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Abstract: The Capacitated Arc Routing Problem (CARP) involves vehicles routing, 
serving a set of arcs in a network. This NP hard problem is extended to take into 
account time windows, entailing a new and hard theoretical model in arc routing called 
the CARPTW (CARP with time windows). The CARPTW is useful for modeling 
urban waste collection or winter gritting. This paper presents this new model and a 
memetic algorithm with new memetic operators able to tackle the time windows 
constraints in arc routing. Copyright © 2006 IFAC 
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1. INTRODUCTION AND BACKGROUND 
 
Logistic can be defined as providing goods and 
services from a supply point to various demand ones. 
It requires effective transportation management, 
because it can save company a considerable part of 
its total expenses.  Routing and scheduling problems 
are important elements of many logistic systems. The 
most studied routing problems, like the VRP (Vehicle 
Routing Problem) consist of processing demands 
located on the nodes of a network. When the 
demands are placed on the arcs, the equivalent 
problem is a Capacitated Arc Routing Problem 
(CARP). The basic CARP is defined in the literature 
on an undirected network. A fleet of identical 
vehicles with a fixed capacity is located at a specific 
node (the depot). Each edge has a non-negative 
demand and traversal cost. All edges with a non-zero 
demand must be processed. The CARP consists of 
determining a set of trips of minimum total cost, 
such as: 
 each trip, performed by one single vehicle, starts 

and ends at the depot ; 
 each edge with a non-zero demand can be 

traversed several times, by the same trip or by 
distinct trips, but it must be processed by one 
single trip, and during one traversal only; 

 the sum of demands collected by a trip cannot 
exceed vehicle capacity.  

 
Many applications concern road networks: collection 
of municipal waste, snow removal, sweeping, 
gritting, spraying herbicides on rails or roads to kill 
weeds and mail delivery. In that case, the demands 

generally correspond to quantities to be collected in 
the streets (for the municipal waste) or delivered (salt 
or sand for ice clearance in winter). The costs are for 
example distances or travel times. The undirected 
case concern roads that can be processed in one 
traversal, and in any direction. It is also possible to 
define a directed CARP, in which an arc represents 
one street, or one side of street with a mandatory 
direction for processing. 
 
Both the undirected and directed CARP are NP-hard, 
even in the special case where only one vehicle with 
infinite capacity is available (Rural Postman 
Problem or RPP). The Chinese Postman Problem 
(CPP) is a particular case of RPP in which all edges 
have a non-zero demand. It is polynomial for directed 
and undirected networks, but becomes NP-hard for 
mixed graphs. 
 
The existing exact methods (Hirabayashi, et al., 
1992) are limited to 20 edges, explaining why real 
cases must be tackled by heuristics like Path-
Scanning (Golden, et al., 1983) and Augment-Merge 
(Golden and Wong, 1981); or by recent 
metaheuristics like the tabu search method of (Hertz, 
et al., 2000), a variable neighborhood descent 
method (Hertz and Mittaz, 2001), a guided local 
search designed by (Beullens, et al., 2001) and the 
hybrid genetic algorithm proposed by (Lacomme, et 
al., 2001, 2004) which is currently the most efficient 
solution method.  
However, the academic CARP with an undirected 
graph is not realistic enough for applications such as 
waste collection. The undirected graph can only 



     

model two-way streets both of whose sides can be 
collected in parallel and in any direction. Though this 
bilateral collection is common in narrow streets, real 
networks also include two-way streets with 
independent sides and one-way streets. Such 
networks require a mixed graph model. Of course, 
the CARP is not limited in theory to the case of edges 
but, to the best of our knowledge, only one paper 
explains how to tackle mixed graphs (Lacomme, et 
al., 2004). Recently, three new generalisations of the 
CARP were studied:  
 
 the ECARP (Extended CARP) (Lacomme, et al, 

2001, 2004) that copes with very realistic 
networks with one-way and two-way streets, 
prohibited turns, multiple dumping sites, etc.  
 the SCARP (Stochastic CARP) (Fleury, et al., 

2005), whose the aim is to compute robust 
solutions, keeping their quality in case of 
imprecise data.  
 the PCARP (Periodic CARP) (Lacomme, et al., 

2005) is a long-term planning problem in which 
treatment days must be assigned to each street, 
subject to given frequencies, before computing 
the trips for each day. The objective is to 
minimize a total cost over the horizon considered.  

 
The aim of this paper is to study the ECARP with 
time windows (CARPTW), in order to reduce the gap 
between academic arc routing models and complex 
real applications. This new problem is useful for 
waste collection, mail and newspaper delivery, or 
inspection of power lines. 
 
The VRP has already its extension to the VRPTW 
which is NP-hard in the strong sense (Kohl, 1995). 
Several authors suggest optimal solution methods 
only for small problems. Even if these methods get 
satisfactory results for solving small size problems, 
they are not efficient when the size of the problem 
increases. For solving more realistic cases to 
optimality, a lot of research based on heuristic 
methods has been done. Several authors have used 
route building heuristics. Some others have used 
improvement heuristics that combine route building 
heuristics with local search. The best results when 
solving realistic problems have been achieved using 
metaheuristic techniques: Tabu Search (Schulze and 
Fahle, 1999), Genetic Algorithm (Thangiah, 1995) 
and simulated Annealing (Chiang and Russel, 1996).  
 
In theory, any CARP instance with k required edges 
could be converted into an equivalent VRP with 3k+1 
nodes, as explained by (Pearn, et al., 1987). This 
technique could be applied to CARP to get VRP but 
it is not used in this paper because it is no longer 
valid for mixed graphs and the increase in size often 
leads to intractable instances. 
 
The reminder of this paper is organized as follows: 
section 2 recalls the memetic algorithm developed 
for the ECARP (Lacomme, et al., 2001). Some of its 
components are recycled in a non trivial way and 
new components are added to build a memetic 
algorithm for the CARPTW. Section 3 describes the 

CARPTW. Constructive methods are proposed in 
section 4 and section 5 deals with the memetic 
algorithm.  
 
 
2. A MEMETIC ALGORITHMS FOR THE ECARP 
 
 
2.1  An Extended CARP for Mixed Networks 
 
We describe below notations and data structures for a 
more realistic CARP based on a mixed network with 
prohibited turns. The network must be encoded as an 
entirely directed graph G = (N, A), with a set N of nn 
nodes (crossroads) and a set A of na arcs (lanes with 
traffic directions). N includes a depot node with nva 
vehicles of capacity Q (nva is either fixed or left as a 
decision variable). The classical notation of arcs as 
pairs of nodes becomes ambiguous in case of 
multiple lanes and prohibited turns, e.g., the shortest 
path from a node i to a node j depends on the arcs 
used to reach i and leave j. We then prefer to use arc 
indexes from 1 to na. 
 
Each arc u begins at a node b(u), ends at a node e(u) 
and can be traversed any number of times at cost c(u) 
(e.g., a duration or distance). The depot is 
represented as a loop σ. A subset R of nra arcs 
require service by a vehicle. Each required arc u has 
a demand r(u) and a service cost w(u). All costs and 
demands are non-negative integers. The arcs in R 
represent nt tasks for the vehicles: net edge-tasks 
(pairs of opposite arcs of R, serviced together, in any 
direction) and nat arc-tasks (independent arcs of R). 
Hence, nra=nat+2.net. Two arcs u, v for the same 
edge are linked with a pointer inv such that inv(u)=v 
and inv(v)=u. Moreover, r(u)=r(v) is the total demand 
on the edge and w(u)=w(v). By convention, we set 
r(u) and c(u) to 0 if u is not required. This allows for 
instance to get the total demand by a simple sum over 
A. We also set inv(u) to 0 if u does not belong to an 
edge, whether u is required or not.  
 
The graph is defined by giving for each arc u a list 
succ(u) of allowed successor-arcs: v∈succ(u) if arcs 
u and v are consecutive (e(u)=b(v)) and if it is 
permitted to turn from u to v. The shortest paths are 
given by a matrix D, nra×nra. For any two arcs u and 
v, d(u,v) is the traversal cost of a shortest path from u 
to v (not included, to ease operations on trips like arc 
insertions), taking prohibited turns into account. 
Paths from or to the depot are handled by including a 
fictitious loop in A for the depot. D can be computed 
by adapting Dijkstra's shortest path algorithm 
(Cormen, et al., 1990). A trip can be stored as a list 
of required arcs, assuming shortest paths between 
successive tasks and between a task and the depot 
loop. Prohibited turns become transparent.   
 
 
 
2.2 A Memetic Algorithm for the Extended CARP 
 
The Memetic Algorithm (MA) of (Lacomme, et al., 
2001) is briefly recalled here, because its 



chromosomes and evaluation procedure are partly 
reused in section 5 for the CARPTW. Consider one 
solution to the extended CARP. Its chromosome is 
built by concatenating the list of tasks of each trip. 
This gives a sequence of nt required tasks in which 
each task occurs once (an edge can occur as one of 
its two opposite arcs).  
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Fig. 1. Evaluation Procedure SPLIT 

It can be interpreted as a long tour performed by one 
single vehicle of infinite capacity, servicing all tasks. 
This coding is appealing because there always exists 
one optimal sequence. Chromosomes have no trip 
delimiters. The trips and their total cost are computed 
by an optimal method SPLIT (Fig. 1). The upper part 
shows a long tour of 4 (thick) edge-tasks a, b, c, d in 
an undirected context, with demands in brackets. 
Traversal and service costs are equal. Thin lines are 
possible shortest paths linking successive tasks or a 
task and the depot. In the middle, an auxiliary acyclic 
graph H is built with one arc per possible trip, 
assuming a vehicle capacity Q=9: e.g., arc ab stands 
for a trip servicing a, b and costing 51. A shortest 
path in H (thick line) can be computed using 
Bellman's algorithm (Cormen, et al., 1990). It gives 
the optimal splitting for the chromosome (here two 
trips, for a total cost 115).  
 
Thanks to the chromosomes without trip limits, 
classical crossovers like OX and LOX can be applied 
to make children that can be evaluated optimally by 
the splitting procedure. Searching the best sequence 
is left to the intrinsic parallelism of the MA. The 
reader will find a description of the other MA 
components in (Lacomme, et al., 2001). This MA is 
currently the most efficient solution method for the 
CARP. Solution quality can be evaluated with a tight 
lower bound proposed by (Belenguer and Benavent, 
1997). For instance, on a set of 34 basic CARP 
benchmarks, 22 are solved to optimality (the bound 
is reached) and the average distance to the bound is 
only 0.69%. In comparison, the tabu search from 
(Hertz, et al., 2000)) finds the optimum for 15 
instances, with an average deviation of 1.9%. The 
excellent behavior of the MA was the main reason to 
envisage memetic algorithms for solving arc routing 
problems with time windows. 

 
 

     
3. PROBLEM FORMULATION 

 
This section describes the notation and features that 
are common through this paper. The time window 
constraint is denoted by a predefined time interval for 
each task u, given an earliest arrival time et(u) and 
latest arrival time lt(u). The vehicles must arrive at 
the tasks at at(u) not later than the latest arrival time, 
if vehicles arrive earlier than the earliest arrival time, 
waiting occurs. Vehicles are also supposed to 
complete there individual routes within a total route 
time, which is essentially the time window of the 
depot [et(σ) , lt(σ)]. The time windows are two-
sided, meaning a task must be serviced at or after its 
earliest time windows. If a vehicle reaches a task u 
before the earliest time it results in idle or waiting 
time wt(u) = et(u)-at(u). A vehicle that reaches a task 
after the latest time is tardy. The objective is to 
minimize the total vehicle time subject to vehicle 
capacity, travel time and arrival time feasibility 
constraint. A feasible solution for the CARPTW 
services all the task without the vehicle exceeding the 
maximum capacity of the vehicle or the travel time of 
the vehicle. The total cost is the total travel time for a 
vehicle which is sum total of the distance travelled by 
the vehicle including the waiting and service time. 
Waiting time is the amount of time that a vehicle has 
to wait if it arrives at task location before the earliest 
arrival time for that task. 
 
 

4. CONSTRUCTIVE METHODS FOR THE 
CARPTW 

 
Two constructive methods were developed. The first 
one INSERT1 starts by sorting the task in increasing 
latest time order in a list L. Initially there is an empty 
trip as a loop on the depot. During the algorithm, 
such a loop will always be booked after the actual 
trips, to guarantee the existence of at least one 
feasible insertion for each task. For each task u in L, 
the algorithm tries to insert the task in the current 
best position according to time windows and 
distances. The cost variations of an insertion of u in 
all position and in all trips (also in the empty one) are 
evaluated. The algorithm performs the best insertion. 
 
The second method INSERT2 is a best insertion 
approach which has no priority. The method tries to 
insert the tasks between all the edges in the current 
route. It selects the task that has the lowest additional 
insertion cost. The feasibility check tests all the 
constraints including time windows and load 
capacity. Only feasible insertions will be accepted. 
The insertion cost of unrouted task is defined as the 
weighted combination on additional detour and 
waiting time needed to insert a task at its best 
feasible insertion position in the route. The tasks 
farthest away from the depot are usually the most 
difficult ones to route, since there are often only a 
few feasible insertion places available for them. 
Therefore, the selection of these distant tasks is 
favored by subtracting from the insertion cost the 
distance of the corresponding tasks to the depot 
multiplied by a user defined parameters β. When the 
current route is full, the heuristic will start a new 



     

route and repeat the procedure until all the tasks are 
routed.  
 
 
5. MEMETIC ALGORITHMS FOR THE CARPTW 

 
 

5.1 Chromosome Structure 
 
Any chromosome S for a CARPTW solution is then a 
sequence of nt tasks. Each task u appears one times, 
as u or inv(u). The sequence can be viewed as a 
priority list for one single vehicle performing all 
tasks. This coding is simple but pertinent, since at 
least one optimal sequence exists. Indeed, any 
CARPTW solution can be defined as one set of trips. 
We do not put any bit in the string to indicate the end 
of a route, because such delimiters in a chromosome 
greatly retrain the validity of children produced by 
crossover operations later. To decode the 
chromosome into route configurations, we use the 
SPLIT procedure (see Sect. 2.2). The chromosome 
can be only decoded to one solution. 
 
 
5.2 Chromosome Evaluation     
 
The idea is to evaluate the subsequence of tasks with 
the splitting procedure described in section 2.2 for 
the CARP. Recall that this procedure indicates where 
to split the subsequence into trips at minimum cost. 
The cost of a trip SS noted  f_trip(SS) cumulates the 
collecting costs of its tasks and the traversal costs of 
its intermediate paths and a penalisation of waiting 
time. The total cost of a solution S noted f(S) is the 
sum of all trip costs. Recall that in formula (1) and 
(2), nbtrip means number of trips after applying the 
SPLIT procedure and u = 0 indicate a depot loop σ. 
As in our encoding we stock only the required tasks, 
suiv(u) represents the task to visit after u in S.  
 

f(S )= ∑ss =1…nbtrip (f_trip(SS)) .    
(1) 

f_trip(SS) =  

∑u =0…nt[w(u) + d(u, suiv(u))] + α ×  ∑ 

u =0…nt Max[0, (et(u) - ar(t))]. 

   
(2) 

 
 
5.3 Initial Population 
 
The population is a table Pop of nc chromosomes 
whose costs are always distinct. This avoids a 
premature convergence caused by the generation of 
identical solutions ("clones") and favors a better 
dispersal of solutions. Pop includes the two 
constructive heuristics INSERT1 and INSERT2 from 
section 4. We create an initial population in relation 
to the solution of these two heuristics. The way to do 
that is by letting the solution of INSERT1 and 
INSERT2 describes a portion of the starting 

population. The rest of the population is generated on 
a totally random basis.  
 
 
5.4 Crossover 
 
This is the most complicated component of the 
memetic algorithm for the CARPTW.  
For the proposed memetic algorithm, three crossover 
operators were proposed: Crossover1 uses the 
principle of LOX (Linear Order Crossover). 
Crossover2 is a heuristic crossover which takes into 
account the time constraint described below and 
LOX-T is a combination of Crossover1 and 
Crossover2. 
 
Crossover1. The classical LOX crossover is well 
known for permutation chromosomes. It partly 
transmits the order of elements from the parents to 
their children. Consider two parents P1 and P2 of n 
elements (permutations of the integers 1 to n). The 
construction of the first child C1 by LOX is as 
follows (the other child is obtained by exchanging 
the roles of  P1 and P2): 
 
 

Algorithm 1 LOX crossover 
draw a and b with 1 ≤ a ≤ b ≤ nt 
copy P1(a)…P1(b) into C1(a)…C1(b) 
j := 0 
for i := 1 to nt 
 if P2(i) not already in C1 then 
    j := j+1  
    if j = a then j := b+1 endif 
    C1(j) := P2(i) 
  endif 
endfor. 

 
So, LOX draws a substring in P1 and copies it at the 
same locations into C1. Then P2 is scanned from left 
to right. Its elements not yet present in C1 are copied 
to fill the empty positions of C1, from left to right 
too. Crossover1 uses LOX with additional reparation 
Repart_Time (S) which pushes if necessary the 
arrival time corresponding to a time windows 
constraint.  
 
Crossover2. A random cut is made on two 
chromosomes. From the task after the cut point, the 
shorter between the two tasks leaving the task is 
chosen. The process is continued until all positions in 
the chromosomes have been considered. Suppose, we 
have the following parents: 
 
Parent 1:  1 2 3 4 5 6 7 8 9 
Parent 2 : 5 6 3 1 2 4 9 8 7 
 
Assume we choose 6 to be the first gene in the new 
chromosome; we have to first swap 6 and 4 in Parent 
2. After swapping, if d(6, 7) + α × wt (7) > d(6, 9) + 
α × wt(9), we then choose 9 to be the next task and 
swap 7 and 9 in the first parent. This process is 
continued until a new chromosome of the same 
length and comprising all elements are formed. 



     

 
LOX-T. Inspired by the fact that both location 
sequences and time sequences are important in arc 
routing, we decide to combine the two crossover 
operators to have a new operator namely LOX-T 
(Linear Order Crossover with Time Constraint) so 
that two parents produce two children by Crossover1 
and then we apply Crossover2 to the two children to 
generate one new child.  
 
 
5.5   Mutation as a Local Search 
 
A local search is applied with a given probability. 
So, at the beginning of the local search, the input 
encoded solution is evaluated and converted into a 
CARPTW solution with detailed trips. We propose to 
evaluate two local search methods used as mutation 
operator in our memetic algorithm. The first one is 
based on Simple Moves (SM) and the second one is 
λ-interchange local search. 

Simple Moves Local Search (SM). Each iteration of 
the local search scans all pairs of tasks (u,v) to 
evaluate the following moves:  

 Flip u in its trip, i. e. replace u by inv(u). 
 Move task u after v (v may be the depot 

loop for this move) 
 Move u and its successor on the trip after v 

(v may be the depot loop for this move) 
 Permute u and v. 

 
The two possible directions are evaluated when a 
task is inserted to a new position. In the three last 
moves, u and v may belong to the same trip or 
distinct trips. Each neighbourhood exploration stops 
at the first improving move detected. The whole 
search stops when no improving move can be found.  
 
λ Interchange Local Search. A λ-interchange 
generation mechanism was introduced by (Osman 
and Christofides, 1989) for the capacitated clustering 
problem. It is based on customer interchange 
between sets of vehicle routes and has been 
successfully implemented with a special data 
structure to other problems. The local search 
procedure is conducted by interchanging customer 
nodes between routes. For a chosen pair of routes, 
the searching order for the customers to be 
interchanged needs to be defined, either 
systematically or randomly. In this paper, we only 
consider the cases λ = 2, which means that maximal 
two customer tasks may be interchanged between 
routes. Based on the number of λ = 2. There are 
totally eight interchange operators to be defined: 
(0,1), (1,0), (1,1), (0,2), (2,0), (2,1), (1,2), (2,2). The 
operator (1,2) on a route pair (SSp, SSq) indicates a 
shift of two tasks from SSq to SSp and a shift of one 
customer from SSp to SSq. The other operators are 
defined similarly. For a given operator, the tasks are 
considered sequentially along the routes. In both the 
shift and interchange process, only improved 
solutions are accepted if the move results in the 

reduction of the total cost. We use the first best move 
that results in a decrease in cost. 
 
 
5.7 Other MA Ingredients 
 
The incremental replacement is used. At each 
iteration, two parents P1 and P2 are randomly 
selected in Pop by a binary tournament method:  two 
chromosomes are randomly selected and the best 
becomes P1, the same procedure is repeated to get 
P2. Crossover1 or Crossover2 or LOX-T are applied 
to P1 and P2 to generate two children with 
Crossover1 or one child with Crossover2 or LOX-T. 
If two children C1 and C2 are generated, one child is 
discarded at random. The remaining child may 
undergo mutation, in fact one of the two local search 
described in 5.5. If a duplicate cost occurs, the child 
is rejected. If not, it finally replaces in Pop a 
chromosome drawn above the median cost. The 
population of distinct solutions must be relatively 
small (nc=30 to 40) to avoid excessive rejection 
rates.  
 
The MA stops after a maximum number of iterations 
or a maximum number of iterations without 
improving the best solution 
 
Table 1 Overall comparison of the five algorithms on 

the 23 CARPTW instances 

 INSERT1 INSERT2 MA1 MA2 MA3 

Avg. 
cost 646 431 360 323 259 

Avg. 
time 
(mn) 

____ ____ 5.28 5.4 7.15 

 
 

6. COMPUTATIONAL RESULTS 
 
All algorithmic components are implemented in 
Delphi and tested on a 1,4 GHz PC under Windows 
XP. Since the CARPTW is a new problem, we have 
generated our own files by adding time windows in 
classical benchmarks for the basic CARP (the 23 gdb 
files, which can be downloaded from (Belenguer, 
1997)).  Table 1 shows average values of solution 
cost, running time in minutes for five algorithms: the 
two heuristics (INSERT1 and INSERT2) and the three 
memetic algorithms (MA1, MA2, MA3) which uses 
respectively Crossover1, Crossover2 and LOX-T as 
crossover operator. The mutation operator selected 
for the three memetic algorithms is Random(SM, 2-
interchange) which chooses SM or 2-interchange at 
random.  
 
The results indicate that the memetic algorithms 
bring important savings (16% for MA1, 25% for MA2 
and 40% for MA3) compared to the best constructive 
heuristic INSERT2. The MA3 algorithm (the memetic 
algorithm with LOX-T crossover) is more effective 
while requiring comparable computational times. 



     

 
 

7. CONCLUDING REMARKS 
 
In our knowledge, this paper is the first one 
dedicated to the arc routing with time windows. As 
said in introduction, the proposed memetic 
algorithms are not restricted to the undirected 
CARPTW: they can tackle extensions of ECARP like 
forbidden turns, mixed graphs, etc.  
 
This research shows that memetic algorithm can 
obtain good solutions to arc routing problems with 
time windows compared to insertion heuristics.  
Results show the efficiency of the new crossover 
operator LOX-T to tackle the time windows 
constraints in arc routing. 
 
Further research is required on the CARPTW, for 
instance there is clearly a need for a good lower 
bound to evaluate the quality of heuristic solutions 
and more appropriate instances must be developed to 
confirm the results. The problem will be enriched by 
considering time windows that define prohibitions of 
access on arcs, which is crucial to solving real-life 
problems, like the ones encountered in urban waste 
collection. 
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