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Abstract. The present paper deals with discrete lines in the 3-
dimensional space. In particular, we focus on the minimal 0-connected
set of closest integer points to a Euclidean line. We propose a definition
which leads to geometric, arithmetic and algorithmic characterizations
of naive discrete lines in the 3-dimensional space.

1 Introduction

In discrete geometry, as in Euclidean one, linear objects are essential. All the
other discrete objects can be approximated as soon as the linear ones have been
characterized. The only well understood class of linear discrete objects is the one
of (d − 1)-dimensional objects in the d-dimensional space, namely, the discrete
hyperplanes [1, 2]. Numerous works also exist on 1-dimensional linear discrete
objects. They tackle this problem algorithmically [3, 4] or arithmetically [5–7].
Moreover, discretization models, such as the standard [8] and the supercover [9]
ones, define 2-connected discrete lines. Nevertheless, as far as we know, many
problems are still open. For instance, we are currently unable to characterize
the minimal 0-connected set of closest integer points to a Euclidean line in the
3-dimensional space.

In the present paper, our purpose is to introduce a modeling of discrete lines
in the 3-dimensional space such that topological properties and the relationship
with the closest integer points to the Euclidean line with same parameter are
easily determined. We propose a representation of the 1-dimensional linear dis-
crete object inspired by the notion of functionality [10, 11]. Indeed, a connected
discrete line in the 3-dimensional space should verify some conditions similar to
this notion: we can define subsets of Z3 such that the discrete line is connected
only if it contains at least a point of each of them.

The paper is organized as follows. In the next section, we recall some basic
notions of discrete geometry useful to understand the remainder of the paper.
Then, in the third section, we focus on already known naive discrete line. First
we present the usual 2-dimensional definition which extends in higher dimensions
to discrete hyperplanes. Secondly, the 3-dimensional current definition based on
projections on particular planes is detailed. In the fourth section, we propose



a definition related to the closest integer points to a Euclidean line and we
introduce its geometric, arithmetic, and algorithmic characterizations in the 3-
dimensional space.

2 Basic Notions

The aim of this section is to introduce the basic notions of discrete geometry
used throughout the present paper. Let d be an integer greater than 1 and let
{e1, . . . , ed} be the canonical basis of the Euclidean vector space Rd. Let us call
discrete set any subset of the discrete space Zd. The point x =

∑d
i=1 xiei ∈ Rd,

with xi ∈ R for each i ∈ {1, . . . , d}, is represented by (x1, . . . , xd). A point v ∈ Zd

is called a voxel in a d-dimensional space or a pixel in a 2-dimensional space.

Definition 1 (k-Adjacency or k-Neighborhood). Let d be the dimension of
the discrete space and k ∈ N such that k < d. Two voxels v = (v1, . . . , vd) and
w = (w1, . . . , wd) are k-neighbors or k-adjacent if and only if:

‖v−w‖∞ = max{|v1−w1|, . . . , |vd−wd|} = 1 and ‖v−w‖1 =
d∑

i=1

|vi−wi| ≤ d−k.

Let k ∈ {0, . . . , d−1}. A discrete set E is said to be k-connected if for each pair
of voxels (v,w) ∈ E2, there exists a finite sequence of voxels (s1, . . . , sp) ∈ Ep

such that v = s1, w = sp and the voxels sj and sj+1 are k-neighbors, for each
j ∈ {1, . . . , p− 1}.

Let E be a discrete set, v ∈ E and k ∈ {0, . . . , d − 1}. The k-connected
component of v in E is the maximal k-connected subset of E (with respect to
set inclusion) containing v.

Definition 2 (k-Separatingness). A discrete set E is k-separating in a dis-
crete set F if its complement in F, E = F \ E, has two distinct k-connected
components. E is called a separator of F.

Definition 3 (k-Simple Point, k-Minimality). Let d be the dimension of the
space and k ∈ N such that k < d. Let also F and E be two discrete sets such that
E is k-separating in F . A voxel v ∈ E is said to be k-simple if E \ {v} remains
k-separating in F. Moreover, a k-separating discrete set in F without k-simple
points is said to be k-minimal in F.

3 Discrete Lines

Lines are elementary objects in geometry. They have been widely studied in
discrete geometry [1] and are the best known discrete objects. However we un-
derstand them in the 2-dimensional space as (d − 1)-dimensional linear objects
and not as 1-dimensional linear objects. Consequently, results on discrete lines in
the 2-dimensional space extend in higher dimension to discrete hyperplanes and
not to discrete lines in d-dimensional spaces. Definitions of discrete lines in the
3-dimensional space exist, but none are equivalent to the minimal 0-connected
set of closest integer points to a Euclidean line.



3.1 The 2-Dimensional Space: Discrete Lines as Discrete
Hyperplanes

(a) (b) (c)

Fig. 1. (a) First definition of the closed naive representation of a line, (b) Second
definition of the closed naive representation of a line, (c) The associated naive discrete
line

First, discrete line drawing algorithms were designed to provide for the needs
of digital plotters [12]. Later, arithmetic and geometric characterizations have
been proposed [1, 2]. The minimal 0-connected set of closest integer points to
a Euclidean line is its closed naive representation [13]. The closed naive model
introduced by E. Andres associates a Euclidean object O with the representation
N(O) defined as follows:

N(O) =
(
B1

(
1
2

)
�O

)
∩ Zd, (1)

=
{
p ∈ Zd;

(
B1

(
1
2

)
� p

)
∩ O 6= ∅

}
, (2)

where B1
(

1
2

)
is the ball of radius 1

2 based on ‖ · ‖1, and � denote the Minkowski
sum:

A � B = {a + b;a ∈ A and b ∈ B} .

In Figure 1(a), an example of definition (1) is shown. The selected points are
the ones contained in the band described by the translation of B1

(
1
2

)
along

the discrete line. In Figure 1(b), an example of definition (2) is shown. The
selected discrete points are the ones for which the intersection between the ball
B1

(
1
2

)
centered on them and the Euclidean line is not empty. Both definitions

are equivalent.
From an arithmetic point of view, the closed naive representation N(D(n, µ))

of the Euclidean line D(n, µ) with normal vector n = (a, b) ∈ Z2 and translation
parameter µ is defined as follows:

N (D(n)) =
{
p = (i, j) ∈ Z2;−

‖n‖∞
2

≤ ai + bj + µ ≤
‖n‖∞

2

}
(3)



Such an arithmetic representation is well adapted to the deduction of properties,
such as the membership of a discrete point to a discrete line, and the definition
of drawing and recognition algorithms.

However, the closed naive representation of an object can contain 0-simple
points. A simple way to avoid such configuration is to restrict one of the in-
equalities in (3). By doing so, we obtain the naive line N (D(n, µ)) introduced
by J.-P. Reveillès [1], defined as follows:

N (D(n, µ)) =
{
p = (i, j) ∈ Z2;−

‖n‖∞
2

≤ ai + bj + µ <
‖n‖∞

2

}
(4)

Definition (4) is the common definition of discrete lines because it leads to the
minimal 0-connected discrete set without simple points, as shown in Figure 1(c).
J. Bresenham’s line [12] is, in particular, a naive discrete line.

The above mentioned models of discrete lines easily extend in higher dimen-
sions to discrete hyperplanes [1, 2]. In particular, we have the following naive
model of P(n, µ), the hyperplane with normal vector n ∈ Zd and µ ∈ Z its
translation parameter:

N (P(n, µ)) =

{
v = (v1..., vd) ∈ Zd;−

‖n‖∞
2

≤
d∑

i=1

nivi + µ <
‖n‖∞

2

}
(5)

In the 2-dimensional space, discrete lines are defined by their normal vector.
This is not possible in higher dimensions: a line is then defined by its direction
vector or its normal hyperplane. Another approach is necessary to understand
them.

3.2 3-Dimensional Space: Discrete Lines and Projections

The closed naive description of a Euclidean line in the 3-dimensional space does
not share all the properties of a Euclidean line in the 2-dimensional space. In
particular, such a discrete set is not 0-connected.

Example 1. Let v = (1, 1, 2) be the direction vector of the Euclidean line D3D(v)
through the origin. Then, N (D3D(v)), its closed naive representation is defined
as follows:

N (D3D(v)) = {p.(1, 1, 2); p ∈ Z} .

This set is obviously not connected.

Another definition have been proposed to characterize naive discrete lines
in the 3-dimensional space. It was first introduced by A. Kaufman and E. Shi-
mony [3] with an algorithm computing incrementally the set of its points. This
algorithm is a generalization to the 3-dimensional space of the J. Bresenham’s
classical 2-dimensional one [12]. Considering that this naive line is provided
with a direction vector v = (a, b, c) such that ‖v‖∞ = c 6= 0 and gcd(a, b, c) = 1,



its projections on the planes normal to e1 and e2 (both equivalent to the 2-
dimensional space Z2) are naive discrete lines. This simplification is the key
point of the approach.

Later, I. Debled-Rennesson [7], O. Figueiredo and J.-P. Reveillès [5, 6] pro-
posed an arithmetic characterization of naive discrete lines in the 3-dimensional
space. N (D3D(v)), the naive representation of the Euclidean line D3D(v)
through the origin and directed by v = (a, b, c), such that ‖v‖∞ = c 6= 0 and
gcd(a, b, c) = 1, is the set of discrete points n = (i, j, k) ∈ Z3 verifying:{

− c
2 ≤ bk − cj < c

2
− c

2 ≤ ci− ak < c
2

(6)

This arithmetic definition characterizes the same set as A. Kaufman and
E. Shimony’s algorithm [6].

In [6], O. Figueiredo and J.-P. Reveillès notice that the resulting set is dif-
ferent from the one of the closest discrete points to the Euclidean line D3D(v).

Example 2. Let v = (1, 2, 4) be the direction vector of the Euclidean line
D3D(v). Then, N (D3D(v)), the naive discrete representation of D3D(v) is the
set of points:

N (D3D(v)) = {pv � {(0, 0, 0), (0, 1, 1), (1, 1, 2), (1, 2, 3)} ; p ∈ Z} .

The Euclidean distance between the points {p.v � (0, 1, 1); p ∈ Z} and the Eu-
clidean line D3D(v) is of 0.535, whereas the points {pv � (0, 0, 1); p ∈ Z} are
only at a distance of 0.487 from the line. So the set of the closest points to the
Euclidean line D3D(v) is:

{p.v � {(0, 0, 0), (0,0,1), (1, 1, 2), (1, 2, 3)} ; p ∈ Z} .

Fig. 2. The naive discrete line directed by (1, 2, 4), for which projections are 2-
dimensional naive discrete lines, contains an error in the point selection

Another definition of discrete lines was introduced by V. Brimkov and
R. Barneva in [14]. Graceful lines are seen as intersection of particular discrete
planes, the graceful ones. They are 0-connected but not minimal sets.



4 Discrete Lines as Sets of Closest Integer Points

The usual definition of discrete lines in 3-dimensional space is not satisfactory
because it it not equivalent to the set of the closest integer points to the Euclidean
line with same parameters and because geometric properties are lost. In the
sequel, we propose a definition which overcomes these limitations and leads to
geometric, arithmetic and algorithmic characterizations.

4.1 Minimal 0-Connected Set of Closest Integer Points

We are interested in the thinnest discrete line D3D(v) through the origin and
directed by v = (a, b, c) ∈ N3 such that ‖v‖∞ = c 6= 0 and gcd(a, b, c) = 1. By
thinnest, we mean the minimal (with respect to set inclusion) 0-connected set
constituted by the closest discrete points to the Euclidean line D3D(v).

Theorem 1. The discrete line D3D(v) is 0-connected if and only if :

∀k ∈ Z,∃(i, j) ∈ Z2; (i, j, k) ∈ D3D(v).

Proof (Sketch). If ∃k ∈ Z such that @(i, j) ∈ Z2, (i, j, k) ∈ D3D(v) then D3D(v)
is not 0-connected since the discrete plane P(e3, k, 1) is 0-separating in Z3 and
points of D3D(v) belongs to both sides of it. Thus, if D3D(v) is 0-connected,
then ∀k ∈ Z,∃(i, j) ∈ Z2, (i, j, k) ∈ D3D(v).

The discrete line D3D(v) is the set of closest discrete points to the Euclidean
line D3D(v). Let us assume that n and m ∈ Z3 belong to D3D(v) such that
km = kn + 1. From the initial conditions on the direction vector v (‖v‖∞ =
c 6= 0), the intersection between D3D(v) and P(e3, km), the plane normal to e3

containing m, is the intersection between D3D(v) and P(e3, kn) translated by
vector (a

c , b
c , 1). As the criterion is the distance to the line, in the worst case,

m = n + (1, 1, 1) and finally for each kn, n and m are always 0-adjacent. Thus,
if ∀k ∈ Z,∃(i, j) ∈ Z2, (i, j, k) ∈ D3D(v), then D3D(v) is 0-connected. ut

So for each k ∈ Z, we look for the closest discrete points n = (i, j, k) ∈ Z3 to
D3D(v). Let us now define V3D (Figure 3(a)), a subset of R3 we use to determine
them.

Definition 4. Let P(e3, 0) be the Euclidean plane of normal vector e3 and with
translation parameter 0. Then, V3D is defined as follows:

V3D =
(
B∞

(
1
2

)
\

{
x ∈ R3; ‖x‖∞ =

1
2

and sgn(x1) = −sgn(x2)
})

∩P(e3, 0).

Let k ∈ Z. Let P(e3, k) be the Euclidean plane of normal vector e3 and with
translation parameter k. Let D3D(v) be the Euclidean line through the origin
and directed by v = (a, b, c) ∈ N3 such that ‖v‖∞ = c 6= 0 and gcd(a, b, c) = 1.
Let x = D3D(v)∩P(e3, k) be the intersection between the line D3D(v) and the
plane P(e3, k).



V3D centered on x obviously contains at least one discrete point:

(V3D � x) ∩ Z3 6= ∅,

and:

Proposition 1. V3D centered on x contains the closest discrete points, included
in P(e3, k), to D3D(v):

∀n ∈ (V3D � x) ∩ Z3, d2 (n,D3D(v)) = min
m∈P(e3,k)∩Z3

{d2 (m,D3D(v))} (7)

Proof (Sketch). In order to prove this proposition, we have to evaluate the dis-
tance from the point n to the line D3D(v). The cross product v × n is useful
since its norm 2 is equal to this distance multiplied by ‖n‖2. Then, points x are
of the form

(
ka
c , kb

c , k
)

and points n are of the form
(

ka
c + ε1,

kb
c + ε2, k

)
. Those

considerations are the key points to demonstrate the proposition. ut

This result allows to geometrically characterize the minimal 0-connected set
D3D(v) of the closest discrete points to the euclidean line D3D(v).

Theorem 2. The minimal 0-connected set D3D(v) of the closest discrete points
to the Euclidean line D3D(v) with normal vector v = (a, b, c) ∈ N3 such that
‖v‖∞ = c 6= 0 and gcd(a, b, c) = 1 is:

D3D(v) = (V3D �D3D(v)) ∩ Z3 (8)
=

{
p ∈ Z3; (V3D � p) ∩ D3D(v) 6= ∅

}
(9)

Proof. Theorem 2 is a direct consequence of Proposition 1. V3D is normal to
e3. It can contains discrete points only if its component relative to e3 is an
integer. In this particular case, V3D contains only the discrete points of P(e3, k)
for which the euclidean distance to the line D3D(v) is minimal. Thus, for each
k ∈ Z, we select the points, at least one, closest to the line and obtain the
minimal 0-connected set we are looking for. ut

4.2 Naive Discrete Lines in the 3-Dimensional Space

In order to obtain a naive discrete line in the 3-dimensional space, we arbitrarily
select one discrete point when several are possible in D3D(v). From the solution
shown in Figure 3(b) and the cross product v × n we deduce the following
arithmetic definition. Only two components of the cross product are evaluated
since the third one depends on them.

Definition 5. Let v = (a, b, c) ∈ N3 such that ‖v‖∞ = c 6= 0 and gcd(a, b, c) =
1. The naive discrete line through the origin and directed by v is the set of
discrete points n = (i, j, k) ∈ Z3 such that:− c

2 ≤ sgn(ci− ak) (bk − cj) < c
2 ,

− c
2 ≤ sgn(bk − cj) (ci− ak) < c

2 ,
(ci− ak, bk − cj) 6=

(
c
2 , c

2

) (10)



An example of the resulting set is shown in Figure 3(c) for the line directed
by (2, 3, 6). Its orthogonal projections on planes with normal vector e1 or e2 are
not discrete lines.

e1

e3

e2

(a)

e1

e3

e2

(b) (c)

Fig. 3. (a) V3D, (b) The arbitrary point selection which leads to inequalities in (10) ,
(c) The resulting naive representation of the line through the origin and directed by
(2, 3, 6)

From the arithmetic definition (10), we design a simple drawing algorithm
described in Algorithm 1. We use the three components (p1, p2, p3) of the cross
product v×n to evaluate the distance from n = (i, j, k) to the line, and not only
p1 and p2 as in the arithmetic definition. p3 allows us to determine incrementally
which of the inequality should be considered large without studying the sign of
p1 and p2. First, the algorithm is initiated with a trivial point of the discrete set,
(0, 0, 0) for which v×n = 0. Then k will be incremented until it reaches the value
c. At each step, four conditions are successively evaluated. Both first are true if
the bounds of inequalities in (10) are not concerned. They check if the current
point (i, j, k) is close to the line or if it has to be updated by incrementing either
i or j or the both. The two last conditions concern the bound of the inequalities
in (10). To choose between them without studying the sign of p1 or p2, we just
study the distance to the line. When |p1| = |p1−c|, changing p1 has no influence
on the distance to the line. Moreover, p2 is fixed and so do not change the
distance either. So, in order to minimize the distance, it is then sufficient to
minimize p3. That’s what is done with the two last conditions. The exclusion of
the point n = (i, j, k) ∈ Z3 such that (bk− cj, ci− ak) = ( c

2 , c
2 ) is a consequence

of the strict inequalities |p3| > |p3 + a| and |p3| > |p3 − b|.



Algorithm 1 Naive 3-dimensional discrete line drawing.
Input : v = (a, b, c) ∈ N3, 0 ≤ a, b ≤ c, c 6= 0 and gcd(a, b, c) = 1.
Output : D3D(v), the naive 3-dimensional discrete line trough the origin and

directed by v.

i = 0, j = 0, k = 0;
p1 = 0, p2 = 0, p3 = 0;
select(i, j, k);
for k = 1 to c do

p1 = p1 + b;
p2 = p2 − a;
if |p1| > |p1 − c| then

p1 = p1 − c;
p3 = p3 + a;
j + +;

end if
if |p2| > |p2 + c| then

p2 = p2 + c;
p3 = p3 − b;
i + +;

end if
if |p1| = |p1 − c| and |p3| > |p3 + a| then

p1 = p1 − c;
p3 = p3 + a;
j + +;

end if
if |p2| = |p2 + c| and |p3| > |p3 − b| then

p2 = p2 + c;
p3 = p3 − b;
i + +;

end if
select(i, j, k);

end for

5 Conclusion

In the present paper, we have proposed a definition of naive discrete lines in the
3-dimensional space and given geometric, arithmetic and algorithmic character-
izations. The resulting set is the minimal 0-connected set of the closest integer
points to a Euclidean line. This is a significant property since we expect from a
discretization that it approximates as close as possible its Euclidean equivalent.
Previous definitions are unable to fulfill this requirement. Indeed, in order to
simplify the original 3-dimensional problem, they reduce it to the determination
of the discrete points belonging to two naive lines in the 2-dimensional space
and thus loose relationship between the different directions of the space. Our
definition provide naive 3-dimensional discrete line with new geometric proper-
ties. We recover the intrinsic symmetry of line in case where D3D(v) does not
contain simple points. At the opposite, the projections on the planes normal to



the vectors of the basis do not correspond to any particular discrete sets. Con-
sequently, the representation of discrete lines as intersections of discrete planes
do not seem compatible with our approach.

The study of 3-dimensional discrete line not only concern naive ones. The
determination of the best k-connected approximation of a Euclidean line is also
of interest. In the same way, trying to extend results to the d-dimensional case
could confirm or invalidate our approach.

The closed naive model allows discretizations of hyperplanes with geometric
and topological properties. It seems that it is also the case for the largest class
of (d−1)-dimensional objects as hyperspheres. At the opposite, it leads to noth-
ing when apply on objects of other dimensions. The appropriated discretization
model certainly depends on the dimension of the considered object. It would
be interesting to applied our discretization scheme to other planar objects like
circles.
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