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Abstract

The problem of reconstructing the duplication tree of a set of tandemly repeated sequence
are supposed to have arisen by unequal recombination, was first introduced by Fitch (1977),
recently received a lot of attention. In this paper, we place ourselves in a distance framewo
deal with the restricted problem of reconstructing single copy duplication trees. We describe a
and polynomial distance based algorithm for solving this problem, the parsimony version of
has previously been shown to be NP-hard (like most evolutionary tree reconstruction problem
algorithm is based on the minimum evolution principle, and thus involves selecting the shorte
as being the correct duplication tree. After presenting the underlying mathematical concepts
the minimum evolution principle, and some of its benefits (such as statistical consistency), we p
a new recurrence formula to estimate the tree length using ordinary least-squares, given a m
pairwise distances between the copies. We then show how this formula naturally forms the d
programming framework on which our algorithm is based, and provide an implementation in(n3)

time and O(n2) space, wheren is the number of copies.
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1. Introduction

Tandemly repeated DNA sequences consist of two or more adjacent copies of a
fragment. They arise from tandem duplication, in which a sequence of DNA (which
itself contain several copies) is replaced by two adjacent and identical versions of
After this duplication event, the two copies evolve independently; they generally un
mutational events, and thus become approximate over time. Unequal recombinatio
ing meiosis is widely viewed as the predominant biological mechanism responsib
the production of tandemly repeated sequences[1–6], at least when the basic repeat
motif is large (e.g., minisatellites, protein domains, entire genes with their upstream
downstream regulatory sequences). The problem of reconstructing the duplication
of tandemly repeated sequences was pioneered by Fitch in 1977[3]. However, it has no
received much attention until recently, probably due to the lack of available repeat
quence data, and also because there has been no dedicated computer program
to reconstruct duplication histories. With the huge amount of data produced by the
ous whole genome sequencing projects (human, mouse, putter fish, worm, yeast, e
problem has gained a lot of attention, due to the fact that genomes of higher euka
contain a large proportion of repeated sequences (more than 50% in the human g
[7]). Indeed, accurate methods for reconstructing the duplication history of these tan
repeated sequences would be important tools for studying the evolution of genomes
should provide deeper insights into the processes, dynamics and mechanisms of g
plication, which is one of the main biological events that genomes use for creating
with new functions[1]. Another reason for this recent gain of attention is that dupl
tion histories appears to be new and interesting combinatorial objects[8,9], and that their
inference from sequence data yields difficult computational problems.

Most of the recent studies have been devoted to repeated sequences generated
copy duplication events[10–13]. Indeed, the mechanism of unequal recombination all
simultaneous duplication of several copies, but there is now evidence[3,5,6,10,11]that
single copy duplications are predominant over multiple copies duplications, at leas
tandemly repeated genes. For example, one of the most famous tandemly arrang
families, the Antennapedia (antp)-class homeobox genes, have been shown to have a
through repetitive single copy duplications[14].

The series of duplications that has given rise to tandemly repeated sequences
represented by way of a “duplication tree”, which we formally describe below. A d
cation tree which only contains single copy duplications is simply called a “single
duplication tree”. Reconstructing optimal single copy duplication trees has been sho
be NP-hard within a parsimony framework[13], and several authors described approxim
tion algorithms. Benson and Dong[10] developed a greedy algorithm for reconstruct
single copy duplication trees, based on the parsimony criterion. Using simulations
showed that their algorithm performs better than approximation algorithms based o
imum ordered spanning trees, which themselves guarantee a performance ratio of 2
recently, Tang et al.[11] described a dynamic programming algorithm within a parsim
framework for the same problem, which is based on the lifting technique[15] and has
proven performance guaranty of ratio 2. Later, Tang et al.[12] and Jaitly et al.[13] inde-
pendently described polynomial time approximation schemes (PTAS) for the single
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problem (within the same parsimony framework), also obtained using the lifting tech
combined with local optimization and dynamic programming.

In this paper, we place ourselves in a distance framework and present an exact an
nomial O(n3) time and O(n2) space algorithm for reconstructing the optimal single c
duplication tree, wheren is the number of copies. Our algorithm is based on the minim
evolution principle[16,17], and uses as input the matrix of pairwise evolutionary dista
[18], calculated from the set of ordered nucleotide or protein sequences. The min
evolution principle involves selecting the tree with shortest ordinary least-squares
estimate as being the correct tree. Due to the use of this principle, our reconstruct
gorithm is statistically consistent[17,19], as opposed to parsimony methods which w
shown inconsistent by Felsenstein[20]. The content of this paper is organized as follow
First we describe the duplication model, i.e., the characteristics of the mathematical o
we aim at reconstructing. Then we describe the minimum evolution framework on w
our algorithm is based and provide a novel recurrence formula for estimating the
of any given tree, from a matrix of pairwise distances. Using this formula, we desc
dynamic programming algorithm to solve the single copy duplication tree problem u
the minimum evolution principle.

2. Duplication model

Assuming unequal recombination as the sole mechanism responsible in genera
copies, Fitch[3], and more recently Tang et al.[11,12]and Elemento et al.[5,6] indepen-
dently introduced the following duplication model. A duplication history (Fig. 1(a) and (b))
is a rooted tree withn labelled and ordered leaves denoted as (1,2,3, . . . , n), in which in-
ternal branching nodes correspond to duplication events. In a real duplication histo
time intervals between consecutive duplications are completely known, and the in
nodes are ordered from top to bottom according to the moment they occurred in the
of evolution. However, in the absence of molecular clock (which is almost always the
it is not possible anymore to relate the number of mutational events to elapsed tim
both the order between the duplication events of two different lineages and the roo
tion are impossible to recover from the sequences. In this case, we are only able t
a duplication tree (Fig. 1(c)), i.e., an unrooted tree with ordered leaves, whose topo
is compatible with at least one duplication history. Recovering the position of the roo
sometimes be achieved through the use of rooting procedures (outgroups, midpoin[18]),
and createsa rooted duplication tree (Fig. 1(d)).

A duplicated fragment may only contain a single copy, in which case we say th
duplication event is a 1-duplication (or a single copy duplication). It may also con
2, 3 or k copies, in which case we call the duplication event a 2-, 3- ork-duplication.
When a rooted duplication tree only contains 1-duplication events (such asFig. 1(d)), we
call it a rooted single copy duplication tree, and it is analogous to a binary search
Consequently, the number of single copy rooted duplication trees is equal to the num
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Fig. 1. (a) duplication history; (b) single copy duplication history; (c) single copy duplication tree comp
with history (b); (d) single copy rooted duplication tree obtained when rooting tree (c) on the edge with th
point.

binary search trees, which is given by the Catalan recursion[21]:

Cn =
n−1∑
k=1

CkCn−k = (2n)!
n!(n + 1)! ∼ 4n

√
πn3/2

.

As noted in[3] and later in[6], the root of a duplication tree is necessarily located
the path between the most distant copies (i.e., 1 andn) on the locus, simply due to the fa
that the root represents the common ancestor of these two copies. In the case of m
duplications, additional constraints restrict possible root positions[8]. But it is easy to see
that a single copy duplication tree can be rooted anywhere along the path betwe
most distant copies. Suppose that we systematically root single copy duplication tr
the rightmost edge, i.e., the edge associated withn. In this situation, the left subtree is
single copy rooted duplication tree withn−1 leaves. Therefore, the number of single co
unrooted duplication trees withn leaves is equal toCn−1. Since this number is exponenti
(see above), searching for the optimal single copy duplication tree using a trivial algo
i.e., one based on exhaustive enumeration of all trees, is impractical whenn is large.

A single copy rooted duplication treeX1,n, whose leaves are labelled with the orde
set of copies(1,2,3, . . . , n), is obtained by combining two rooted subtreesX1,p and
Xp+1,n whose leaves are labelled with the ordered sets(1,2,3, . . . , p) and (p + 1,p +
2, . . . , n), respectively. Identically, a single copy unrooted duplication tree on 1,2, . . . , n is
obtained by combining two rooted subtreesX1,p , Xp+1,n−1 with elementary subtreeXn,n

(1 � p < n − 1). In the rest of this paper, the ordered set (p,p + 1, . . . , q) is denoted as
[p,q], while, depending on the context,Xp,q refers to a rooted tree on[p,q] or to [p,q]
itself.

3. Minimum evolution principle and least-squares tree length estimation

3.1. The minimum evolution principle

The minimum evolution (ME) principle[16,17] involves selecting the shortest tree
being the tree which best explains the observed sequences. The tree length is equ
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sum of edge lengths and edge lengths are estimated by minimizing a least-squares c
The problem of inferring optimal phylogenies (i.e., without restriction to duplication tr
within the ME principle is commonly assumed to be NP-hard, as other distance-base
logeny inference problems[22]. Nonetheless, the ME principle forms the basis of sev
phylogenetic reconstruction methods, generally based on greedy heuristics. Amon
is the popular Neighbor-Joining (NJ) algorithm[23]. Starting from a star tree, NJ iter
tively agglomerates external pairs of taxa so as to minimize the tree length at each st
also recently described FastME, a new software also based on the ME principle but
menting efficient procedures to refine an initial tree by subtree rearrangements, and s
using simulations that it is highly accurate in reconstructing the correct topology[24].

Assuming that we have consistent distance estimators which converge towards t
evolutionary distances as the length of the sequences increases, the ME principle co
with ordinary least-squares (OLS) tree length estimation is statistically consistent[17,19].
Statistical consistency is an essential property in phylogenetic reconstruction, since
sures that, for the given method and assuming consistent distance estimators (in the
distance-based methods), the probability of recovering the correct topology increas
sequence length. Inconsistent reconstruction methods, such as parsimony in som
[20], may converge towards a wrong tree as the amount of data increases. Note th
results were established for any tree topology and then apply to (restricted) dupli
trees.

In this section, we introduce a new recurrence formula for estimating the length o
given tree topology using OLS, given a matrix of pairwise evolutionary distances be
copies. The application of this general formula to (restricted) single copy duplication
forms the basis of our reconstruction algorithm.

3.2. Notation

∆ is a matrix of pairwise evolutionary distances between copies, andδij is the distance
in ∆ between copyi and copyj ; Υ is an unrooted tree topology, andT represents a value
tree with topologyΥ . T induces a matrix of pairwise distances between copies, whic
denote∆T . In this matrix,δT

ij denotes the length of the tree path linking copyi and copyj .
The sum of the edge lengths ofT is denoted asL(T ). As shown inFig. 2, we consider in
the rest of this section thatT is composed of three non-intersecting subtreesA, B andC.
These subtrees are linked together by three edges whose lengths area, b andc. A is the
union of two subtreesA1 andA2, and in turnA1 is the union of two subtreesA11 andA12.
Two edges with lengthsa1 anda2 link the root ofA to the roots ofA1 andA2, respectively.
In the remainder of this paper, we callR the subset of leaves that do not belong toA (i.e.,
R = B ∪ C).

Let X be any subtree ofT , andX be the average distance inT between the root ofX
and its leaves.∆XY and∆T

XY are the average distances between the leaves of two
intersecting subtreesX andY , in the distance matrices∆ and∆T , respectively:

∆XY = 1

|X||Y |
∑

i∈X,j∈Y

δij , ∆T
XY = 1

|X||Y |
∑

i∈X,j∈Y

δT
ij .
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Fig. 2. Unrooted treeT , composed of three subtreesA, B andC.

Given a topologyΥ and a distance matrix∆, the OLS edge length estimation ofT is
obtained by minimizing the following sum of squares:∑

i,j∈T

(δT
ij − δij )

2.

3.3. OLS tree length expression

Theorem. Let the edges of T be estimated by OLS. Then:

L(T ) = (
L(A) − A

) + (
L(B) − B

) + (
L(C) − C

)
(1)+ 1

2
(∆AB + ∆AC + ∆BC).

Moreover, (L(A) − A) is recursively obtained in the following way:
(a) if A is a leaf, then(

L(A) − A
) = 0,

(b) otherwise, (L(A) − A) is given by(
L(A) − A

) = (
L(A1) − A1

) + (
L(A2) − A2

) + 1

2
∆A1A2

(2)+ 1

2

( |A2| − |A1|
|A|

)
∆A1R + 1

2

( |A1| − |A2|
|A|

)
∆A2R,

and the same applies to (L(B) − B) and (L(C) − C), by symmetry.

Proof. UsingFig. 2, we see that:

(3)L(T ) = L(A) + L(B) + L(C) + a + b + c.

It has been shown that the average distance between two non-intersecting subX

andY is preserved between∆ and∆T , when these subtrees are adjacent to a com
ternary node (i.e.,A andB,A andC or B andC in Fig. 2), and when edge lengths ofT
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are estimated by OLS[25–27]. This property holds for any tree topology and then holds
(restricted) duplication trees. Using this property,∆AB , ∆AC and∆BC can be expresse
in the following way:

(i) ∆AB = ∆T
AB = A + a + b + B,

(ii) ∆AC = ∆T
AC = A + a + c + C,

(4)(iii) ∆BC = ∆T
BC = B + b + c + C,

and Eq.(1) is obtained by combining Eqs.(3) and (4). Identically, the length ofA is equal
to the sum of its edge lengths:

(5)L(A) = L(A1) + L(A2) + a1 + a2,

while A is given by:

(6)A = |A1|
|A| (a1 + A1) + |A2|

|A| (a2 + A2).

a1 anda2 are obtained by rewriting Eq.(4) for A1, A2 andR, in place ofA, B andC;
solving this linear system, we obtain:

a1 = 1

2
∆A1A2 + 1

2
∆A1R − 1

2
∆A2R − A1,

(7)a2 = 1

2
∆A1A2 + 1

2
∆A2R − 1

2
∆A1R − A2.

Eq.(2) is finally obtained by subtracting(6) to (5), and replacinga1 anda2 by their ana-
lytical expression(7), while equality(L(A)−A) = 0, if A is a leaf, is a direct consequen
of the definitions. �
3.4. Properties

In Eq. (1), (L(A) − A), (L(B) − B) and (L(C) − C) only depend on the structure
subtreesA, B andC, respectively. Indeed, Eq.(7) shows that the edge lengtha1 depends
on the copies in subtreesA1, A2 andR = B ∪ C, but not on the structure ofR (i.e., the
content ofB andC). The same applies witha2. Identically, this property is valid for edg
lengtha11, which depends on the copies in subtreesA11, A12 andR′ = A2 ∪ R, but not on
the structure ofR′, and therefore not on the structure ofR. It can be established in this wa
that none of the edge lengths inA depends on the structure ofR. Therefore, to comput
L(T ), we independently compute the values for (L(A)−A), (L(B)−B) and (L(C)−C),
and then apply Eq.(1).

For the same reasons,(L(A1) − A1) and(L(A2) − A2) only depend on the structur
of A1 andA2, respectively. Therefore, to compute (L(A)−A), we independently comput
the values for (L(A1) − A1) and(L(A2) − A2), and then apply Eq.(2).

Finally, it has to be noted that the tree length estimate does not depend on the i
node chosen to define theA,B,C partition[25,26], even when this property is not obvio
from above theorem.
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4. Reconstructing optimal single copy duplication trees under the ME principle

The above recurrence formula enables us to calculate the OLS length of any un
tree topology, given a matrix of pairwise distances. In this section, we seek the dupli
tree whose length is minimum, among all possible single copy duplication trees. A
shall see, the above formula not only allows tree length estimation, but also forms the
of a dynamic programming algorithm which solves the problem at hand.

4.1. Basic algorithm

Eq. (1) consists of four independent terms: (L(A) − A), (L(B) − B), (L(C) − C), and
the remaining term. As we said above, (L(A) − A), (L(B) − B) and (L(C) − C) only
depend on the structure of subtreesA, B andC, respectively, while the remaining ter
consists of average distances, and therefore does not depend on the structure ofA, B andC.
To minimize Eq.(1), we adopt a divisive strategy, which consists first in partitioning
whole set of copies into three subsetsA, B andC, then in independently computing th
structure which minimizes (L(X) − X) for each of these subsets, and finally in apply
Eq. (1). The optimal tree is given by the optimal partitioning. Moreover, the tree leng
independent of the node used to define the partitionning (Section3), and we only need to
examine partionnings where one subset, e.g.,C, contains a single copy that correspon
to n (Section2). Identically, to obtain the optimal structure forA, Eq. (2) shows that we
need to evaluate every partitioning ofA into A1 andA2, then to independently compute t
structure forA1 andA2 which minimizes (L(X) − X) and finally to select the partitionin
which minimizes Eq.(2). The same holds forB by symmetry.

Although used in some divisive clustering methods[28–30], this strategy cannot be use
to reconstruct optimal phylogenies whenn is large (except for diameter-based optima
criteria[29]), since the number of combinations of subsets is exponential. This is diff
with single copy duplication trees since we only have to evaluate combinations o
adjacent intervals, and the total number of combinations is O(n3). A related approach
for phylogenetic reconstruction is described by Bryant[31], assuming that splits (taxo
subsets) of the inferred tree have to be taken from a known and polynomially sized
possible splits.

Let S andM be two(n − 1) × (n − 1) matrices and 1� p < q � n − 1. Sp,q represents
the minimal value of (L(Xp,q) − Xp,q) whereXp,q is any (single copy duplication) sub
tree with leaves in[p,q], while Mp,q represents the positionm whereSp,q is optimally
partitionned (see below). LetXp,q represent the subset of copies that do not belong toXp,q

(i.e., Xp,q = X1,p−1 ∪ Xq+1,n). Starting from an interval[1, n] representing then copies
and from the distance matrix between these copies, the reconstruction algorithm for
copy duplication trees necessitates the three following steps:

(a) The first step consists in using Eq.(2) to calculateSp,q for a growing intervalXp,q

of [1, n − 1], until q − p = n − 3. ComputingSp,q requires evaluating the combinatio
of every couple of adjacent intervalsXp,m andXm+1,q , with m varying fromp to q − 1.
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Therefore, using Eq.(2), Sp,q is given by:

(8)Sp,q = min
p�m�q−1


Sp,m + Sm+1,q

+1
2∆Xp,mXm+1,q

+1
2(

p+q−2m−1
q−p+1 )∆Xp,mXp,q

+1
2(

2m−p−q+1
q−p+1 )∆Xm+1,qXp,q

 ,

while Mp,q is the value ofm minimizing the above expression. Moreover, we haveSp,p =
0 for 1� p � n − 1.

(b) The second step consists in using Eq.(1) to search for the intervalsX1,m,Xm+1,n−1
which minimizesL(T ) when combined withXn,n.

(c) In the third step, the complete tree topology is recovered by stepping back th
the optimal intervals stored inM . Then, edge lengths are estimated using Eq.(7), starting
from pairs of adjacent leaves and moving up until tree rootn; average root-to-leaves di
tances (theX terms) are computed using Eq.(6) and used in subsequent applications
Eq.(7).

Algorithm 1. Single copy duplication tree reconstruction algorithm.
input [1, n], the order of the copies, and the distance matrix∆

output the optimal single copy duplication treeT

S ← (n − 1) × (n − 1) matrix
M ← (n − 1) × (n − 1) matrix
for l from 1 ton − 3 do

for i from 1 ton − l − 1 do
computeSi,i+l andMi,i+l using Eq.(8)

end for
end for
L∗(T ) ← ∞
for m from 1 ton − 2 do

computeL(T ) for X1,m,Xm+1,n−1,Xn,n using Eq.(1) andS

if L(T ) < L∗(T ) then
L∗(T ) ← L(T ), m∗ ← m

end if
end for
chosen as root and connect it toX1,m∗ andXm∗,n−1
createT by recursively divising those subsets usingM

estimate edge lengths ofT using Eqs.(6) and (7)
returnT

This algorithm is summarized above. The number of intervals which need to be
ated during the first step is O(n2). Evaluating a single interval using Eq.(8) necessitate
the evaluation of O(n) combinations of adjacent sub-intervals. Evaluating a single co
nation requires the average distances between theXp,m, Xm+1,q andXp,q subsets to be
computed, and necessitates O(n2) time. Therefore, the total time complexity of the fir
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step is O(n5). As we show in the next section, the time required to evaluate a single
bination of adjacent sub-intervals can be lowered to O(1) using data preprocessing. Wh
using this refinement, the total time complexity of the first step is lowered to O(n3).

In the second step, we evaluate every pair of intervalsX1,m, Xm+1,n−1. Therefore, the
number of combinations that need to be tested in the second step is in O(n). As in the
previous step, evaluating a single combination requires average distances between i
to be computed. Therefore, the time complexity of the second step is O(n3), and can be
lowered to O(n) when using preprocessing.

Constructing the tree topology is a simple tree traversal and requires O(n), while edge-
length estimation is very close to[26], which is O(n2), but can here be lowered to O(n)

thanks to preprocessing. The total time complexity is O(n5) in the above “basic” descrip
tion of our algorithm, and can be lowered to O(n3) using algorithmic refinements based
data preprocessing. We describe these refinements in the next section.

4.2. Preprocessing and O(1) computation of average distances

Eqs.(1), (2) (or equivalently(8)) and(7) require the average distances between sub
of copies, which we denote asA, B andC. These subsets define a partition of[1, n], just
as inFig. 2. To calculate these average distances, we use the following lemma.

Lemma 1. Let A,B,C be any partition of [1, n], and Ã, B̃ and C̃ be the sets of copies that
do not belong to A, B and C, respectively (i.e., are the complements of A, B and C); then:

∆AB = 1

2|A||B|
(|A|(n − |A|)∆AÃ + |B|(n − |B|)∆BB̃ − |C|(n − |C|)∆CC̃

)
,

and ∆AC , ∆BC are obtained by symmetry.

Proof. Using the average distance definition, we have:

|A||B|∆AB =
∑

i∈A,j∈B

δij = 1

2

( ∑
i∈A,j∈B∪C

δij +
∑

i∈B,j∈A∪C

δij −
∑

i∈A∪B,j∈C

δij

)
and the result follows. �

To compute in O(1) any of the average distances that are required in Eqs.(1), (2), (7)
and (8), it is then sufficient to know all average distances between any intervalXp,q and
its complementary setXp,q . Our preprocessing involves computing these values fo
intervals of[1, n]. This is achieved using the following lemma.

Lemma 2. Let 1� p < q � n; then:

∆Xp,qXp,q
= 1

(q − p + 1)(n − q + p − 1)

(
(q − p)(n − q + p)∆Xp,q−1Xp,q−1−Up,q + Vp,q

)
,

with

∆Xp,pXp,p
= 1

n − 1

∑
δip,
i∈[1,n],	=p
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Up,q = Up+1,q + δpq and Up,p = 0,

Vp,q = Vp+1,q − δpq and Vq,q =
∑

i∈[1,n],	=q

δiq .

Proof. Using the average distance definition once again, we have

(q − p + 1)(n − q + p − 1)∆Xp,qXp,q
=

∑
i∈[p,q],j∈[1,p−1]∪[q+1,n]

δij

=
∑

i∈[p,q−1],j∈[1,p−1]∪[q,n]
δij +

∑
i∈[p,q−1]

δiq −
∑

j∈[1,p−1]∪[q+1,n]
δqj ,

and the result is obtained by setting:

Up,q =
∑

i∈[p,q−1]
δiq ,

Vp,q =
∑

j∈[1,p−1]∪[q+1,n]
δqj . �

Using recursions ofLemma 2, we compute all∆Xp,qXp,q
average distances in O(n2).

We first initialize the∆Xp,pXp,p
= Vp,p/(n − 1) terms, each of them requiring O(n) op-

erations; then we compute all otherUp,q andVp,q terms, each of them requiring O(1)

operations; finally, we compute all remaining∆Xp,qXp,q
average distances, each of the

again requiring O(1) operations. This preprocessing requires O(n2) time and space, an
allows an O(n3) time complexity for our algorithm in Section4.1.

5. Conclusion

In this paper, we present an exact algorithm for reconstructing single copy duplic
trees from a matrix of evolutionary distances between tandemly repeated sequence
the minimum evolution criterion. Our algorithm is based on a novel recurrence formu
ordinary least-squares estimation of tree length. Using preprocessing and a dynam
gramming approach, we show that computing the optimal single copy duplication tre
requires O(n3) time and O(n2) space. It would be interesting to compare the performa
of our algorithm with some other approaches, in terms of topological accuracy. In
heuristic methods such as Neighbor-Joining (NJ)[23] or DTSCORE[32] often do well
in practice. A recent duplication history reconstruction approach based on tree rear
ments also appears promising[9]. Moreover, NJ could easily be adapted to single c
duplication tree reconstruction by only agglomerating adjacent pairs of taxa. Howev
exact algorithm such as ours has performance guaranty and will then avoid some p
(even rare) shortcomings that would trap heuristic approaches into local minima. A
tion for further research would be to extend (if possible) our results to multiple duplica
and to other distance criteria, such as weighted least-squares[33,34], balanced minimum
evolution principle[35], or to demonstrate the NP-hardness of these tasks.
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