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Abstract

The problem of reconstructing the duplication tree of a set of tandemly repeated sequences which
are supposed to have arisen by unequal recombination, was first introduced by Fitch (1977), and has
recently received a lot of attention. In this paper, we place ourselves in a distance framework and
deal with the restricted problem of reconstructing single copy duplication trees. We describe an exact
and polynomial distance based algorithm for solving this problem, the parsimony version of which
has previously been shown to be NP-hard (like most evolutionary tree reconstruction problems). This
algorithm is based on the minimum evolution principle, and thus involves selecting the shortest tree
as being the correct duplication tree. After presenting the underlying mathematical concepts behind
the minimum evolution principle, and some of its benefits (such as statistical consistency), we provide
a new recurrence formula to estimate the tree length using ordinary least-squares, given a matrix of
pairwise distances between the copies. We then show how this formula naturally forms the dynamic
programming framework on which our algorithm is based, and provide an implementatignin O
time and Qn?) space, where is the number of copies.
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1. Introduction

Tandemly repeated DNA sequences consist of two or more adjacent copies of a DNA
fragment. They arise from tandem duplication, in which a sequence of DNA (which may
itself contain several copies) is replaced by two adjacent and identical versions of itself.
After this duplication event, the two copies evolve independently; they generally undergo
mutational events, and thus become approximate over time. Unequal recombination dur-
ing meiosis is widely viewed as the predominant biological mechanism responsible for
the production of tandemly repeated sequerite$], at least when the basic repeated
motif is large (e.g., minisatellites, protein domains, entire genes with their upstream and
downstream regulatory sequences). The problem of reconstructing the duplication history
of tandemly repeated sequences was pioneered by Fitch in[3Rowever, it has not
received much attention until recently, probably due to the lack of available repeated se-
guence data, and also because there has been no dedicated computer program available
to reconstruct duplication histories. With the huge amount of data produced by the vari-
ous whole genome sequencing projects (human, mouse, putter fish, worm, yeast, etc.), this
problem has gained a lot of attention, due to the fact that genomes of higher eukaryotes
contain a large proportion of repeated sequences (more than 50% in the human genome
[7]). Indeed, accurate methods for reconstructing the duplication history of these tandemly
repeated sequences would be important tools for studying the evolution of genomes. They
should provide deeper insights into the processes, dynamics and mechanisms of gene du-
plication, which is one of the main biological events that genomes use for creating genes
with new functions[1]. Another reason for this recent gain of attention is that duplica-
tion histories appears to be new and interesting combinatorial oljfe8isand that their
inference from sequence data yields difficult computational problems.

Most of the recent studies have been devoted to repeated sequences generated by single
copy duplication eventd 0—13] Indeed, the mechanism of unequal recombination allows
simultaneous duplication of several copies, but there is now evid@ie,10,11]that
single copy duplications are predominant over multiple copies duplications, at least with
tandemly repeated genes. For example, one of the most famous tandemly arranged gene
families, the Antennapediatp)-class homeobox genes, have been shown to have arisen
through repetitive single copy duplicatiofist].

The series of duplications that has given rise to tandemly repeated sequences can be
represented by way of a “duplication tree”, which we formally describe below. A dupli-
cation tree which only contains single copy duplications is simply called a “single copy
duplication tree”. Reconstructing optimal single copy duplication trees has been shown to
be NP-hard within a parsimony framewdd3], and several authors described approxima-
tion algorithms. Benson and Dorj@j0] developed a greedy algorithm for reconstructing
single copy duplication trees, based on the parsimony criterion. Using simulations, they
showed that their algorithm performs better than approximation algorithms based on min-
imum ordered spanning trees, which themselves guarantee a performance ratio of 2. More
recently, Tang et a[11] described a dynamic programming algorithm within a parsimony
framework for the same problem, which is based on the lifting technifisieand has
proven performance guaranty of ratio 2. Later, Tang efl&l] and Jaitly et al[13] inde-
pendently described polynomial time approximation schemes (PTAS) for the single copy
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problem (within the same parsimony framework), also obtained using the lifting technique
combined with local optimization and dynamic programming.

In this paper, we place ourselves in a distance framework and present an exact and poly-
nomial O(n®) time and Gr?) space algorithm for reconstructing the optimal single copy
duplication tree, where is the number of copies. Our algorithm is based on the minimum
evolution principld16,17], and uses as input the matrix of pairwise evolutionary distances
[18], calculated from the set of ordered nucleotide or protein sequences. The minimum
evolution principle involves selecting the tree with shortest ordinary least-squares length
estimate as being the correct tree. Due to the use of this principle, our reconstruction al-
gorithm is statistically consisteiit7,19], as opposed to parsimony methods which were
shown inconsistent by Felsenst¢®®]. The content of this paper is organized as follows.
First we describe the duplication model, i.e., the characteristics of the mathematical objects
we aim at reconstructing. Then we describe the minimum evolution framework on which
our algorithm is based and provide a novel recurrence formula for estimating the length
of any given tree, from a matrix of pairwise distances. Using this formula, we describe a
dynamic programming algorithm to solve the single copy duplication tree problem under
the minimum evolution principle.

2. Duplication model

Assuming unequal recombination as the sole mechanism responsible in generating the
copies, FitcH3], and more recently Tang et §l.1,12]and Elemento et aJ5,6] indepen-
dently introduced the following duplication model. A duplication histd¥ig( 1(a) and (b))
is a rooted tree with labelled and ordered leaves denoted 823, ..., n), in which in-
ternal branching nodes correspond to duplication events. In a real duplication history, the
time intervals between consecutive duplications are completely known, and the internal
nodes are ordered from top to bottom according to the moment they occurred in the course
of evolution. However, in the absence of molecular clock (which is almost always the case),
it is not possible anymore to relate the number of mutational events to elapsed time, and
both the order between the duplication events of two different lineages and the root loca-
tion are impossible to recover from the sequences. In this case, we are only able to infer
a duplication tree (Fig. 1(c)), i.e., an unrooted tree with ordered leaves, whose topology
is compatible with at least one duplication history. Recovering the position of the root can
sometimes be achieved through the use of rooting procedures (outgroups, migipint
and createa rooted duplication tree (Fig. 1(d)).

A duplicated fragment may only contain a single copy, in which case we say that the
duplication event is a 1-duplication (or a single copy duplication). It may also contains
2, 3 ork copies, in which case we call the duplication event a 2-, 3k-duplication.

When a rooted duplication tree only contains 1-duplication events (suElya$(d)), we
call it a rooted single copy duplication tree, and it is analogous to a binary search tree.
Consequently, the number of single copy rooted duplication trees is equal to the number of
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Fig. 1. (a) duplication history; (b) single copy duplication history; (c) single copy duplication tree compatible
with history (b); (d) single copy rooted duplication tree obtained when rooting tree (c) on the edge with the bold
point.
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As noted in[3] and later in[6], the root of a duplication tree is necessarily located on
the path between the most distant copies (i.e., Lgrh the locus, simply due to the fact
that the root represents the common ancestor of these two copies. In the case of multiple
duplications, additional constraints restrict possible root posi{@h®8ut it is easy to see
that a single copy duplication tree can be rooted anywhere along the path between the
most distant copies. Suppose that we systematically root single copy duplication trees on
the rightmost edge, i.e., the edge associated witlm this situation, the left subtree is a
single copy rooted duplication tree with- 1 leaves. Therefore, the number of single copy
unrooted duplication trees withleaves is equal t@',,_1. Since this number is exponential
(see above), searching for the optimal single copy duplication tree using a trivial algorithm,
i.e., one based on exhaustive enumeration of all trees, is impracticalmibéarge.

A single copy rooted duplication tre¥; ,, whose leaves are labelled with the ordered
set of copies(1,2,3,...,n), is obtained by combining two rooted subtreEs, and
X p+1,n Whose leaves are labelled with the ordered $&12,3,...,p) and(p + 1, p +
2,...,n), respectively. Identically, a single copy unrooted duplication tree,@n.1., n is
obtained by combining two rooted subtrees,, X 11,1 with elementary subtre¥,, ,
(1 < p <n—1). Inthe rest of this paper, the ordered sgtf + 1,..., q) is denoted as
[p, ¢q], while, depending on the context,, , refers to a rooted tree dip, g] or to [p, g1
itself.

3. Minimum evolution principle and least-squarestree length estimation

3.1. The minimum evolution principle

The minimum evolution (ME) principl¢l6,17] involves selecting the shortest tree as
being the tree which best explains the observed sequences. The tree length is equal to the
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sum of edge lengths and edge lengths are estimated by minimizing a least-squares criterion.
The problem of inferring optimal phylogenies (i.e., without restriction to duplication trees)
within the ME principle is commonly assumed to be NP-hard, as other distance-based phy-
logeny inference probleni22]. Nonetheless, the ME principle forms the basis of several
phylogenetic reconstruction methods, generally based on greedy heuristics. Among them
is the popular Neighbor-Joining (NJ) algoritH3]. Starting from a star tree, NJ itera-
tively agglomerates external pairs of taxa so as to minimize the tree length at each step. We
also recently described FastME, a new software also based on the ME principle but imple-
menting efficient procedures to refine an initial tree by subtree rearrangements, and showed
using simulations that it is highly accurate in reconstructing the correct top{ddy

Assuming that we have consistent distance estimators which converge towards the true
evolutionary distances as the length of the sequences increases, the ME principle combined
with ordinary least-squares (OLS) tree length estimation is statistically condikteh®].
Statistical consistency is an essential property in phylogenetic reconstruction, since it en-
sures that, for the given method and assuming consistent distance estimators (in the case of
distance-based methods), the probability of recovering the correct topology increases with
sequence length. Inconsistent reconstruction methods, such as parsimony in some cases
[20], may converge towards a wrong tree as the amount of data increases. Note that these
results were established for any tree topology and then apply to (restricted) duplication
trees.

In this section, we introduce a new recurrence formula for estimating the length of any
given tree topology using OLS, given a matrix of pairwise evolutionary distances between
copies. The application of this general formula to (restricted) single copy duplication trees
forms the basis of our reconstruction algorithm.

3.2. Notation

A is a matrix of pairwise evolutionary distances between copiesjarisithe distance
in A between copy and copy;j; T is an unrooted tree topology, affdrepresents a valued
tree with topologyr". T induces a matrix of pairwise distances between copies, which we
denoteA” . In this matrix,al.T. denotes the length of the tree path linking comnd copy;.
The sum of the edge lengths 6fis denoted a<.(T). As shown inFig. 2, we consider in
the rest of this section th&t is composed of three non-intersecting subtrée® andC.
These subtrees are linked together by three edges whose lengthsbaaadc. A is the
union of two subtreed; andA», and in turnA1 is the union of two subtree$;1 andAj».
Two edges with lengthg; anda; link the root of A to the roots ofA; andA», respectively.
In the remainder of this paper, we c&lithe subset of leaves that do not belongitdi.e.,
R=BUC).

Let X be any subtree df , andX be the average distance Thbetween the root ok
and its leavesAyxy and A,T(Y are the average distances between the leaves of two non-
intersecting subtreeX¥ andY, in the distance matrices and A7, respectively:

1 1
Axy = —— Sii, AT = sT.
| X11Y] ieXX': N XY Z K
JjeY ieX,jey
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Fig. 2. Unrooted tre§", composed of three subtregs B andC.

Given a topologyr” and a distance matrix, the OLS edge length estimation 6fis
obtained by minimizing the following sum of squares:

}:@5—&ﬂ?

i,jeT
3.3. OLStree length expression

Theorem. Let the edges of T be estimated by OLS. Then:
L(T)=(L(A)—A)+ (L(B)—B)+(L(C)-C)
1
+ E(AAB + Aac + Apc)- 1)

Moreover, (L(A) — A) isrecursively obtained in the following way:
(a)if A isaleaf, then

(L(A)—A)=0,
(b) otherwise, (L(A) — A) isgiven by

_ _ _ 1
(L(A)—A) = (L(A) — A1)+ (L(A2) — A2) + >4,

1/]A2| —|Aq] 1/1A1]l - 1Az
- —)A — ——— JAur, 2
+2( Al A1R+2 Al AR (2

and the same appliesto (L(B) — B) and (L(C) — C), by symmetry.

Proof. UsingFig. 2 we see that:
L(T)=LA)+LB)+L(C)+a+b+ec. (3)

It has been shown that the average distance between two non-intersecting skibtrees
andY is preserved between and A7, when these subtrees are adjacent to a common
ternary node (i.e.A and B, A andC or B andC in Fig. 2), and when edge lengths &f
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are estimated by OLR5-27] This property holds for any tree topology and then holds for
(restricted) duplication trees. Using this propemtyy 5, Asc and Apc can be expressed
in the following way:

() Axp=Alz=A+a+b+B,

@iy Aac=Ac=A+a+c+C,

@iy Apc=A%.=B+b+c+C, 4)
and Eq.(1) is obtained by combining Eq€3) and (4) Identically, the length of is equal
to the sum of its edge lengths:

L(A)=L(A1) + L(A2) + a1+ a2, (5)
while A is given by:

_ A — |A2| _
A=—— A — A»).
A (a1 + A1)+ Al (a2 + A2) (6)

a1 anday are obtained by rewriting Eq4) for A1, A2 and R, in place ofA, B andC;
solving this linear system, we obtain:

1 1 _
al = EAAlAZ + EAAIR - EAAzR - Al,
1 1 1 _
az= EAAlAZ + EAAgR - EAAlR — Ao, (7)

Eq.(2)is finally obtained by subtractin@) to (5), and replacing, anday by their ana-
Iytical expressior{7), while equality(L(A) — A) =0, if A is a leaf, is a direct consequence
of the definitions. O

3.4. Properties

In Eq. (1), (L(A) — A), (L(B) — B) and (L(C) — C) only depend on the structure of
subtreesA, B andC, respectively. Indeed, E¢7) shows that the edge length depends
on the copies in subtreet;, A2 and R = B U C, but not on the structure at (i.e., the
content of B andC). The same applies wittp. Identically, this property is valid for edge
lengthai1, which depends on the copies in subtrdes, A12 andR’ = A, U R, but not on
the structure oR’, and therefore not on the structurerflt can be established in this way
that none of the edge lengths ihdepends on the structure &f Therefore, to compute
L(T), we independently compute the values fbfd) — A), (L(B) — B) and (L(C) — C),
and then apply Eq1).

For the same reasond, (A1) — A1) and(L(A») — A») only depend on the structure
of A1 andA», respectively. Therefore, to computie(@) — A), we independently compute
the values for L (A1) — A1) and(L(A2) — A»), and then apply E(2).

Finally, it has to be noted that the tree length estimate does not depend on the internal
node chosen to define the B, C partition[25,26], even when this property is not obvious
from above theorem.
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4. Reconstructing optimal single copy duplication treesunder the ME principle

The above recurrence formula enables us to calculate the OLS length of any unrooted
tree topology, given a matrix of pairwise distances. In this section, we seek the duplication
tree whose length is minimum, among all possible single copy duplication trees. As we
shall see, the above formula not only allows tree length estimation, but also forms the basis
of a dynamic programming algorithm which solves the problem at hand.

4.1. Basic algorithm

Eq. (1) consists of four independent term&:(@) — A), (L(B) — B), (L(C) — C), and
the remaining term. As we said abové,(4) — A), (L(B) — B) and (L(C) — C) only
depend on the structure of subtre€sB and C, respectively, while the remaining term
consists of average distances, and therefore does not depend on the stru¢fute@otC.
To minimize Eq.(1), we adopt a divisive strategy, which consists first in partitioning the
whole set of copies into three subsdts B and C, then in independently computing the
structure which minimizesI((X) — X) for each of these subsets, and finally in applying
Eq. (1). The optimal tree is given by the optimal partitioning. Moreover, the tree length is
independent of the node used to define the partitionning (Se8tj@nd we only need to
examine partionnings where one subset, &g.contains a single copy that corresponds
to n (Section2). Identically, to obtain the optimal structure fdr, Eq. (2) shows that we
need to evaluate every partitioning4finto A1 andA,, then to independently compute the
structure ford, and A, which minimizes {(X) — X) and finally to select the partitioning
which minimizes Eq(2). The same holds foB by symmetry.

Although used in some divisive clustering meth{@-30] this strategy cannot be used
to reconstruct optimal phylogenies wheris large (except for diameter-based optimality
criteria[29]), since the number of combinations of subsets is exponential. This is different
with single copy duplication trees since we only have to evaluate combinations of two
adjacent intervals, and the total number of combinations (is>0 A related approach
for phylogenetic reconstruction is described by Bryg@t], assuming that splits (taxon
subsets) of the inferred tree have to be taken from a known and polynomially sized set of
possible splits.

Let S andM be two(n —1) x (n — 1) matricesand X p <g <n—1.§, , represents
the minimal value of L(X, ;) — m) whereX, , is any (single copy duplication) sub-
tree with leaves irip, ¢1, while M, , represents the position wheresS,, , is optimally
partitionned (see below). Léf; represent the subset of copies that do not belorig,te
(i.e., X573 = X1,p—1 U Xy441,,). Starting from an intervall, n] representing the copies
and from the distance matrix between these copies, the reconstruction algorithm for single
copy duplication trees necessitates the three following steps:

(a) The first step consists in using K@) to calculatesS, , for a growing intervalX , ,
of [1,n — 1], until ¢ — p =n — 3. ComputingS, , requires evaluating the combination
of every couple of adjacent intervals, ,, and X, 11,4, with m varying fromp to g — 1.
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Therefore, using Ed2), S, 4 is given by:
Sp,m + Sm+l,q

1
+ ? AXp,m Xm+l,q

min
- 1 ptq=2m-1
psms<g-1 +2( q—p+1 )AXp,mX/Tq

: (8)

Sp.q =

12m—p—q+1
+2( q—p+1 )AXm+l.qX1Tq

while M, , is the value ofz minimizing the above expression. Moreover, we héyg =
Ofori<p<n-—1.

(b) The second step consists in using Bgto search for the interval®1 ,,,, X 4+1.4—1
which minimizesL (T') when combined wittX, ,.

(c) In the third step, the complete tree topology is recovered by stepping back through
the optimal intervals stored it¢. Then, edge lengths are estimated using(E).starting
from pairs of adjacent leaves and moving up until tree rgaiverage root-to-leaves dis-
tances (theX terms) are computed using E@) and used in subsequent applications of

Eq. (7).

Algorithm 1. Single copy duplication tree reconstruction algorithm.
input[1, n], the order of the copies, and the distance matrix
output the optimal single copy duplication trée
S <« (m—1) x (n—1) matrix
M <~ (n —1) x (n — 1) matrix
for [ from 1 ton — 3 do

for i from1lton —1—1do

computes; ;; andM; ;4 using Eq.(8)

end for
end for
L*(T) < o0
for m from 1ton —2do

computeL(T) for X1, Xm+1,n—1, Xn.» Using Eq.(1) andS

if L(T) < L*(T) then

L*(T) < L(T), m* <~ m

end if
end for
chosen as root and connect it t&1 ,+ and X« ,—1
createT by recursively divising those subsets usitig
estimate edge lengths &fusing Eqs(6) and (7)
returnT

This algorithm is summarized above. The number of intervals which need to be evalu-
ated during the first step is(@?). Evaluating a single interval using E(R) necessitates
the evaluation of @) combinations of adjacent sub-intervals. Evaluating a single combi-
nation requires the average distances betweerXi)g, X,,1+1, and X5z subsets to be
computed, and necessitate:©) time. Therefore, the total time complexity of the first
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step is @r®). As we show in the next section, the time required to evaluate a single com-
bination of adjacent sub-intervals can be lowered {@)@sing data preprocessing. When
using this refinement, the total time complexity of the first step is lowered#8)0

In the second step, we evaluate every pair of inter¥alg,, X,,+1.,—1. Therefore, the
number of combinations that need to be tested in the second step i&)jnA3 in the
previous step, evaluating a single combination requires average distances between intervals
to be computed. Therefore, the time complexity of the second stei®) Gand can be
lowered to @n) when using preprocessing.

Constructing the tree topology is a simple tree traversal and requires Wwhile edge-
length estimation is very close {&6], which is Qr?), but can here be lowered to(@
thanks to preprocessing. The total time complexity {8 in the above “basic” descrip-
tion of our algorithm, and can be lowered t@/3) using algorithmic refinements based on
data preprocessing. We describe these refinements in the next section.

4.2. Preprocessing and O(1) computation of average distances

Egs.(1), (2) (or equivalently(8)) and(7) require the average distances between subsets
of copies, which we denote as B andC. These subsets define a partition[dfr], just
as inFig. 2 To calculate these average distances, we use the following lemma.

Lemmal. Let A, B, C beany partition of [1, n], and A, B and C be the sets of copiesthat
do not belong to A, B and C, respectively (i.e., are the complementsof A, B and C); then:

AaB (IAl(n = |A)A g5+ 1Bl(n — |BI) A — ICl(n = ICI) Acg),

1
 2|A||B|
and Asc, Apc are obtained by symmetry.

Proof. Using the average distance definition, we have:
1
Al|BlAap= ) 5ij=§( DT D D TR Y Sij)
icA,jeB i€eA,jeBUC ieB,jeAUC i€AUB, jeC
and the result follows. O

To compute in @1) any of the average distances that are required in @9s(2), (7)
and (8) it is then sufficient to know all average distances between any int&ryaland
its complementary seX ;. Our preprocessing involves computing these values for all
intervals of[1, n]. This is achieved using the following lemma.

Lemma2 Let1< p < g <n;then:

Ax, x. = ! @ = P)n—q+P)DBx,, X
pacra (g—p+Lmn—g+p-1) —Upy+ Vg )

with

1
AXP-PXP«_P = n— Z 8””
i€[1l,n],#p
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Upg=Upsy14+6p, and U, ,=0,

Vog=Vpiig—08pg and Vyo= > 5y
i€[1l,n],#q

Proof. Using the average distance definition once again, we have

(g—p+Dn—qg+p—DAx, x5 = Z 8ij
i€lp,ql,jell, p—1Ulg+1,n]

= Z 51] + Z Siq - Z quv

i€lp,q—1l,jell, p—1]Ulg,n] i€lp,q—-1] J€ll,p—1U[g+1,n]

and the result is obtained by setting:

Upg= Z Sig:

ielp.g—1]

Vpg= > 8. O

J€l1, p—1]U[g+1,n]

Using recursions okemma 2 we compute aIIAXp‘qX,Tq average distances in(@?).

We first initialize theAx, ,x, = Vp.p/(n — 1) terms, each of them requiring(® op-
erations; then we compute all oth&r, , and Vv, , terms, each of them requiring(D
operations; finally, we compute all remainiagy, , x,. average distances, each of them
again requiring QL) operations. This preprocessing require&® time and space, and

allows an Qn®) time complexity for our algorithm in Sectioh 1

5. Conclusion

In this paper, we present an exact algorithm for reconstructing single copy duplication
trees from a matrix of evolutionary distances between tandemly repeated sequences, using
the minimum evolution criterion. Our algorithm is based on a novel recurrence formula for
ordinary least-squares estimation of tree length. Using preprocessing and a dynamic pro-
gramming approach, we show that computing the optimal single copy duplication tree only
requires @r°) time and @r?) space. It would be interesting to compare the performance
of our algorithm with some other approaches, in terms of topological accuracy. Indeed,
heuristic methods such as Neighbor-Joining (R2B] or DTSCORE[32] often do well
in practice. A recent duplication history reconstruction approach based on tree rearrange-
ments also appears promisif@]. Moreover, NJ could easily be adapted to single copy
duplication tree reconstruction by only agglomerating adjacent pairs of taxa. However, an
exact algorithm such as ours has performance guaranty and will then avoid some possible
(even rare) shortcomings that would trap heuristic approaches into local minima. A direc-
tion for further research would be to extend (if possible) our results to multiple duplications
and to other distance criteria, such as weighted least-sq[&8&=] balanced minimum
evolution principle[35], or to demonstrate the NP-hardness of these tasks.
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