredeparture of the person responsible for suh ritial set of operations in thetransation would leave that ativity in inomplete state unless some orretiveations are taken.
Role Cardinality-Based Failures: Our model allows spei�ation of roleativation onstraints and operation preonditions that are based on the numberof members urrently present in the role. For example, the operations of somerole may be ativated only when the number of users present in the role satisfysome ardinality onstraint or when a spei� operation has been exeuted bysome given number of distint members. Suh onditions may beome potentiallyunattainable if a member abnormally departs from the role. As in the previousexample, here also we need to determine whih operations' preonditions area�eted by the abnormal departure of a role member.Corresponding to the above two failure ategories we de�ne RoleMemberEx-eption. There are two entral researh issues that need further investigation.
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First, how to determine whih other roles' operations are a�eted beause ofthe generation of the RoleMemberExeption. Seond, what kind of orretiveor ompensating ations are needed and how should they be supported in thespei�ation model.Obligation Failures: If a ritial operation whih is neessary for the su-essful ompletion of a ollaboration or workow is never exeuted, we term itobligation failure and generate a orresponding ObligationExeption. An ativitymight require a guarantee that when the preondition of an operation beomestrue, the role operation would eventually get exeuted. This requires a notionof role operation obligation, wherein a role operation is required (obliged) tobe exeuted within some time interval after the preondition has beome true.Spei�ation model needs to be extended to support suh obligation onditions.3.2 Resoure Disovery and Binding FailuresDynami disovery and binding of resoures based on the user or ativity on-text is one of the important aspets of ontext-aware systems. Failures may beenountered in an ativity if the required type of resoure annot be found inthe environment by the disovery servie, or the spei� resoure needed by theativity is either unavailable or inaessible due network failures, or aess to it isdenied by the seurity poliies. In any suh ase, appropriate alternate resourebinding diretives are needed. Corresponding to the failures mentioned above, weidentify the following two exeptions. ObjetBindingExeption indiates that theresoure binding was not suessful. Further exeptions are derived from thisexeption to indiate reasons of failure. ResoureDisoveryExeption indiatesthe failure in �nding the exat resoure as required by the ativity.3.3 Appliation Objets and Resoure FailuresA role operation may inlude invoation of a method on some objet in theollaboration workspae. It is possible that this method invoation results inan exeption. These are termed as AppliationExeptions. ObjetInvoationEx-eption is a type of AppliationExeption whih ours when invoking the ap-pliation objet method. The ObjetAessExeption is an AppliationExeptionindiating aess privilege violation. Eah event is internally haraterized bytwo sub events, viz. Event.Start and Event.Finish. Generation of an Applia-tionExeption indiates that the role operation's �nish event was not generatedand operation's desired e�et was not ahieved. Therefore, any other operationswhose preonditions depend on the �nish event should not be exeuted.4 Proposal for Exeption Handling in Context-awareCollaborative AppliationsIn this setion we propose extensions to the spei�ation model to inorporatespei�ation of exeptions and their handling.
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4.1 RoleMember ExeptionsThese exeptions onvey a role member's abnormal departure from a role. Thereare two issues whih need to be addressed in this regard. First is related to themonitoring of role membership and relaying the RoleMember Exeption to otherappropriate roles using guardians [9℄. The monitoring of role membership is onlyrequired when a task-ow involving the role gets ativated. Stati analysis an beused to identify the onditions that would indiate starting of a task. The rolemember monitor an get ativated based on suh events. These monitors willgenerate RoleMember Exeption and would send them to other role managersidenti�ed during poliy derivation. Role managers an de�ne handlers to handlethis exeption. An ativity wide handler an terminate the ativity if the rolemembers ritial for the ativity's progress have left their roles.4.2 Obligation ExeptionsAn obligation exeption ours when a role operation is not exeuted within sometime interval after the operation's preondition has beome true. We speify thisrequirement by extending the operation spei�ation as shown in Figure 3. The
Operation opName[Preondition Condition℄[Ation objId methodSignature methodParameter℄[Obligation fWithin Duration After Event-of-Interestg ℄[Exeption fCase ExeptionType( Ation objId methodSignature methodParameter j Retry Retry-Parameters)g℄

Fig. 3. Operation Syntax: Modi�ed to inorporate Exeption Spei�ation
obligation spei�ation requires that the operation opName must be exeutedwithin some spei�ed time interval after the event Event-Of-Interest has o-urred. The ObligationExeption is generated if the operation is not exeutedwithin the time interval Duration. The Event-of-Interest an be any appliationevent or meta-event suh as the preondition has beome true. Multiple Event-of-Interests with spei� Durations an be spei�ed in the obligation spei�ation.ObligationExeption is generated when any one of these events is not generatedwithin the spei�ed Duration. The exeption spei�ation onsists of the exep-tion name spei�ed by the Case tag and the exeption handling ation spei�edby either Ation tag or Retry tag.Consider a ExamSession ativity onsisting of a single Student role and tworole operations, viz. StartExam and SubmitExam. In the ExamSession ativitythere might be a requirement that the SubmitExam operation must be exeutedwithin three hours of exeuting the StartExam operation. This obligation willbe spei�ed as shown below.

ECOOP-EHWS '05 Glasgow, UK
July 25, 2005

121



Ativity ExamSessionRole StudentOperation StartExam fPreondition urrentTime >= 3.00 pm & urrentTime <= 6.00 pmAtion answerBook.writeAnswers()Operation SubmitExam fPreondition#StartExam == 1Ation answerBook.submitExam()ObligationWithin (3:00:00) After StartExam.StartExeptionCase ObligationExeptionAtion answerBook.submitExam()g
The ObligationExeption is generated if the SubmitExam operation is not ex-euted within three hours of exeuting the StartExam operation. The exeptionlause spei�es that on the ourrene of ObligationExeption the answerBookwill be submitted. It is also possible to speify an appliation event to be gener-ated as part of the Ation lause in the exeption spei�ation. This event anthen be used to trigger a reation to perform some reovery ations.

4.3 Objet Binding ExeptionsFigure 4 shows the extension to the objet binding primitive spei�ation toinorporate spei�ation of exeption handling on binding failures. The exeption
Bind objId [�nal℄[When fEventg℄With [new CodeBase j diret URL j objId j disover (fattribute=valueg) ℄[Exeption fCase ExeptionType( Ation objId methodSignature methodParameter j Retry Retry-Parameters)g℄

Fig. 4. Objet Binding Syntax: Modi�ed for Exeption Spei�ation
handling in ase of binding failures depends upon the binding primitive beingused and the nature of the binding exeption that was generated. For example,in ase where the objet is to be bound with a new resoure or where the objetis to be bound with a resoure whose loation is already known (diret) andthe exeption generated is ObjetBindingExeption then there is a possibilitythat suh an exeption was generated due to a network failure. The exeptionhandling in this ase will be to retry the request for some number of times asshown in the following example.
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Bind whiteboard With new(//odeBase/WhiteBoard)ExeptionCase ObjetBindingExeptionRetry (limit=5)On the other hand if the binding is based on resoure disovery and if thegenerated exeption is ResoureDisoveryExeption then the exeption handlingation may onsist of retrying the disovery request by hanging the disoveryspei�ation. For example, in the Museum Infodesk ativity, if the audioChannelannot be bound with English language resoure an alternative ould be to bindit with Spanish language resoure as shown below.Bind audioChannel With disover(language=English)ExeptionCase ResoureDisoveryExeptionRetry (language=Spanish)
It might happen that the exeption handling ations also generate exep-tions. In that ase the binding is aborted and the objet remains unbound. Thisleads to the issue of how to handle role operations, operation preonditions andreations that depend on the objets whih are not bound. One option is todisable all the role operations and reations that depend on unbound objets.This is similar to having an impliit preondition for eah operation/reationspeifying that the operation/reation will beome ative only when the objetsare bound. Disabling of role operations might lead to other role operations notgetting exeuted at all during the ativity life time.4.4 Appliation ExeptionsAppliation exeptions arise in the ontext of the role operations that are exe-uting ations on the appliation objets. For example, an ObjetInvoationEx-eption an our while the student is taking the exam. Suh an exeption anbe handled by generating an appliation event suh as AtionFailedEvent andenabling the ResumeExam operation. As part of ResumeExam operation the stu-dent an resume taking exam after rebinding with a new answerBook objet. Theobligation requirement for the SubmitExam operation is modi�ed to take intoaount the delay aused by ObjetInvoationExeption. This is shown below.Operation StartExam fPreondition urrentTime >= 3.00 pm & urrentTime <= 6.00 pmAtion answerBook.writeAnswers()ExeptionCase ObjetInvoationExeptionAtion NotifyEvent AtionFailedEventgOperation ResumeExam fPreondition #AtionFailedEvent > 0Ation Bind answerBook With new (//odeBase/AnswerBook)
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answerBook.writeAnswers()Operation SubmitExam fPreondition#StartExam == 1Ation answerBook.submitExam()ObligationWithin (3:00:00) After StartExam.StartWithin (3:00:00 - (ResumeExam.Start.Time - StartExam.Start.Time))g
5 ConlusionsThe primary ontribution of this paper is identi�ation of failure issues for ol-laborative ativities that are immersed in pervasive omputing environments.Exeptions related to User Partiipation Failures in Roles, Obligation Failures,Resoure Disovery and Binding Failure, and Resoure Aess Failure are iden-ti�ed. Our earlier spei�ation model [4℄ is extended to inorporate exeptionspei�ations and their handling.
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Abstract. In this paper we introduce an exception handling mechanism, which 
is part of the kernel of an operating system for embedded applications.  Our 
approach is based on the theory of design by contract and is adapted for the 
development of embedded real-time systems. 

1 Introduction 

The cost of mishandling abnormal situations in general purpose computing (e.g. 
banking applications, ERPs, text editing, , etc.) can be high. For example, it could 
mean the improper decrement of the balance of an account upon the failure of an 
ATM, i.e., it could have decremented the balance and not delivered the money. 
Exception handling is one of the most important control structures of modern 
languages (e.g. Java, C++, Eiffel) to reduce this kind of errors. This structure has 
proven to be very useful in modern systems developed in languages such as Java and 
Eiffel for general purpose computing. 
In embedded systems the cost of mishandled errors can be higher than in general 
purpose computing. For instance, the incorrect release of the brake of a wheel in an 
ABS system upon the failure of a sensor could put a car to spin with potentially 
deadly consequences. Even though embedded systems also benefit from exception 
handling, the criticality of errors in embedded software has motivated a trend in the 
use of more thorough techniques to ensure the correctness of embedded software. One 
of these techniques is the theory of design-by-contract [8]. In this theory, modules 
interactions are regulated by contracts. A contract defines pre and post conditions and 
invariants. A module then guarantees that the post conditions and invariants are 
honored if the preconditions and the same invariants hold when it is called. Even 
though the current implementation of design by contract include the implementation 
of exceptions such exceptions has not being made part of the contract. Such an 
omission diminishes the possibility of the automatic verification of such contracts. 
Two additional factors further complicate exception handling in embedded systems. 
On the one hand, the interaction of the operating system is in general tighter than that 
of a general purpose application, even to the point of being in the same memory space 
and linked together (the OS and the application). On the other hand, it is common for 
an embedded system to interact with the environment in a timely fashion with strict 
requirements on the reaction time. For instance, in a front airbag system, the computer 
needs to ensure that it does not take more than 20 ms from the detection of a collision 
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to the triggering of the chemical reaction that inflates the bag [1]. This type of 
applications known as real-time applications needs to have a deterministic worst-case 
execution time. This determinism could be compromised by an exception handling 
mechanism for general purpose computing. This is due to the triggering of a 
potentially unbounded list of exception handling code when an exception occurs 
making the worst-case execution time difficult to measure. 
In this paper we describe a novel design of a exception handling structure based on 
the theory of design by contract that: (a) aligns exceptions to module contracts, (b) 
enables recasting the interaction with the operating system as a contract, (c) provides 
constructs to interact with legacy code, (d) is implemented and available for use 
inside the kernel, and (e) provides mechanisms to bound the exception handling to 
simplify the measurement of the worst-case execution time of the application. 

2 Exception Handling Problems in Embedded Real-Time 
Systems 

As introduced in Section 1, embedded real-time systems can greatly benefit from 
exception handling. In this section we first discuss the shortcomings related to all 
types of applications and then those related to embedded real-time systems. 

2.1 Exception Handling and Encapsulation Misalignment 

Exception handling is a special purpose control structure that enables the separation 
of the normal code of the software from the abnormal one. By abnormal code we 
mean code that does not contribute to the behavior the software is required to exhibit 
but to corrections to deviations from such behavior. For instance, consider the 
example of a deposit operation to a checking account. The required behavior is to 
increment the balance of the account by a specified amount. An example deviation 
that must be controlled is the failure of the disk where the balance is stored. For such 
case, special code must be added to take care of such situation (e.g., with a retry). The 
deviating situations are known in programming languages as exceptions and the code 
that handles them as exception handling code. 
Both, programming control structures for normal code (e.g. ifs, whiles, switch, etc) 
and exception handling structures define code blocks around which some control flow 
is defined. For instance, in an if-else structure two code blocks are defined, one is 
executed if the condition specified in the if sentence is true and the other if such a 
condition is false. Exception handling, on the other hand, defines two types of blocks 
we identify as: exception guarded and exception handling blocks. The exception 
guarded block is where an exception can occur. Such an exception is a condition that 
a line of code in this block could discover, e.g., a write to disk that failed. Upon the 
discovery of this condition a sentence to transfer the control to an exception handling 
block is used. This sentence is known as an exception raising sentence. The exception 
handling code can either finish its execution and continue the execution of the next 
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sentence after the end of this block or transfer the control to yet another exception 
handling block or even return to the original exception guarded block. 

2.1.1 Encapsulation Corruption 
Both control and exception handling structures can be recursively composed. For 
instance, we can define an if block inside a while, switch, or another if block. It is also 
possible to embed normal control structure blocks inside exception blocks and the 
other way around. In the end, a fundamental property of both of these types of blocks 
is encapsulation. By encapsulation we mean two things. On the one hand, that they 
have a single entry (where execution starts) and exit (where execution continues after 
it is done with the block) points. On the other hand, that the entry point has a 
description that enables a programmer to use such a block without knowing its 
internals. Such a description is both a syntactic description used by the compiler to 
generate code and a semantic description used by the programmer to understand how 
to use it1. Unfortunately, the encapsulation property gets compromised when normal 
and exception handling structures are mixed. This is because if a normal control block 
is encapsulated into an exception guarded block then the if control block would have 
two exit points. For instance, in our deposit example if the code to increment the 
balance is embedded in an if to verify the account number which in turn is embedded 
in a exception guarded block to correct failed writings to disk, then the if block would 
have a normal exit point at the end of its block and an exception exit point that 
transfers the control to the exception handling block. We identify this problem as an 
encapsulation corruption problem. 
The encapsulation corruption is, in general, tolerated in control structures. This is 
because control structure blocks are not opaque, i.e., the detail code of the block is 
collocated with the code that uses it. In contrast, when modularity structures 
(procedures and functions) are used, the encapsulation corruption creates important 
problems. The reason is that the details of the code block is in a different place than 
the code that uses it (calls it). As a result, the embedding relationship of the modules 
and the exception structures can be hidden. In particular, determining where the 
module would return can be difficult. 

2.1.2 Encapsulation Corruption in Design-by-Contract 
The power of modular encapsulation has been used in a more formal manner in an 
approach known as design-by-contract [8]. In design-by-contract modules are used 
along with enforced use contracts. A use contract is composed of three parts: 
preconditions, invariants and postconditions. A precondition specifies a Boolean 
expression that must be true before calling the module. An invariant is a Boolean 
expression that must always be true (before, during, and after the execution of the 
module). Finally, a postcondition is a Boolean expression the module guarantees to be 
true after its execution provided that both the preconditions and the invariants were 
true before its execution. With these contract specifications it is possible to verify the 
integrations of modules into a system and the properties the system can guarantee. 

                                                           
1 This semantic description is added as comments, separate documentation and sometime is not 

present at all. 
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Given that the design-by-contract methodology relies on the encapsulation to enable 
sound verification, the corruption of the encapsulation diminishes its utility. 

2.2 Exception Handling Shortcomings for Embedded Real-Time Systems 

Two shortcomings are specially related to embedded real-time systems: Exceptions 
across the application and OS boundary and the temporal predictability. 

2.2.1 Exceptions Across the Application and OS Boundary 
Operating systems provide a set of services to applications that simplifies the 
computer programming. To ensure the generality of such services (serving the 
purpose of a variety of applications), options should be given to the applications to 
customize both their execution and the interpretation of their results. An important 
part of this interpretation is, hence, the exceptions that can occur during the service 
execution. For instance, failure to write a file could be treated differently by 
unattended (e.g. overnight production plan calculations) and interactive (e.g. word 
processor) applications. In particular, the unattended application may only have the 
option of aborting the application. In contrast, the interactive application could ask the 
user for another file path that could include even a different drive. In addition, 
operating systems need to support multiple languages and hence cannot rely on a 
single programming language mechanism to handle exceptions. For this reason, it is 
still a common practice to transform exceptions into return codes that can be easily 
ignored by the programmer.  
Embedded applications have a tighter relation with the operating system. On the one 
hand, given the limited resource of embedded processors, it is common to link 
together the application and the OS into a single program. On the other hand, 
embedded applications are, in general, devices with a single application. This implies 
that if the application crashes, the whole system crashes (as opposed to a desktop 
application where a word processor, for instance, could be restarted). This 
relationship implies that the cost of ignoring exceptions is higher and the consequence 
of an error in the application can jeopardize the whole system. 

2.2.2 Temporal Predictability 
Real-time systems must have predictable response times. This implies that their 
worst-case execution time must be bounded. The state-of-the-practice to find the 
worst-case execution time is to measure multiple times the execution of the tasks and 
get the worst measurement. Variations to the execution time are due in part to 
different paths modules take in the execution of the code. Exceptions can further 
complicate these paths, potentially leading the execution to a large chain of exception 
handling blocks that, instead of correcting an exception, can induce timing errors. As 
a result, it is important to limit the exception handling chaining to avoid creating a 
timing failure. 
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2.3 Current Solutions 

Different positions have been taken to solve the encapsulation corruption problem 
related to modularity structures. On the one hand, some languages such as Java [4], 
enforces checked exceptions [5] at compile time. That is, modules (methods in Java) 
are forced to either capture all exceptions that can be produced by its code or declare 
the method as a thrower of such exceptions (in the method declaration). Any user of 
the method would then need to capture the exceptions or recursively declare itself as a 
thrower of them. Even though checked exceptions prevent ignoring exceptions, not 
everybody agrees on their benefits. The designers of C# [6] for instance, argue that 
checked exceptions produces the programming habit of capturing generic exceptions 
with empty exception handling blocks. 
For the design-by-contract framework, Meyer [8] proposes an approach where a 
module can either finish its execution successfully or with a failure when its contract 
cannot be satisfied. Such a failure is communicated with an exception. However, the 
interpretation of exceptions exclusively as failures defies the purpose of the exception 
structure. That is, the exception handling block cannot serve the purpose of 
controlling the exception and continuing the execution.  
To deal with exceptions within the operating system, some operating systems such as 
VMS [3], OS/2 [7], and Windows NT [10] have offered support for exceptions. 
However, no uniform interaction with different programming languages is provided. 

3 Design of our Exception Mechanism 

In this section we discuss the design of our exception handling mechanism. Our 
mechanism is designed to be included in the kernel (and was implemented in a kernel) 
enabling the development of multiple language interfaces. Our initial implementation 
was developed along with an interface for the C language given its popularity in 
embedded systems development. 

3.1 Basic Design 

The base of our exception handling mechanism is composed of an exception guarded 
block, an exception handling block, an exception raising function, and an exception 
propagation cancellation function. The construct in the C programming language has 
the following structure: 
01: _TRY 
02: { /* guarded code */ 
03:  if (<exception condition>) 
04:   RAISE(code, parameter); 
05: } 
06: _UNLESS 
07: { 
08:  if (EXCEPTION == code) 
09:   { /* exception handling code */ 
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10:    … 
11:    _ABORT(retcode); 
12:   } 
13: } 
14: _END 

 
In this construct, the guarded block is identified with a _TRY statement and delimited 
with braces. This block is followed by an exception handling block that is identified 
by an _UNLESS statement. Finally, the whole exception block is closed with an 
_END statement. The _RAISE() function allows a program to raise their own 
exception codes after detecting some abnormal conditions. When an exception is 
raised inside the _TRY section, the system invocate the code inside _UNLESS section 
to handle the exception. Then, the program’s control flow continues after finishing the 
_END sentence. Besides this, if the code of the _TRY section is executed without 
producing any exception, the code of _UNLESS section is left unexecuted, to 
continue to the code after the _END sentence. The RAISE() sentence includes two 
arguments, the code of the exception and an argument, subject to the interpretation of 
the applications, that can be a pointer  to any complex data type or object. 

 
Contrary to other exception handling blocks, e.g. Java exceptions, the _UNLESS 
block does not specify the exception it is suppose to handle. Instead the exception 
code can be checked against the macro EXCEPTION to execute the proper code.  
If the exception is properly handled an _ABORT function is used to cancel the 
exception, meaning that it was successfully handled. In such a case, the execution 
continues after the _END statement. If, on the other hand, no _ABORT statement is 
executed the exception is considered unhandled and continues its propagation to other 
embedding2 exception handling blocks. We identify this semantics as propagation-
by-default semantics. It is important to note that in this construct any exception can be 
identified by an integer code and may have a parameter which can be retrieved with 
the EXCEPARAM variable. 

3.2 Preventing Modular Encapsulation Corruption 

To prevent modular encapsulation corruption, we use a twofold scheme. On the one 
hand, we provide multiple control flow options to terminate the exception handling 
blocks to support multiple interpretations of exceptions. On the other hand, a 
mechanism to align the module and exception exit points is also provided. 

3.2.1 Enabling Double Exception Semantics 
The basic design described in Section 3.1, provides a control flow that facilitates the 
orderly termination of the guarded block. This semantics delegates the interpretation 
of the exception to the calling code enhancing the flexibility of the guarded code. 
However, when the code to be guarded include the full body of a module there could 

                                                           
2 An exception guarded block can be embedded into other exception guarded blocks recursively 

as discussed in Section 2. 
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be exceptions that need to be resolved within the module while others would need to 
be propagated outside it. To facilitate the resolution of exceptions inside a module our 
design also provides retry semantics. The retry semantics is build by calling the 
_RETRY function with a retry code once the exception has been handled in the 
_UNLESS block. This statement transfers the control back to the beginning of the 
_TRY block.  An example of the retry semantics follows. 
01: _TRY 
02: { /* guarded code */ 
03:  … 
04:  if (_RETRYCODE) 
05:   /* Code for retry */ 
06:  if (<exception condition>) 
07:   RAISE(code, parameter); 
08: } 
09: _UNLESS 
10: { 
11:  if (EXCEPTION == code) 
12:  { /* exception handling code */ 
13:    … 
14:    _RETRY(1); 
15:   } 
16: } 
17: _END 

In this example, the _UNLESS block has a _RETRY statement with a retry code 
equal to one in line 14. This _RETRY sentence transfers the control back to the start 
of the block in line 2 and the retry code is checked with the variable _RETRYCODE 
to perform special code for the retry. The support for the double semantics – orderly 
failure and retry – promotes the separation of exception handling code internal to a 
module from the code that must be delegated to the module’s caller.  

3.2.2 Aligning Exception and Module Exit Points 
The alignment of the exception and module exit points is handled by creating a code 
block that is always executed whether or not an exception occurs. This block is 
known as the _FINALLY block. This block is intended to encapsulate the finalization 
code of a module ensuring that such code will be executed when the control is 
transferred outside the module. In other words, the _FINALLY block represents a 
single exit point for both the module and the exception handling block, given that 
both exit paths, the normal termination and the exception termination executes it. An 
example of such construct follows: 
01: _TRY 
02: { 
03:  /* guarded code */ 
04:  … 
05:  if (_RETRYCODE) 
06:   /* Code for retry */ 
07:  if (<exception condition>) 
08:   RAISE(code, parameter); 
09: } 
10: _UNLESS 
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11: { 
12:  if (EXCEPTION == code) 
13:   { 
14:    /* exception handling code */ 
15:    … 
16:   } 
17: } 
18: _FINALLY 
19: { 
20:  /* Finalization code: free resource, etc.*/ 
21: } 
22: _END 

In this example, whether an exception occurs or not, the _FINALLY block from line 
19 to 21 executes. In our design, the _FINALLY block must include the cleanup 
actions that must be executed regardless of the occurrence of exceptions. We do not 
keep a record of the locks retained by any section of code, and in consequence, the 
programmer is responsible for the release of any locks within the _FINALLY block. 
Combining _FINALLY and _RETRY. 
The _FINALLY block not only is executed with the orderly-failure semantics of 
exceptions but also with the retry semantics. This implies that every time we transfer 
the control back to the _TRY block with the _RETRY statement the _FINALLY 
block will be executed. This control flow is designed to keep a transactional model of 
the block where resources (e.g. locks) are acquired at the beginning of the _TRY 
block and release in the _FINALLY block. As a result, when using the _RETRY 
statement the resource would be released in the _FINALLY block and reacquired in 
the _TRY block. 

3.3 Exceptions across the application and OS boundary 

Given that our exception mechanism is implemented in the kernel, it can be used in 
the kernel itself. The propagation of an exception that occurs in the kernel toward the 
application depends on how the OS and the application are related. In embedded 
systems this relationship can be either tight or loose. By tight we mean that both the 
OS and the application are linked in the same memory space as a single program (e.g. 
µC/OS-II and OSEK/VDX). On the other hand, by loose we mean that the OS and the 
applications are linked as separate programs and the OS loads the application 
programs (the common model in desktop computers and larger systems).  
When the OS and the application are tightly related, the exception handling 
mechanism can be used without modification and can be used even with contracts. 
However for legacy applications expecting return codes, the exceptions occurring in 
the OS must be translated into such codes. Our design includes a _TRYERROR block 
to wrap system calls to translate exception into return codes. This block is used as 
follows: 

 
01:  int osService() /*Internal code of a system call*/ 
02: { 
03: _TRYERROR { 
04: osServiceCode(); 
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05: } 
06: _END 
07: return; 
 08:   } 

 
A layer of wrappers of this form is then used to support legacy applications that 
cannot handle exceptions. When the applications and the OS are loosely related, 
exceptions are not used. Instead such exceptions are translated into error codes with 
the _TRYERROR block. On the other hand, the termination of applications that uses 
our exception handling mechanism has to ensure that no exception is left unhandled. 
For this purpose a default handler is included in every task in the operating system. 
This handler can be used for the case when: 1) an exception is raised in some task 
(process) for which no block _TRY/_UNLESS/_FINALLY/_END has been 
established, or 2) none of the handlers from the nested blocks provides treatment to 
the exception. This default exception handler is declared using the same exception 
mechanism (_TRY/ _UNLESS/_END block). When this wrapping block traps an 
exception, it translates it into a return code to make it compatible with the legacy 
applications (that expect error codes).  

3.4 Supporting Real-Time Applications 

Real-time applications demand predictable timing behavior. In embedded applications 
with timing constraints not only reliability and safe operation is demanded but also 
the ability to provide guarantees for timing behavior. As explained before, this 
implies that the worst-case execution time of the exception handler must be bounded. 
Exception handlers are not predictable because their propagation rules allows them to 
propagate exceptions as much as required throughout an unpredictable large chain of 
exception handling blocks. In our design, we included dynamic propagation of 
exceptions, but using the mechanism in a restricted form, for applications with timing 
requirements. We establish by means of configuration, a bound in the depth of nesting 
(nesting limits) and in the number of active handlers, which indirectly provides a 
bound on the worst-case propagation time of the exceptions. This scheme can be 
statically analyzed with techniques such as those presented in [11]. 

3.4.1 Exceptions and Design-by-Contract Alignment 
In the original design-by-contract semantics, a contract is fulfilled if all the 
preconditions, postconditions, and invariants are honored through the module 
execution. This original semantics specifies that if an exception occurs then the 
contract is considered broken. In this case, two semantics are offered, either repair the 
broken conditions and retry or shutdown the system gracefully.  
Our design supports both semantics but in addition, it enables exceptions to exit 
module boundaries within the contract agreement. For instance, this could be 
honoring preconditions and invariants and so the caller module could retry calling this 
same module (or calling another) or even doing reparable (by the caller module) 
damage to preconditions. In summary, our construct enables a triple semantics for 
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exceptions in the context of design-by-contract: failure organized failure, retry, and 
reparable failures.  These semantics are explained next. 
Organized Failure: In the organized failure semantics the preconditions, and 
invariants are guaranteed upon the occurrence of the exception. However, the selected 
course of action is the orderly termination of the program, sending the exception 
outside the module. 
Retry: Upon the evaluation of the conditions in an _UNLESS block (and potential 
corrective actions) it can be determined that both the invariants and the preconditions 
are still valid and a retry is possible. In such a case the _RETRY sentence can be used 
to retry the execution of the _TRY block. 
Reparable Failures: In this case the occurrence of the exception could still honor 
preconditions and invariants or cause the preconditions to be invalid. However, 
provided that the calling code knows how to restore broken conditions the exception 
can be propagated to this code for a potential corrective action to keep the system 
running. In this case the alignment of modules and exception allows the common 
_FINALLY block to clean up any acquired resources (e.g. mutexes) to be released. 
These two last semantics align exceptions with contract by keeping corrective actions 
within the limits of the contract (retry) or making the exception propagation as a valid 
exit option within the contract (reparable failures). 

4 Comparative Study of Exception Handling Mechanisms 

The aim of this section is to compare our exception handling mechanism against other 
well known mechanisms. This comparison is based on a previous comparative work 
from Garcia et-al [2]. In this work, Garcia et al identify common design features of 
exception handling mechanisms and compares different design solutions against 
them. These features are presented next. 
 
Exception representation: Different choices exist to encode an exception. Exception 
representations can be classified as (a) symbols, (b) data objects or (c) full objects. 
Our mechanism supports symbols with parameters. 
Checked exceptions: Two approaches are taken related to exception checking 
enforcement: checked exceptions and runtime exceptions as discussed in Section 2.3. 
Our mechanism does not support checked exceptions. 
Clean Separation of concerns based on design by contract: Only Eiffel and our 
mechanism support a clear separation of concerns based on design by contract. 
Specifically, our mechanism aligns exceptions to module contracts enable recasting 
the interaction with the operating system as a contract. 
Attachment of handlers: Exception handlers can be attached to different guarded 
regions, such as a). a statement, b). a block, c). a method, d). an object, e). a class, or 
f). an exception. In our mechanism exception handlers are attached blocks. 
Propagation of exceptions: If a handler does not handle a specific exception, then an 
external handler is searched to handle the exception. This mechanism is known as 
exception propagation. In our design, the exception propagation is controlled by 
dynamically chaining guarded blocks. This chain is bounded in depth with a nesting 
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limit parameter. This parameter limits the number of active handlers (to limit the 
execution time of real-time applications). 
Continuation of the control flow: After an exception is raised and the corresponding 
handler is executed the control cannot resume at the point of the exception. As 
explained before, our mechanism supports the termination and retry semantics. 
Resource cleanup is a requirement of atomic transactions, which are important in 
many concurrent and real-time systems. For example, if an exception occurs within 
the critical section of a routine, it should release the critical section. Otherwise other 
processes wishing to use the critical section will be blocked indefinitely. We extended 
the exception with the _FINALLY code block that executes whether an exception 
occurs or not. This allows us to not keep a record of the locks retained by any section 
of code providing the programmer with a block where the locks can be released 
appropriately. 
Concurrent exception handling: When concurrent exception handling is supported 
one or more exceptions can be raised concurrently. Our mechanism provides limited 
support for concurrent execution by automatic signaling to a supervisor task the 
termination of tasks by exception. 
Table 1 shows the design aspect supported by Ada 95, C++, Java, Eiffel and our 
mechanism and Fig. 1 illustrates the complete semantics of our mechanism. 

 
Taxonomy Aspects Design 

Decisions 
Ada 

95 C++ Java Eiffel Ours 

Only Symbols x     
Symbols with 
parameter 

   x X  Exception 
Representation 

Objects  x x   
Unsupported x   x X 

Optional  x x   Checked Exceptions 
Hybrid   x   

Unsupported x x x    Clean Separation of 
concerns based on 
design by contract Supported    x X 

Block x x x  X 
Methods    x  Attachment of 

Handlers 
Class x   x  

Automatic    x  
Configurable     X Propagation of 

Exceptions 
Explicit x x x   

Termination x x x x X Continuation of 
Control Flow Retry      x X 

Explicit 
Propagations 

x x  x  

Semi 
Automatic Clean-

up 

 
 x x  Clean-up Actions 

Specific 
Construct 

     x   X 

Unsupported  x  x  Concurrent 
Exception Handling Limited x  x  X 

Table 1. Comparison of Exception Handling Mechanism.     
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 Int myCode(){ 
 _TRY { /* Protected Code Section */ 
  <  Program code (protected section). 
     T1.- raise exception [RAISE(code,parameter)] 
     T2.- verify retry identifier [RETRYCODE] > 
  } 
  _UNLESS { /* Exception Handling Code */ 
  <  Exception handling code: 
     U1.- identify the exception code [EXCEPTION] 
     U2.- obtain exception parameter [EXCEPARAM]   
     U3.- retry protected code[RETRY(code)] 
     U4.- abort operation [ABORT(code)] 
     U5.- propagate the exception [default option] > 
  } 
  _FINALLY { /* Termination Code Section */ 
   <Termination Code> 
  } 
  _END 
  r
  } 

eturn;/* return the protected block exit code */ 

Fig 1. Proposed Scheme for Exception Handling.     

5 Concluding Remarks 

In this paper we presented a novel exception handling mechanism implemented in the 
kernel that supports multiple languages interfaces. This mechanism was developed 
along with a C language interface. We also discussed how our mechanism prevents 
the corruption of modular language structures (e.g. procedures and functions) when 
used along with exception handling blocks. This feature is aligned with the theory of 
design-by-contract enabling new semantics to support including exceptions as a 
recoverable exit path within contracts. We finally compared the multiple features of 
our mechanism with other well-known exception implementations. 
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Abstract. It is usually assumed that the implementation of exception handling
can be better modularized by the use of aspect-oriented programming (AOP).
However, the trade-offs involved in using AOP with this goal are not yet well-
understood. To the best of our knowledge, no work in the literature has attempted
to assess whether AOP really promotes an enhancement in well-understood qual-
ity attributes other than separation of concerns, when used for modularizing non-
trivial exception handling code. This paper presents a quantitative studyof the ad-
equacy of aspects for modularizing exception handling code. The studyconsisted
of refactoring part of a real object-oriented system so that the code responsible
for handling exceptions was moved to aspects. We employed a suite of metrics
to measure quality attributes of the original and refactored systems, including
coupling, cohesion, and conciseness. We found that AOP improved separation of
concerns between exception handling code and normal application code. How-
ever, contradicting the general intuition, the aspect-oriented version of the system
did not present significant gains for any of the four size metrics we employed.

1 Introduction

Aspect-oriented programming (AOP) [9] has been proposed recently as a means for
modularizing systems that present crosscutting concerns.A crosscutting concern can af-
fect several units of a software system and usually cannot bemodularized by traditional
object-oriented programming techniques. A typical example of crosscutting concern is
logging. The implementation of this concern should be scattered across all the modules
in a system, tangled with code related to other concerns, because some contextual in-
formation must be gathered in order for the recorded information to be useful. Other
common examples of crosscutting concerns include profilingand authentication [11].

It is usually assumed that the exceptional behavior of a system is a crosscutting con-
cern that can be better modularized by the use of AOP [9, 11, 12]. The most well-known
study on the subject, performed by Lippert and Lopes [12], had the goal of evaluating
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if AOP could be used to separate the code responsible for detecting and handling ex-
ceptions from the normal application code in a large object-oriented (OO) framework.
The authors found that the use of AOP brought several benefits, such as less interfer-
ence in the program texts and a drastic reduction in the number of lines of code (LOC).
However, this first study has not investigated the ”aspectization” of application-specific
error handling, which is often the case in large-scale software systems. Moreover, in
spite of the assumption made by many authors that using AOP for separating exception
handling code from the normal application code is beneficial, the trade-offs involved
in using AOP with this goal are not yet well-understood. To the best of our knowl-
edge, no work in the literature has attempted to assess whether AOP really promotes
an enhancement in well-understood quality attributes suchas separation of concerns,
coupling, cohesion, and conciseness, when used for modularizing non-trivial exception
handling code.

This paper presents a study performed to assess the adequacyof AspectJ [11], a
general purpose aspect-oriented extension to Java, for modularizing exception handling
code. The study consisted of refactoring part of a real OO system so that the code
responsible for handling exceptions was moved to aspects. This study differed from the
Lippert & Lopes study in the following points:

– The target of the study is part of a complete, deployable system, not a reusable
infrastructure, like a framework. Hence, the exception handling code implements
non-uniform, complex strategies, making it harder to move handlers to aspects.

– We employ the metrics suite proposed by Sant’Anna et al [15] to assess attributes
such as coupling, conciseness, cohesion, and separation ofconcerns in both the
original and the refactored system.

– We assess the overall quality of both the error handling aspects and the application
classes affected by them.

– We have not attempted to move error detection code to aspects.

We have found that, in general, AOP improved separation of concerns between ex-
ception handling code and normal application code. Moreover, we noticed that aspects
promote handler reuse, but reusing handlers requires careful design planning. Other-
wise, the behavior of the system may be unintentionally altered when the handlers are
extracted to aspects. Furthermore, contradicting the general intuition, we observed that,
for systems with application-specific exception handling strategies, an aspect-oriented
(AO) solution does not result in a reduced number of LOC. For the system we have
refactored, the AO version had almost the same number of LOC as the OO version. An-
other consequence of using aspects was that, in many cases, it was necessary to refactor
the application code to expose join points that AspectJ can capture. This produced code
that did not appropriately express the intent of the programmer and had a negative im-
pact in the overall cohesion of the system.

This paper is organized as follows. Section 2 describes the setting of our study,
while providing very brief descriptions to the AspectJ language and to the Lippert &
Lopes study. The results of the study are presented and analyzed in Sections 3 and
Section 4, respectively. Section 5 discusses some limitations of our study and the last
section points directions for future work.

ECOOP-EHWS '05 Glasgow, UK
July 25, 2005

138



2 Study Setting

This section describes the configuration of our study. Section 2.1 briefly describes the
AO programming language we have used, AspectJ. Section 2.2 provides an overview
of the Lippert & Lopes study. Section 2.3 describes the Telestrada system, the target of
our study. Section 2.4 presents an example of how exception handling code was moved
to aspects in our study. Section 2.5 presents the metrics we have used to evaluate the
OO and AO versions of Telestrada.

2.1 AspectJ Overview

AspectJ [11] is a general purpose aspect-oriented extension to Java. It extends Java
with constructs for picking specific points in the program flow, called join points, and
executing pieces of code, called advice, when these points are reached. Join points are
points of interest in the program execution through which crosscutting concerns are
composed with other application concerns.

AspectJ adds a few new constructs to Java, in order to supportthe selection of
join points and the execution of advice in these points. Apointcut picks out certain
join points and contextual information at those join points. Join points selectable by
pointcuts vary in nature and granularity. Examples includemethod call and class in-
stantiation. Advice may be executedbefore, after, or around the selected join points. In
the latter case, execution of the advice may potentially alter the flow of control of the
application, and replace the code that would be otherwise executed in the selected join
point. AspectJ also allows programmers to modify the staticstructure of a program by
means of static crosscutting. With static crosscutting, one can introduce new members
in a class or interface, or make a checked exception unchecked.

Aspects are units of modularity for crosscutting concerns. They aresimilar to
classes, but may also include pointcuts, advice, and staticcrosscutting. Aspects are
combined with Java code by means of a process called weaving.Therefore, the tool
responsible for performing weaving is calledweaver.

2.2 Lippert and Lopes’ Study

The study of Lippert and Lopes used an old version of AspectJ to refactor exception
handling code in a large OO framework, called JWAM, to aspects. The goal of this
study was to assess the usefulness of aspects for separatingexception handling code
from the normal application code. The authors presented their findings in terms of a
qualitative evaluation. Quantitative evaluation consisted solely of counting LOC. They
found that the use of aspects for modularizing exception detection and handling in the
aforementioned framework brought several benefits, for example, better reuse, less in-
terference in the program texts, and a decrease in the numberof lines of code. The
Lippert & Lopes study was a important initial evaluation of the applicability of AspectJ
and aspects in general for solving a real software development problem. However, it
has some shortcomings that hinder its results to be extrapolated to the development of
real-life software systems.
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First, the target of the study was a system where exception handling is generic (not
application-specific). However, it is well-known that exception handling is an inherently
application-specific error recovery technique [1]. In other words, the real exception
handling would be implemented by systems built using JWAM asan infrastructure and
not by the framework itself. The authors report that most of the handlers in JWAM
implemented policies such as “log and ignore the exception”. This helps explaining the
vast economy in LOC the authors achieved by using AOP.

Second, the qualitative assessment was performed in terms of quality attributes that
are not well-understood, such as (un)pluggability and support for incremental devel-
opment. The authors did not evaluate some attributes that are more fundamental and
well-understood in the Software Engineering literature, such as coupling and cohesion.

Third, quantitative evaluation was performed only in termsof number of LOC. Al-
though the number of LOC may be relevant if analyzed togetherwith other metrics,
its use in isolation is usually the target of severe criticisms [17]. In the context of the
Lippert & Lopes study, the use of LOC as the sole metric provided a narrow view of the
effects of the aspectization of exception handling on the program quality. It portrayed
the AO solution as very superior to the OO solution even though, as described previ-
ously, this owed more to the nature of the target of the study than to the quality of the
AO solution.

2.3 Telestrada: Our Case Study

Telestrada [4] is a large traveler information system beingdeveloped for a Brazilian na-
tional highway administrator. It comprises five subsystems: Central Database Subsys-
tem, GIS (Geographic Information System) Subsystem, Call-Center Operations Sub-
system, Roadside Operations Subsystem, and Complaint Management Subsystem.

For our study, we have selected some self-contained packages of the Complaint
Management Subsystem (CMS). The implementation of the CMS comprises more than
12000 LOC and more than 300 classes. The packages we selectedfor the study com-
prise approximately 1600 LOC (excluding comments and blanklines) and more than
120 classes and interfaces.

The classes and interfaces of the selected portion of the CMSinclude more than 45
try-catch blocks of varied complexity. They implement diverse exception handling
strategies that range from trivial to sophisticated, for example: (i) do nothing (empty
catch block); (ii) log and close database connection; (iii)log the exception, perform a
rollback, close the database connection, and raise a different exception; (iv) use Java’s
reflection API to create a newMethod object and use it for logging.

2.4 Aspectizing Exception Handling

Our study focuses specifically on the handling of exceptions. We moved all the
try-catch , try-catch-finally , and try-finally blocks in the selected
portions of Telestrada to aspects. Method signatures (throws clauses) and the raising
of exceptions (throw statements) were not affected because these elements are more
related to exception detection than to exception handling.
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Handlers moved to aspects were implemented by means of afterand around advice,
depending on whether or not the handler ended its execution by raising an exception,
respectively. Whenever possible, we used after advice, since they are simpler. After
advice are not appropriate, though, for implementing handlers that do not raise (or re-
raise) an exception because these advice cannot alter the flow of control of a program.
In cases where this was necessary, around advice were used.

New advice were created on a per-try -block basis, excluding cases where han-
dlers could be reused. For each class in the original system,we defined an aspect to
handle exceptions raised by the members of the class. In manycases, moving handlers
to aspects required some refactoring of the original code. The following code snippet
presents an example:

public class GenericOperations {
public static boolean closeResultSet(ResultSet aResultS et) {

boolean r = true;
try { ... // body of the "try" block.
} catch (SQLException e) { System.out.println(e.toString ());

r = false;
}
return r;

} ... // implementation of the class
}

The procedure we used to move handlers to aspects is very similar to theExtract
Method refactoring [5] and the same restrictions apply. After extracting all the handlers
to aspects, we searched for reuse oportunities and eliminated identical handlers. For the
example above, it was necessary to remove references to the local variabler from the
try-catch block before moving it to an advice. Moving thetry-catch block to
an aspect namedGOHandler produces the following code:

public class GenericOperations {
public static boolean closeResultSet(ResultSet aResultS et) {

... // body of the original "try" block.
return true;

} ... // implementation of the class
}
public aspect GOHandler { // another source file

pointcut crsHandler() :
execution(public static boolean closeResultSet(..));

boolean around(ResultSet rs) : crsHandler() && args(rs){
try { return proceed(rs);
} catch (SQLException e) { System.out.println(e.toString ());

return false;
}

}
declare soft : SQLException : crsHandler();

}

MethodcloseResultSet() now consists of the body of the originaltry block,
plus a return statement. In theGOHandler aspect, we defined a pointcut named
crsHandler to select the execution ofcloseResultSet() . The around advice
to which we extracted thetry-catch block is executed at this join point. This
advice callscloseResultSet() by means of theproceed() statement of As-
pectJ and, if no exceptions are raised, returns the result ofthe method execution. If
an SQLException is raised, the exception handler is executed. In this example,
SQLException was softened, meaning that Java’s static checks are suppressed at
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crsHandler . This is necessary because the body ofcloseResultSet() can still
raiseSQLException but, from the viewpoint of the Java compiler, the exception is
not being handled since the handler is in an aspect.

2.5 Metrics Suite

In our study, we have selected a suite of metrics for separation of concerns, coupling, co-
hesion, and size [15] to evaluate both OO and AO implementations. These metrics have
already been used in three different experimental studies [8, 7, 10] and have been ef-
fective to assess several internal quality attributes of Java and AspectJ programs. Some
of them have been automated in the context of a measurement tool [16]. This metrics
suite was defined based on the reuse and refinement of some classical OO metrics [2,
3]. The original definitions of the OO metrics [2] were extended to be applied in a
paradigm-independent way, supporting the generation of comparable results.

The metrics suite also encompasses new metrics for measuring separation of con-
cerns. They were used in our study to measure the degree to which the exception han-
dling concern in Telestrada maps to the design components (classes and aspects), oper-
ations (methods and advice), and lines of code.

The employed metrics suite includes metrics related to fourquality attributes: sep-
aration of concerns, coupling, cohesion, and size. Separation of concerns refers to the
ability to identify, encapsulate, and manipulate those parts of software that are relevant
to a particular concern. Coupling is an indication of the strength of interconnections
between the components in a system. Highly coupled systems have strong intercon-
nections, with program units dependent on each other. The cohesion of a component
is a measure of the closeness of the relationship between itsinternal components. The
software size measures the length of a software systems design and code.

Table 1 presents a brief definition of each metric, and associates them with the
attributes measured by each one. In general, the higher the value of a measure, the
worse the performance of the assessed system with respect tothat metric. Detailed
descriptions of the metrics appear elsewhere [15].

The use of the Concern Diffusion over LOC metric requires a shadowing process
that partitions the code into shadowed areas and non-shadowed areas. The shadowed
areas are lines of code that implement a given concern. Transition points are the points
in the code where there is a transition from a non-shadowed area to a shadowed area
and vice-versa. The intuition behind it is that they are points in the program text where
there is a concern switch. For each concern, the program textis analyzed line by line in
order to count transition points. The higher the CDLOC, the more intermingled is the
concern code within the implementation of the components; the lower the CDLOC, the
more localized is the concern code.

3 Study Results

This section presents the results of the measurement process. The data have been col-
lected based on the set of defined metrics (Section 2.5). The presentation is broken in
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Attributes Metrics Definitions
Concern DiffusionCounts the number of classes and aspects whose main
over Componentspurpose is to contribute to the implementation of a concern

plus the number of other classes and aspects that access them.
Separation Concern DiffusionCounts the number of methods and advice whose main pur-
of Concernsover Operations pose is to contribute to the implementation of a concern plus

the number of other methods and advice that access them.
Concern DiffusionCounts the number of transition points for each concern
over LOC through the lines of code. Transition points are points in the

code where there is a “concern switch”.
Coupling BetweenCounts the number of components declaring methods or

Coupling Components fields that may be called or accessed by other components.
Depth InheritanceCounts how far down in the inheritance hierarchy a
Tree class or aspect is declared.
Lack of CohesionMeasures the lack of cohesion of a class or an aspect in

Cohesion in Operations terms of the amount of method and advice pairs that do not
access the same field.

Lines of Code Counts the lines of code.
(LOC)
Number of Counts the number of fields of each class or aspect.

Size Attributes
Number of Counts the number of methods and advice of each class
Operations or aspect.
Vocabulary Counts the number of components (classes, interfaces, and
Size aspects) of the system.

Table 1.The Metrics Suite

three parts. Section 3.1 presents the results for the separation of concerns metrics. Sec-
tion 3.2 presents the results for the coupling and cohesion metrics. Section 3.3 presents
the results for the size metrics.

We present the results by means of tables that put side-by-side the values of the
metrics for the OO and AO version of Telestrada. Where relevant, results are broken in
two parts, in order to make it clear the contribution of classes and aspects to the value
of each metric. Hereafter, we use the term “class” to refer toboth classes and interfaces.

3.1 Separation of Concerns Measures

Table 2 shows the obtained results for the three separation of concerns metrics. The
AO version of Telestrada performed better for two of the three separation of concerns
metrics, Concern Diffusion over Operations and Concern Diffusion over LOC. The two
versions had the same value for Concern Diffusion over Components.

In the AO version of Telestrada, code related to the implementation of the excep-
tion handling concern was moved to aspects. Therefore, for all the metrics, the number
of classes implementing exception handling was zero. The identical values for Con-
cern Diffusion over Components in the OO and AO versions of Telestrada are due to
the design choice of creating one “handler aspect” for each public class that imple-
mented exception handling in the OO version. Other possibledesign choices would
be to put the exception handling code in a single aspect or, for each exception, create
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Metrics # componentsOO version AO version
Concern Diffusionclasses 8 0
over Componentsaspects - 8

total 8 8
Concern Diffusionclasses 25 0
over Operations aspects - 21

total 25 21
Concern Diffusionclasses 131 0
over LOC aspects - 24

total 131 24
Table 2.Separation of Concerns Metrics

an aspect that encapsulates the possible handling strategies for a given exception. The
three approaches have pros and cons that revolve around the code size vs. modular-
ity trade-off. This trade-off is also faced by developers applying design patterns [6] to
unstructured OO systems. Our design choice was a middle-ground between a single,
possibly bloated, aspect and more than twenty, possibly toofine-grained, aspects.

The AO version exhibited a better Concern Diffusion over Operations (16%
lower than the OO version). For most components, the AO solution was either
equivalent or superior to the OO one. Two exceptions were theAO versions of
db.ConnectionPool andsystem.modifyComplaint.Façade components
of Telestrada. The AO versions of these components had higher values in Concern Dif-
fusion over Operations because the OO version had operations with more than one
try-catch block. When these handlers were moved to aspects, each one hadto be
put in a separate advice. Moreover, handler reuse was low forthese components, since
they implement very context-specific exception handlers.

When moving handlers to aspects, we reused handler advice as much as possible.
For example, even thoughGenericOperations had some methods that had more
than onetry-catch block, the AO version exhibited a lower value in Concern Dif-
fusion over Operations, since some of the handler advice could be reused. However,
we avoided situations where handler reuse could cause exceptions to be swallowed,
since this could change the behavior of the system. For instance, we did not merge the
following two advice, from theConnectionPoolHandler 1 aspect, in a single one:

void around() : setPropertiesHandler() {
try { proceed();
} catch (MissingResourceException mre) { // do nothing
} catch (NumberFormatException nfe) { // do nothing }

}
void around() : logHandler() {

try { proceed();
} catch (Exception e) {} // ignore exceptions when logging

}

Associating thesetPropertiesHandler pointcut to the second advice would
cause unchecked exceptions to be caught and ignored. However, the advice to which
this pointcut is associated does not interfere with the propagation of these exceptions.

Concern Diffusion over LOC was the metric where aspects performed best. The AO
version of Telestrada had less than 20% of the number of concern switches of the OO

1 Handler aspects have the same name as their corresponding classes, plus the sufix “Handler”.
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version. This finding confirms the results in the Lippert & Lopes study. The authors
claim that the use of aspects decreases interference between concerns in the program
texts.

3.2 Coupling and Cohesion Measures

Table 3 shows the obtained results for the two coupling metrics, Coupling between
Components and Depth of Inheritance Tree, and the cohesion metric, Lack of Cohesion
in Operations.

Metrics # componentsOO version AO version
Coupling between classes 73 58
Components aspects - 16

total 73 74
Depth of Inheritanceclasses 73 73
Tree aspects - 2

total 73 75
Lack of Cohesion classes 171 298
in Operations aspects - -

total 171 298
Table 3.Coupling and Cohesion Metrics

The OO and AO versions of Telestrada exhibited very similar measures
for the coupling metrics. The Depth of the Inheritance Tree increased by
less than 3% in the AO version. This was expected, since the use of as-
pects alone does not interfere with this metric. The increase of 2 in the
value of the measure was due to the creation of a new aspect from
which two handler aspects,system.modifyComplaint.FaçadeHandler and
system.registerComplaint.FaçadeHandler , inherited. The super-aspect
was created in order to avoid duplicated code.

Coupling between Components in the two versions was almost identical. New cou-
plings were introduced only when aspects had to capture contextual information from
classes. In these cases, at most one new coupling is created per aspect, due to a reference
from the aspect to its corresponding class.

Among all the metrics, Lack of Cohesion in Operations was theone for which the
AO version of Telestrada presented the worst results. Lack of cohesion in the operations
of the AO version was more than 75% higher than in the OO version. This is due to
the large number of operations that were created to expose join points that AspectJ
can capture. These new operations are not part of the implementation of the exception
handling concern (and therefore do not affect Concern Diffusion over Operations), but
are a direct consequence of using aspects to modularize thisconcern. Refactoring to
expose join points is a common activity in aspect-oriented software development [13],
since current aspect languages do not provide means to precisely capture every join
point of interest.

It is interesting to note that the goal of the Lack of Cohesionin Operations metric is
to capture a partial view of cohesion: it considers only the explicit relationships between
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the attributes and operations. It does not consider direct inter-operation relationships
and the semantic closeness between elements of a component.Moreover, even though
cohesion was worse in the AO version, the aspects had very good measures for Lack
of Cohesion in Operations. This happened because none of thehandler advice accesses
fields of the classes they refer to and the aspects do not definenew fields. Hence, there
are no values of Lack of Cohesion in Operations for the aspects in Table 3.

3.3 Size Measures

Contradicting the general intuition that aspects make programs smaller [8, 11, 12], the
OO and AO versions of Telestrada had very similar results in three of the four size
metrics: LOC, Number of Attribues, and Vocabulary Size. Moreover, the number of
operations of the AO version was 21% higher than the OO version. Table 4 summarizes
the results for the size metrics.

Metrics # componentsOO version AO version
Lines of Code (LOC) classes 1594 1290

aspects - 285
total 1594 1575

Number of Attributes classes 50 50
aspects - 0
total 50 50

Number of Operationsclasses 166 180
aspects - 21
total 166 201

Vocabulary Size classes 113 113
aspects - 8
total 113 121

Table 4.Coupling and Cohesion Metrics

The similar values for LOC were expected. As mentioned in Section 3.1, reusing
handler aspects in Telestrada was much harder then we had originally predicted. Hence,
although some reuse could be achieved, this was not anywherenear the results obtained
by Lippert & Lopes in their study. Moreover, most handlers comprise just a few LOC
and the use of AspectJ incurred in a slight implementation overhead because it was
necessary to specify join points of interest and soften exceptions in order to associate
handlers to pieces of code. In the end, the economy in LOC achieved due to handler
reuse was compensated by the overhead of using AspectJ.

The 7% increase in the vocabulary size of the AO version was entirely due to the
aspects. No new classes were introduced or removed. Similarly to Concern Diffusion
over Components (Section 3.1), Vocabulary Size depends heavily on how the imple-
mentation of the exception handling concern is partitionedamong the aspects.

The number of operations in the AO version of Telestrada was 17% bigger than
in the OO version. The main reason for this increase was the creation of advice im-
plementing handlers. Since there is a one-to-one correspondence betweentry blocks
and advice, except for cases where handlers are reused, and handlers do not count as
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methods in the OO version, this increase was expected. Another reason for the increase
in the Number of Operations was the refactoring of methods toexpose join points that
AspectJ can capture.

4 Analysis of the Results

In general, we found that reusing handlers is much more difficult than is usually adver-
tised [12]. Handler reuse depends directly on: (i) the type of exception being handled;
(ii) what the handler does and whether it ends its execution by returning or raising an
exception; (iii) the amount of contextual information required; and (iv) what the method
that raises the exception returns and what exceptions appear in its throws clause. Fac-
tor (ii) above, whether a handler ends its execution by returning or raising an exception,
is important because it restricts the types of advice that can be used.

When exception handlers are non-trivial, it may be difficult to fully understand the
implications of moving a handler to an aspect. Hence, reusing handlers requires careful
design, in order to avoid changing the exceptional behaviorsemantics of the system.
The same issue applies for exception softening. Softening an exception that is a super-
type of another exception raised within the same context causes the subtype to be soft-
ened as well, possibly with unexpected effects. We believe that developers should never
soften exceptions that are supertypes of many other exceptions, such asException
andThrowable in Java.

In spite of the better Concern Diffusion over LOC of the AO version of Telestrada,
we expected the difference to be even bigger. This did not happen because, as discussed
in Section 2.4, we used around advice whenever a handler did not end its execution
by raising an exception. An around advice executes the code of its selected join points
explicitly, by means of theproceed() statement. Since, in our case study, the code
of the selected join points corresponds to the system’s normal activity, occurrences of
proceed() can be seen as concern switches.

Although the Coupling between Components in both versions of Telestrada was
almost identical, this does not mean that components are as coupled to each other in the
AO version as in the OO version. The measures of Coupling between Components for
the classes in the AO version were lower than in the OO version. Moreover, the sums of
the measures of Coupling between Components for the classesand their corresponding
aspects in the AO version were similar to the measures for therespective classes in the
OO version. Therefore, we can say that the AO version has morecomponents but they
are, in general, less strongly coupled to one another.

As seen in Section 3.3, handler advice accounted for a 10% increase in the number
of operations. As with all size metrics, this value cannot beevaluated in isolation. Al-
though a developer getting acquainted to the AO version willhave to understand more
operations, these operations are simpler and do not mix the system’s normal activity
with the code that handles exceptions. Therefore, the increase in the Number of Opera-
tions caused by the handler advice can be seen as a positive factor.

The number of operations refactored to expose join points that AspectJ could cap-
ture corresponded to 7% of the total Number of Operations measure. Unlike the increase
caused by handler advice, the increase caused by refactoredoperations is definitely neg-
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ative. These new operations are not part of the original design of the system and possibly
do not clearly state the intent of the developer. In some cases, the refactored operations
comprised just a couple of lines that did not make much sense when separated from
their original contexts. This problem may suggest that there is still room for improving
AspectJ so that more join points of interest can be captured.

5 Limitations of this Study

Our study focuses on a single aspect-oriented language, namely, AspectJ. Although
many ideas presented here also apply to other AO languages, some surely do not. For
example, it is not necessary (or possible) to soften exceptions in Eos [14], an aspect-
oriented extension to C#, because C# does not have checked exceptions.

Not all possible strategies for implementing exceptional behavior of systems are
covered. In Telestrada, handlers are implemented exclusively by means ofcatch
blocks. However, more complex applications may include methods and fields which
are specific to the implementation of the exceptional behavior. Moving these additional
elements to aspects would probably affect the quality attributes of the refactored system.

We do not attempt to evaluate the scalability of aspects for modularizing exception
handling. Although the target of our study implements non-trivial exception handling
policies, it is still just part of a system and comprises lessthan 2000 LOC. Moreover,
we only modularize exception handling using aspects. We do not evaluate interactions
between exception handling aspects and aspects implementing other concerns.

6 Future Work

Our most immediate future work is to derive a predictive model for using aspects to
implement exception handling, based on the lessons learnedfrom this study. With this
model, developers will be able to recognize the situations in which it is advantageous to
use aspects to modularize exception handling code. Moreover, we intend to document
as patterns some strategies for structuring exception handling aspects.

As mentioned in Section 5, we have not evaluated the scalability of AspectJ for im-
plementing exception handling. In the near future, we intend to analyze two scenarios:
(i) whether aspects scale up well when the number of handlersgrows; and (ii) whether
it is difficult to integrate exception handling aspects withaspects implementing other
concerns, such as distribution and persistence.
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Position Paper: Handling “Out Of Memory”
Errors ?
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University of Wisconsin-Milwaukee, USA
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Abstract. An “out of memory” error can be catastrophic for a program,
especially one written in a language such as Java that uses memory
allocation frequently. Handling such an error can easily lead to its re-
occurrence. A handler will often need memory while it is freeing resources
(by persisting data to secondary storage, or clearing caches). A simple
technique involves pre-allocating a large chunk of memory that is then
freed at the start of the handler. I report some experience using this
technique and discuss some of the problems that arise when reasoning
about the behavior of memory error handlers.

1 Introduction

A running program may encounter several kinds of severe conditions that re-
sult, not from errors in program logic, per se, but from over use of resources.
Typically there is no hard bound on the time that can be used, but increas-
ing the bounds for memory use (either stack or heap) can have disastrous and
long-term performance problems (swapping). Thus even with a 64-bit address
space, a Java program may be limited to (say) 2 GB of memory. If more mem-
ory is needed than is available, an OutOfMemoryError or a StackOverflowError is
thrown. The latter case typically results from infinite or inappropriate recursion,
but the former can occur easily.

Techniques are available for statically determining the required heap size of a
program (see this year’s FTJP for at least one paper), but these are typically not
applicable for complex programs, and indeed one may wish to run a program that
may exceed memory limits for some inputs. Furthermore, it is not always best
practice to run a program to use the least space possible. Caching a computation
exchanges space for time performance. Later if it becomes known that space is
tight, the cache can be jettisoned with little semantic cost.

One argument against handling OutOfMemoryError is that one should in-
stead simply check whether there is sufficient memory before continuing with a
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memory expensive operation. This alternative suffers from all the same porta-
bility problems (one cannot be sure that one actually has all the memory one
needs, and one cannot be sure that the recovery technique won’t actually have its
own memory problems) and additionally slows down the program by constantly
checking for memory sufficiency. Exceptions are designed precisely to handle this
sort of infrequently occurring behavior; it’s easier to thrown an exception at the
point an error is found rather than always to try to detect problems that might
occur ahead of time.

I have been investigating importing large Java code bases (up to a million
LOC) into our versioned persistent representation. The persistence mechanism
can only be invoked once per “era” and for various reasons, one wishes to create
as few eras as possible. Thus the desired process is to load as much code as will
fit in memory, create an “era,” persist the lot and then continue. Unfortunately
it can be difficult to predict exactly how memory a given Java file will take in
the code base before it is loaded, and thus the safest way to avoid a memory
error is to create one “era” for every file. A less conservative solution is desired:
creating “eras” on demand.

Creating an “era” and saving the code base takes memory itself, and thus I
wrote a simple hook to allocate a large (16 MB) array and when the memory
error is thrown during an import, the outer loop catches the error, frees the array
(through the simple expedient of nulling out the global variable that points to
it) and then creates the “era” and so on. After the cleanup is done, an new
array is allocated and the process of importing code continues. I have used
this code to import the source that came with JDK 1.4.2 (45 Mbytes) into our
(verbose) intermediate form. With a maximum heap size set at 300 Mb (on a
512 Mb system), the program used only 12 eras (handling 11 OutOfMemoryError
exceptions) to load 4500 files. The final result was stored in a custom serialization
format that, in compressed form, is 150 Mb.

Reasoning about such code, and in particular finding errors (debugging) can
be difficult. This paper discusses some of the problems that arise. Some language
design issues are also touched upon.

2 Reasoning about Memory Error Handlers

Excepting program analysis for finding maximum heap requirements, “out of
memory” errors are typically ignored when reasoning about a program; this
exception could arise at almost any point. It is considered an unpredictable fatal
event. Here we consider alternate approaches.

2.1 After Running out of Memory

If one doesn’t just treat a memory error as a catastrophic event that kills the en-
tire program, one needs to examine what happens after the exception is thrown.
At the point that the error is determined, the program is left in a precarious
state: unable to allocate any memory at all. It may seem no different than in any
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other program state (where one could always been just one step away from an
out-of-memory disaster), but a particular problem are “finally” clauses. These
are used to simulate dynamic binding of global context variables (such as the cur-
rent “version” of the state in our case). Such a “finally” clause must be written
carefully to require no heap allocation.

Avoiding memory allocation in “finally” clauses is made harder since the Java
specification does not indicate exactly which language constructs cause memory
allocation (at least as far as I know). Some limited experience with JDK 1.4.2
seems to indicate that even a non-final instance method call can cause an out-
of-memory error. It would be easier to write more portable handling of these
errors if the language specification was able to guarantee certain operations as
safe in low-memory conditions.

If a “finally” clause cannot avoid allocation of memory, then it is better
to allocate the memory before performing the task that needs to be unwound.
Alternatively, a buffer can be allocated, and then the pointer to it is nulled at
the start of the finally clause. The latter case is less desirable, because then it
may be necessary to “fool” the compiler into not freeing the memory earlier. In
any case, this should be a general rule for “finally” clauses, since such cleanup
actions should be runnable in all situations, including low-memory.

2.2 The “Hedge” Technique

Once the stack is safely unwound to the point where the error is caught, the
memory error must be handled. Since so many operations in Java (e.g. opening
a file output stream) involve creating new objects on the heap, it is essential that
an out-of-memory error handler keep a safety “hedge” of memory. This is freed
before we do whatever we can to free memory. In a garbage-collected system,
“freeing” memory means to make it unreachable so that the garbage collector
will reclaim it. The recovery process is the attempt to free normal program
data, before returning to normal program execution. Since the last operation
was aborted due to memory shortage, typically after recovery is complete, one
attempts to redo the task that was interrupted by the out-of-memory error.

Recovery can fail in several ways:

1. Memory is exhausted while running the recovery: the hedge was not big
enough.

2. After the recovery is done, the hedge cannot be reallocated: the recovery
actually consumed memory rather than freeing it.

3. After recovery is done, not a sufficient amount of memory has been freed: if
no memory has been freed then the retry of last task will simply fail again.

The third condition can be imperfectly tested by requiring that a minimum
number of bytes are freed by the recovery. But this cannot ensure that the task
will successfully complete this time; in fact it may simply not be possible to
complete. Thus an interactive program should not blindly repeat any memory-
error-interrupted task after recovery. My Java code importer suffers from this
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problem; if the imported file simply cannot fit in memory, even by itself, the
system tries over and over. This is a fine for my purposes now, but will need to
be changed at some point.

Debugging in such situations is tricky. For obvious reasons, the OutOfMem-
oryError object does not keep a copy of the run-time stack at the time of the
fault, and in handlers one must avoid the string concatenation operator. Thus
it is difficult to determine precisely where the error was raised.

2.3 Systematizing the “Hedge”

It would seem attractive to have a system function keep track of the hedge so it
could be freed right at the point the memory fault happens. A program could
tell the system to reserve a certain amount of heap for low-memory recovery.
This memory would be made available at the time the next OutOfMemoryError
is thrown.

Unfortunately it is confusing to build this ability directly into the run-time
system. Presumably after the first OutOfMemoryError is thrown, the reserve
memory would be brought out. The problem is that the code is not necessar-
ily immediately ready to start recovery, and in fact may catch the error, not
to recover, but rather to change the behavior of later code. The hidden reserve
simply confuses clients. There is also the issue of which module of the program
“owns” the reserve memory.

Rather, the recovery process must be explicit. I have implemented an abstract
class with instances that reserve memory. Such an instance can be asked to
handle an OutOfMemoryError. It handles the bookkeeping (including releasing
the reserve) and then calling an abstract method to perform the recovery.

2.4 Multi-Threading Issues

When multiple threads are active (as in any interactive Java program), the low-
memory condition affects all threads, not simply the one that is using the most
and is (presumably) capable of recovering by freeing currently held memory. In
particular, the thread that first receives the exception may have no useful way
to recover. If one is writing a multi-threaded program, then some co-operation
is needed, so that the offending thread can be notified. In the meanwhile, it will
be necessary to make some hedge memory be available for the other threads.

Such a situation may indicate a need for different memory resource bounds
to be assigned to different threads. Real-Time Java has a way to configure per-
thread heap restrictions, but I am not aware that standard Java has any such
restriction; it seems that such an extension would be a good idea.

2.5 Optimization

A compiler can determine when memory allocation is unnecessary or may move
allocation to a later point. Unfortunately both actions can defeat the attempt to
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reserve a memory hedge for recovery purposes. A language specification should
provide for a way to indicate that a particular memory allocation must not be
moved or removed.

2.6 Summary

An out of memory error need not be fatal, but recovery is tricky.

3 Related Work

A recent paper by Biswas and others [1] discusses the importance of checking for
memory overflow in embedded systems where one cannot rely on the hardware
to avoid (say) the stack and heap overlapping. They use program analysis to
determine a small set of points at which the stack can be tested for overflow at
runtime. At such points, if the stack is “about” to overflow, a special (unspecified)
handler can be called, so as to avoid a serious error when the stack and heap
overlap. The authors also provide techniques for using existing memory more
efficiently when a memory overflow happens, by finding dead global variables or
by compressing heap or global variable data. The intent is that this additional
space wrung out of the existing situation can be used by the handler to cleanly
shut down the embedded system. There is no discussion of using exceptions, or
of “finally” blocks in Java.

For the most part, there is little published about handling OutOfMemoryError
exceptions. The few discussions on this topic I found (on the web) have one of
two viewpoints:

– Don’t catch it; it’s just a fatal random event you can’t do anything about;
or

– Use it to check how much memory is really free by repeatedly allocating
successively smaller arrays (starting with some unreasonably large size) until
the error doesn’t happen.

The last trick is much safer than it looks because, of course, the new array whose
allocation causes the problem is not in fact allocated, and thus there remains a
“lot” of memory. On the other hand, since Java provides a method to check the
remaining memory, it seems like an unnecessary hack.

Contra this common Java advice, a user-friendly program such as Eclipse
must make some attempt to handle OutOfMemoryError exceptions. There does
not seem to be a public specification for when and where to handle such errors,
although this area is one of the areas that Eclipse is tested for. One of my hopes
is that others in the workshop can propose good principles to follow for this case.
This position paper merely reports my own uninformed thoughts and experience.

4 Conclusion

Low memory conditions must be handled by an interactive program and yet
they are particularly difficult to handle. These conditions need not be fatal if
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the program is able to substitute less memory intensive algorithms. I am looking
forward to discussions at the workshop for how to handle these situations. Some
preliminary observations can be made in the mean time:

– A “finally” handler should allocate no memory;
– A per-thread memory limit would help protect threads from each other;
– Compiler writers need to know whether they can delay or elimination allo-

cations;
– There is a need for a well-distributed “best practice” for handling low mem-

ory conditions.
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