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Abstract. From the existence of parallel spinor fields on Calabi-
Yau, hyper-Kähler or complex flat manifolds, we deduce the ex-
istence of harmonic differential forms of different degrees on their
minimal Lagrangian submanifolds. In particular, when the sub-
manifolds are compact, we obtain sharp estimates on their Betti
numbers. When the ambient manifold is Kähler-Einstein with pos-
itive scalar curvature, and especially if it is a complex contact
manifold or the complex projective space, we prove the existence
of Kählerian Killing spinor fields for some particular spinc struc-
tures. Using these fields, we construct eigenforms for the Hodge
Laplacian on certain minimal Lagrangian submanifolds and give
some estimates for their spectra. Applications on the Morse index
of minimal Lagrangian submanifolds are obtained.

1. Introduction

Recently, connections between the spectrum of the classical Dirac
operator on submanifolds of a spin Riemannian manifold and its ge-
ometry were investigated. Even when the submanifold is spin, many
problems appear. In fact, it is known that the restriction of the spin
bundle of a spin manifold M to a spin submanifold is a Hermitian bun-
dle given by the tensorial product of the intrinsic spin bundle of the
submanifold and certain bundle associated with the normal bundle of
the immersion ([2, 3, 6]). In general, it is not easy to have a control on
such a Hermitian bundle. Some results have been obtained ([2, 24, 25])
when the normal bundle of the submanifold is trivial, for instance for
hypersurfaces. In this case, the spin bundle of the ambient space M
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restricted to the hypersurface gives basically the intrinsic spin bun-
dle of the hypersurface and the induced Dirac operator is the intrinsic
classical Dirac operator on the hypersurface.

Another interesting manageable case is the case where the ambi-
ent space M is a spin Kähler manifold and the spin submanifold is
Lagrangian. In this case, the normal bundle of the immersion is iso-
morphic, through the complex structure of the ambient space, to the
tangent bundle of the submanifold. Hence, it is natural to expect that
the restriction of the spin bundle of the Kähler manifold should be a
well-known intrinsic bundle associated with the Riemannian structure
of the submanifold.

In fact, Ginoux has proved in [17] that, in some restrictive cases, this
bundle is the complexified exterior bundle on the submanifold. On the
other hand, Smoczyk [50] showed that non-trivial harmonic 2-forms
on minimal Lagrangian submanifolds of hyper-Kähler manifolds are
obtained as restrictions to the submanifold of some parallel exterior
forms on the ambient space. These two works can be considered as the
starting point of this paper which can be framed into a series of results
where well-behaved geometric objects on submanifolds are obtained
from parallel objects on the ambient manifold.

In this sense, such results should be seen as sophisticated versions of
the old Takahashi theorem [52], where eigenfunctions for the Laplace
operator on a minimal submanifold of a sphere are obtained from the
parallel vector fields of the Euclidean space. Also, for example, Bär
[2] got eigenspinors on a constant mean curvature hypersurface from
parallel or Killing spinor field on the ambient space, and Savo tried
recently to prove in [48] a Takahashi theorem for exterior forms, using
the same idea. The paper is organized as follows:

(1) Introduction
(2) Some bundles over almost-complex manifolds
(3) Totally real submanifolds
(4) Lagrangian submanifolds
(5) Some examples in CPn

(6) Structures on the Maslov coverings and their cones
(7) Spinc structures
(8) Parallel and Killing spinors fields
(9) Lagrangian submanifolds and induced Dirac operator

(10) The Hodge Laplacian on minimal Lagrangian submanifolds
(11) Morse index of minimal Lagrangian submanifolds
(12) References

Our goal is to find conditions on an ambient Kähler manifold and
on a Lagrangian submanifold, in order to get information on the spec-
trum of the Hodge Laplacian acting on the bundle of differential forms
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of the submanifold. For this, the main tools are to make use of the
spinc geometry of the Kähler ambient manifold and the symplectic ge-
ometry of the submanifold. In fact, to consider spin Kähler manifolds
is quite restrictive, because important examples, as complex projective
spaces of even complex dimension, are not spin. On the other hand,
any Kähler manifold admits a spinc structure. This allows us to work
with such spinc structures on Kähler manifolds, to look for suitable
(parallel, Killing, Kählerian Killing,. . . ) spinor fields for those struc-
tures and to investigate what do these fields induce on their Lagrangian
submanifolds. In fact, they induce differential forms which are eigen-
forms for the Hodge Laplacian, provided that a certain condition on
the symplectic geometry of the submanifold is satisfied. In this way we
find an unexpected connection between spinc geometry of the ambient
Kähler manifold and some invariants of the symplectic geometry of its
Lagrangian submanifolds. In order to get and clarify this relation we
chose to lengthen the expository part of the paper.

There are two different successful situations: when the ambient space
is a Calabi-Yau manifold (in a wide sense, that is, including hyper-
Kähler and flat complex manifolds) and when it is a Kähler-Einstein
manifold of positive scalar curvature.

In the first case, we consider the trivial spin structure, which carries
parallel spinor fields, and the Lagrangian submanifold is assumed to
be minimal. In this situation, the restriction to the submanifold of
the spin bundle on the Calabi-Yau manifold is nothing but the com-
plex exterior bundle, the restriction of the spin connection induces the
Levi-Cività connection and the induced Dirac operator is just the Euler
operator on the submanifold (Proposition 20). Using these identifica-
tions, we see that the restriction to the submanifold of parallel spinor
fields of the Calabi-Yau manifold are harmonic forms, which yield sharp
topological restrictions on such submanifolds (Theorem 22), improving
those obtained in [50].

When the ambient space is a Kähler-Einstein manifold of positive
scalar curvature we have two different kind of problems: first, to choose
certain spinc structures supporting suitable spinor fields (there are no
parallel spinor fields on these manifolds), and second to get conditions
on the Lagrangian submanifold so that the restriction of the ambient
spinc bundle on the submanifold to be the exterior bundle and that the
induced Dirac operator to be the Euler operator on the submanifold.

Using the cones on the maximal Maslov covering of a Kähler-Einstein
manifold of positive scalar curvature (which are simply-connected Calabi-
Yau manifolds), we find Kählerian Killing spinors for different spinc

structures on some of such manifolds: the complex projective space
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and the Fano complex contact manifolds (Theorem 17). In these cases,
to assume the minimality of the Lagrangian submanifold is not enough
to guarantee that the restriction of some spinc bundle is the exterior
complex bundle. The reason is that there exists a very nice relation
between the spinc bundles on the Kähler-Einstein manifold which re-
stricted to the Lagrangian submanifold are the exterior bundle and
certain integer number associated with a minimal Lagrangian subman-
ifold, studied by Oh [46] and Seidel [49], which has its origin in sym-
plectic topology. This number will be called the level of the minimal
Lagrangian submanifold. Since in the above references that number is
only studied for embedded Lagrangian submanifolds, in Sections 3 and
4 we generalize their construction to immersed totally real submani-
folds (Propositions 4 and 8), computing in Section 5 the level of cer-
tain minimal Lagrangian submanifolds of the complex projective space.
In Theorem 24, we summarize the above results obtaining eigenforms
of the Hodge Laplacian on some minimal Lagrangian submanifolds of
the complex projective space and of Fano complex contact manifolds
(twistor manifolds on quaternionic-Kähler manifolds).

Finally, as the Jacobi operator of a compact minimal Lagrangian
submanifold of a Kähler manifold is an intrinsic operator acting on
1-forms of the submanifolds [44], in the last section we obtain some
applications to study the index of such submanifolds (Corollaries 29
and 30).

2. Some bundles over almost-complex manifolds

Let M be an almost-complex manifold of dimension 2n and let J
be its almost-complex structure. The complexified cotangent bundle
decomposes into ±i-eigenbundles for the complex linear extension of J

T ∗M ⊗ C = T ∗M1,0 ⊕ T ∗M0,1

This decomposition induces a splitting of the space of complex valued
p-forms, p = 0, . . . , 2n,

(2.1) Λp(M) ⊗ C =
⊕

r+s=p

Λr,s(M)

on M , where each subspace is determined by

Λr,s(M) = Λr,0(M) ⊗ Λ0,s(M)

and the spaces of holomorphic and antiholomorphic type forms are
defined as follows

Λr,0(M) = Λr(T ∗M1,0) Λ0,s(M) = Λs(T ∗M0,1).
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They are vector bundles on M with complex ranks

(
n
r

)
and

(
n
s

)

respectively. In particular the vector bundles Λn,0(M) and Λ0,n(M)
are line bundles over M . The first one is usually called the canonical
bundle of the manifold M and we will be denoted by

(2.2) KM = Λn,0(M).

We will deliberately not distinguish complex line bundles and S1-
principal bundles over the manifold M . Their equivalence classes of
isomorphisms are parametrized by the cohomology groups

(2.3) c1 : H1(M, S1) ∼= H2(M,Z),

where the isomorphism is given by mapping each line bundle or S1-
principal bundle L onto its first Chern class c1(L). (Note that, this is
not true if one considers real Chern classes, cfr. [58, page 108].) This
is nothing but the boundary operator in the exact long cohomology
sequence corresponding to the exact short sequence

0 → Z → R → S
1 → 1.

Suppose that the first Chern class c1(KM) of the canonical bundle of
the almost-complex manifold M is a non-zero cohomology class. Let
p ∈ N

∗ be the greatest number such that

α =
1

p
c1(KM) ∈ H2(M,Z).

When M is a Kähler manifold this natural number p is called the index
of the manifold. Instead, in symplectic geometry, this number is usually
called the minimal Chern number of M (see [49]). We will use the first
terminology in the general case. Take now an S

1-principal L → M
bundle such that

c1(L) = α =
1

p
c1(KM).

Then, the isomorphism (2.3) shows that

(2.4) Lp = L⊗ p· · · ⊗L = KM ,

that is, L is a p-th root of the canonical bundle KM . Note that the
space of such roots is an affine space over the group H1(M,Zp). This
can be shown by considering the long exact sequence in the cohomology
of M corresponding to the following short sequence

1 → Zp →
z
S

1
7→
→
zp

S
1→ 1.

Using this type of cohomology exact sequences one can see that, in
general, if N ∈ H1(M, S1) is an S

1-bundle, its q-th tensorial power N q
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can be identified with its quotient N q = N /Zq, where Zq is the group
of the q-th roots of the unity acting on the principal bundle N through
the S

1-action. Then we have that L is a p-fold covering space of the
canonical bundle KM and so we have

L Zp→ Lp = L/Zp = KM
S1

→M.

In fact, in the context of symplectic geometry, a q-fold Maslov covering
of M (see [49, Section 2.b.]) can be defined as a q-th root of the power
(KM)2. So, the bundle L is a 2p-fold Maslov covering of M and, indeed
it is a Maslov covering with maximal number of sheets.

Remark 1. Consider the case where M is the complex projective space
CP n endowed with its usual complex structure. It is well-known that

c1(KCP n) = (n+ 1)[
1

π
Ω] ∈ H2(CP n,Z) ⊂ H2(CP n,R),

where Ω is the Kähler form

Ω(u, v) = 〈Ju, v〉
with respect to the Fubini-Study metric of constant holomorphic sec-
tional curvature 4. Since [ 1

π
Ω] is a generator of H2(CP n,Z) ∼= Z, it is

clear that n+ 1 is the index of CP n. The line bundle with first Chern
class [ 1

π
Ω] is the so called universal bundle over CP n (see [18]), whose

fiber over the point [z], z ∈ Cn+1 − {0}, is just the line 〈z〉 ⊂ Cn+1.
The corresponding principal S

1-bundle L is nothing but the Hopf bun-
dle S2n+1 → CP n. Then, in this case, KCP n = Ln+1 = S2n+1/Zn+1,
that is, the total space of this principal bundle is a lens space with pa-
rameters n+1 and 1 (see [59]). Consequently we have that (KCP n)2 =
L2n+2 = S2n+1/Z2n+2.

Remark 2. A Kähler manifold M of dimension 2n = 4k+ 2 is said to
be a complex contact manifold when it carries a codimension 1 holomor-
phic subbundle H of T 1,0M which is maximally non-integrable. Then
the quotient line bundle E = T 1,0M/H satisfies E−(k+1) = KM (see,
for example, [34]). Hence the Chern class c1(KM) is divisible by k + 1
and the index p of M must be bigger than or equal to k + 1 = n+1

2
.

Conversely, if a Kähler manifold of odd complex dimension n = 2k+ 1
has its first Chern class divisible by k+ 1, then it is a complex contact
manifold and each (k + 1)-th root of the anticanonical bundle (KM)−1

determines a corresponding complex contact structure. For instance,
the complex projective space CP 2k+1 is a complex contact manifold
because the Hopf line bundle L satisfies L2k+2 = KCP n and so E = L−2

is a (k + 1)-th root of the anticanonical bundle. But we already know
that the index of CP 2k+1 is 2k+ 2 = n+ 1. This fact characterizes the
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odd-dimensional complex projective space among all the complex con-
tact manifolds. In fact, any other such manifold has index k+1 = n+1

2
(see [7, Proposition 2.12]). Of course, there are a lot of non-trivial
such Kähler manifolds. For example, the projectivized holomorphic
cotangent bundle P(T ∗N) of any (k + 1)-dimensional complex man-
ifold N , the product CP k × Qk+1(C) of a complex projective space
and a complex quadric, or the complex projective space CP 2k+1 blown
up along a subspace CP k−1. On the other hand, Bérard-Bergery [4]
and Salamon [47] showed that the twistor space of any 4k-dimensional
quaternionic-Kähler manifold is a (4k + 2)-dimensional complex con-
tact manifold which admits a Kähler-Einstein metric of positive scalar
curvature. Later LeBrun proved in [34, Theorem A] that any complex
contact manifold admitting such a metric must be the twistor space of
a quaternionic-Kähler manifold.

3. Totally real submanifolds

Let L be an n-dimensional manifold immersed into our 2n-dimensional
almost-complex manifold M . This immersed submanifold is called to-
tally real when its tangent spaces have no complex lines, that is, when

(3.1) TxL ∩ Jx(TxL) = {0}, ∀x ∈ L.

The following result quotes one of the more relevant basic facts of this
class of submanifolds:

Lemma 3. Let ι : L → M be a totally real immersion of an n-
dimensional manifold L into an almost-complex 2n-dimensional man-
ifold M . Then the pull-back maps

ι∗ : Λr,0(M)|L → Λr(L) ⊗ C, ι∗ : Λ0,s(M)|L → Λs(L) ⊗ C

are vector bundle isomorphisms.

Proof : It suffices to check it at each point x ∈ L and only for the
map on the left side. Since the complex vector spaces Λr,0(M)x and

Λr(L)x have the same dimension

(
n
r

)
, it is sufficient to prove that ι∗x

has trivial kernel. Suppose that ω ∈ Λr,0(M)x and that

ω(ui1, . . . , uir) = 0

for a given basis u1, . . . , un of TxL. As ω is of (r, 0) type, we have

ω(ui1 − iJui1 , ui2, . . . , uir) = 2ω(ui1, . . . , uir).

Then, by repeating the same argument at each entry of ω, we have

ω(ui1 − iJui1 , . . . , uir − iJuir) = 2rω(ui1, . . . , uir) = 0.
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But condition (3.1) implies that the vectors u1 − iJu1, . . . , un − iJun

form a basis for T 1,0
x (M) and so ω = 0. Q.E.D.

As a consequence of Lemma 3, if the submanifold L is orientable,
then the restricted line bundle KM |L = Λn,0(M)|L = Λn(L) ⊗ C is a
trivial bundle and, in all cases, the same occurs for the tensorial 2-
power (KM)2|L since the line bundle Λn(L) ⊗ Λn(L) is trivial on each
n-dimensional manifold L. Hence, the restriction to the submanifold L
of the maximal Maslov covering L over M verifies that L2p|L is trivial.
So, it is clear that the immersion ι can be factorized through L2p, that
is, we have a lift

(KM)2 = L2p = L/Z2p



↗ ↓
L

ι→ M.

As ι is an immersion, then such any lift  is another immersion which
is transverse to the fundamental vector field (see [31]) produced by the
S1-action on L2p. Note that each lift  is a section of (KM)2|L and
so, from Lemma 3, it provides a non-zero n-form, determined up to
a sign, on the submanifold. Reciprocally, each non-trivial section of
(Λn(M) ⊗ C)2 yields a lift .

Fix a lift  : L → L2p of the totally real immersion ι : L → M . For
each positive integer q such that q|2p, denote by Pq,2p : Lq → L2p the
corresponding 2p

q
-fold covering map. We may consider the composition

(3.2) π1(L)
∗−→ π1(L2p) −→ π1(L2p)

(Pq,2p)∗(π1(Lq))
∼= Z 2p

q
.

Moreover, denote by n(L, ) the smallest integer q such that this com-
position of group homomorphisms is zero. Then we have n(L, )|2p and
that  can be lifted to Ln(L,) with the property  cannot be lifted to
Lq for any q < n(L, ). Note that, when L is orientable, then any lift 
factorizes through Lp and then n(L, )|p.

The above facts can be summarized as:

Proposition 4. Let ι : L → M be a totally real immersion of an n-
dimensional manifold into an almost-complex 2n-dimensional manifold
M with index p ∈ N

∗. Then ι may be lifted to L2p, where L is any
maximal Maslov covering of M . For each such lift  : L → L2p, there
exists a positive integer n(L, )|2p such that  can be lifted to Ln(L,)

and this is the smallest index power for which this lift is possible. That
is, there is an immersion ̃ : L→ Ln(L,) transverse to the fundamental
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field of the bundle such that

Ln(L,)

e

↗ ↓
L L2p

‖


↗ ↓
L

ι→ M

is commutative. Moreover n(L, )|p if and only if L is orientable.

Remark 5. (Cf. [49, Lemmae 2.3 and 2.6]) If q is an integer with
1 < q|n(L, ), we consider the short exact sequence

1 −→ Zq −→
z
S

1
7−→

−→
zq

S
1−→ 1

and the corresponding long exact sequence in the cohomology

· · · −→ H1(L,Zq) −→
ι∗L

n(L,)
q

H1(L, S1)
7−→

−→
ι∗Ln(L,) = 1
H1(L, S1) −→ · · ·

From it, we can deduce that there exists a cohomology class inH1(L,Zq)

which is mapped onto the bundle L
n(L,)

q |L, that is, this bundle trivial-
izes over a q-fold covering of L. This covering cannot be trivial, i.e.,
the number of its connected components is less than q. Otherwise the

bundle L
n(L,)

q |L itself would be trivial and this is not possible because
n(L,)

q
< n(L, ). Hence we have

1 < q, q|n(L, ) =⇒ H1(L,Zq) 6= 0.

Moreover, as H1(L,Zr) is a subgroup of H1(L,Zs), provided that r|s,
we have that

1 < n(L, )|q =⇒ H1(L,Zq) 6= 0.

As a consequence, as n(L, )|2p, we have that

q|2p, H1(L,Zq) = 0 =⇒ n(L, )|2p
q
.

In particular, if H1(L,Z2p) = 0, then we must have that n(L, ) = 1
for any lift  of the immersion ι. In other words, each  may be lifted
to the maximal Maslov covering L.

Remark 6. Since the principal S1-bundle Ln(L,)|L is trivial, we have
from the isomorphism (2.3) that c1(Ln(L,)|L) = 0, that is, n(L, )ι∗α =
0 in the group H2(L,Z). As a consequence, if ι∗α 6= 0, the order of
ι∗α ∈ H2(L,Z) divides n(L, ). Note that in the case ι∗α = 0 we have
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that the immersion ι : L → M may be lifted to the maximal Maslov
covering L, but we have not n(L, ) = 1 necessarily for every  (if
H1(L,Z2p) 6= 0) as we can see in Example 3 of Section 5. This same
example shows that n(L, ) depends on the lift  fixed and not only on
the totally real immersion ι.

4. Lagrangian submanifolds

Suppose now that the 2n-dimensional almost-complex manifold M
is endowed with a Riemannian metric 〈 , 〉. Then the totally real
submanifold L is another Riemannian manifold with the metric induced
from M through the immersion ι : L → M . If x ∈ L, we have an
n-form ωx defined, up to a sign, on TxL by means of the condition
ωx(e1, . . . , en) = 1 for each orthonormal basis {e1, . . . , en}. Then ω⊗ω
is a global nowhere vanishing section of the line bundle Λn(L)⊗Λn(L)
on L. When L is orientable, ω is nothing but the volume form of its
metric. Hence, using Lemma 3, we obtain a nowhere vanishing section
of the restricted line bundle (Λn,0(M))2|L. This means that, in this
case, we have a privileged lift 0 : L→ L2p = (KM)2 for the totally real
immersion ι.

We will write nL for the integer n(L, 0) given in Propo-
sition 4 where 0 is the squared volume form of the met-
ric induced on L and we will call it the level of the totally
real submanifold L.

It is clear from (3.2) that this level is invariant for deformations of the
immersion ι through totally real immersions, that is, it is an invariant
of the (totally real) isotopy class of ι.

Remark 7. One can see that, according to the above definition, the
level nL coincides with the quotient 2p

NL
, where NL is the integer defined

by Seidel in his work on grading Lagrangian submanifolds of symplectic
manifolds (see [49]). We point out that in [49], this integer is called
the minimal Chern number of the pair (M,L) while it is called minimal
Maslov number in [9]. In fact, the integer NL is the positive generator of
the subgroup µ(H1(L,Z)) ⊂ Z, where µ ∈ H1(L,Z) is the Maslov class
of L (see for example [11]), if the subgroup is non-zero, and NL = 2p if
it vanishes. Note that these authors deal with embedded submanifolds
and, consequently, they employ cohomology of pairs, while in this paper
we consider immersed submanifolds.

From now on, we assume that the almost-complex ambient mani-
fold is Kähler. This means that the almost-complex structure J is an
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isometry for the metric 〈 , 〉 and that its Levi-Cività connection ∇ par-
allelizes J . This ∇ uniquely extends to each exterior bundle Λp(M)⊗C

and, in the Kähler case, since J is parallel, the decomposition (2.1) is
invariant under this extension, that is, each Λr,s(M) ⊗ C is endowed
with an induced connection, also denoted by ∇. In particular, we can
dispose of a Levi-Cività connection on the canonical bundle KM de-
fined in (2.2). This connection may be induced in a natural way on
the maximal Maslov covering L which is, according to (2.4) a p-fold
covering of KM and so on each tensorial power Lq. Then it is natural
to inquire under which conditions the lift 0 to L2p of the immersion ι
is horizontal with respect to this Levi-Cività connection. Note that, if
such a 0 is horizontal, then any higher lift until the corresponding LnL

will be horizontal too. We will give an answer when the metric of M
is Einstein. This answer will point out the importance of a fashionable
family of totally real submanifolds.

Proposition 8. Let ι : L → M be a totally real immersion of an n-
dimensional manifold L into a 2n-dimensional non scalar-flat Kähler-
Einstein manifold M of index p ∈ N∗ and 0 : L → L2p = (KM)2 be
the lift determined by the squared volume form of the induced metric.
Then 0 (or any other higher lift of 0) is horizontal with respect to the
Levi-Cività connection of M if and only if ι is a minimal Lagrangian
immersion.

Proof : Our assertion is an improvement of Proposition 2.2 in [46]
(see also [8]) and the proof follows from the corresponding one there. In
fact, if 0 is horizontal, one has a global nowhere vanishing section for
the restricted line bundle (KM)2|L on the submanifold L. So the Levi-
Cività connection on the restriction of the canonical bundle KM must
be flat. But it is well known that the curvature form of this connection
is projected onto the Ricci form of the Kähler metric of M . Since this
metric is Einstein and non scalar-flat, we have that ι∗ΩM = 0, where
ΩM stands for the Kähler two-form on M . Hence, the immersion is
Lagrangian. But now, from Proposition 2.2 of [46] (take into account
that Oh uses a different convention that ours for the mean curvature
and that we work on the squared KM), we have in this case

(4.1) ∇u0 = 2n
√
−1 〈JH, u〉 0 ∀u ∈ TL,

where H is the mean curvature vector field of the immersion ι. Then
0 is parallel if and only if H is identically zero, that is, ι is minimal.
Q.E.D.

Remark 9. From Proposition 8 above, one deduces that if the totally
real submanifold L is Lagrangian and minimal, then the restricted line
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bundle (KM)2|L is geometrically trivial, that is, it is flat and has trivial
holonomy. The minimality of the submanifold L is not necessary in
order to geometrically trivialize (KM)2|L, because perhaps one could
find another parallel section different from 0. Using (4.1), one sees that
a suitable modification of 0 through a change of gauge f : L → S1 is
parallel if and only if id log f coincides with the 1-form given by

u ∈ TL 7−→ 2n〈JH, u〉.
This means that the squared line bundle (KM)2 is geometrically trivial
on the submanifold L if and only if the so called mean curvature form

η(u) =
n

π
〈JH, u〉 ∀u ∈ TL,

which is a closed form (see [12]), has integer periods, that is, the co-
homology class [η] ∈ H1(L,R) belongs to the image of the subgroup
H1(L,Z). With the same effort, one can check in fact that Lq|L is
geometrically trivial if and only nL|q|2p and q

2p
[η] ∈ H1(L,Z). In par-

ticular, this happens when L is minimal or when the mean curvature
form is exact (see [44]). This result is also true when the ambient
manifold is Ricci-flat, provided that the submanifold is supposed to
be Lagrangian and not only totally real. In fact, in Ricci-flat ambient
manifolds, this mean curvature class coincides with the Maslov class
(see [35, 11] and notice that there the mean curvature is not normal-
ized) which is defined as an integer class.

Remark 10. As another consequence of this Proposition 8,

The level nL of a minimal Lagrangian immersion ι :
L→ M into a non scalar-flat Kähler-Einstein manifold
of index p, defined at the beginning of this Section 4, is
nothing but the smallest number q|2p such that ι admits
a horizontal (also called Legendrian) lift to the Maslov
covering Lq.

In fact, such a horizontal lift followed by the covering map Pq,2p : Lq →
L2p = (KM)2 is also a horizontal map and so differs from 0 only by
a constant change of gauge. Taking into account that, according to
[11], the minimal Maslov number is computable in terms of symplectic
energy for minimal Lagrangian submanifolds, our level nL coincides
also with the integer defined by Oh in [46], although his definition,
made in terms of cohomology of pairs, was valid only for embeddings.
In particular, the line bundles LqnL|L with q = 1, . . . , 2p

nL
are not only

trivial bundles but trivial as flat bundles too. In other words, they are
flat bundles with trivial holonomy.
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5. Some examples in CP n

Now we are going to examine in some detail the most relevant ex-
amples of minimal Lagrangian submanifolds of the complex projective
space, emphasizing on the computation of their respective levels. In
fact, all the examples considered below are compact and have parallel
second fundamental form. Examples 3 and 4 are Riemannian prod-
ucts. The other ones are the only compact irreducible examples of
minimal Lagrangian submanifolds in CP n with parallel second funda-
mental form (see [42, 43]).

1. Consider the totally geodesic embedding Sn ↪→ S2n+1 of the n-
dimensional unit sphere into the (2n + 1)-dimensional unit sphere in-
duced from the standard inclusion

(x1, . . . , xn+1) ∈ R
n+1 7→ (x1, . . . , xn+1) ∈ C

n+1 ≡ R
2n+2.

This map induces a well-known 2:1 immersion ι from the sphere Sn

into the complex projective space CP n given by

ι : (x1, . . . , xn+1) ∈ S
n 7→ [x1, . . . , xn+1] ∈ CP n

which is a Lagrangian with respect to the usual symplectic structure
constructed from the complex structure and the Fubini-Study metric
(of holomorphic sectional curvature 4). Moreover the metric induced
by ι on the sphere Sn is the standard round metric of curvature 1. It
is clear from the definition that ι factorizes in the following way

(x1, . . . , xn+1) ∈ S
n 7→ (x1, . . . , xn+1) ∈ S

2n+1 π7→ [x1, . . . , xn+1] ∈ CP n.

The Hopf projection π is a submersion with respect to the metrics
involved on S2n+1 and CP n (see [31]) and the Levi-Cività connection on
the sphere S2n+1, viewed as a Maslov (2n+ 2)-covering of the squared
canonical bundle KCP n, coincides with the Levi-Cività connection of
the standard unit metric. Then, as the immersion  is also isometric,
we have that  is a horizontal lift of ι. As a conclusion

nSn = 1.

2. The immersion ι : Sn → CP n above factorizes through an immer-
sion

ι2 : S
n/Z2 = RP n −→ S

2n+1/S1 = CP n

given by

ι2 : {x1, . . . , xn+1} ∈ RP n 7−→ [x1, . . . , xn+1] ∈ CP n.

It is easy to see that ι2 is a totally geodesic Lagrangian embedding and
that 2 : RP n → RP 2n+1 defined by

2 : {x1, . . . , xn+1} ∈ RP n 7−→ {x1, . . . , xn+1} ∈ RP 2n+1
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is an isometric and hence horizontal lift of ι2. As a consequence, we have
that nRP n |2. But, on the other hand, we have that c1(L|Sn/Z2

) = (ι2)
∗α

and that

(ι2)
∗ : H2(CP n,Z) ∼= Z −→ H2(RP n,Z) ∼= Z2

is surjective. Then the line bundle L|RP n is topologically non-trivial
and hence the level of ι2 cannot be 1. As a conclusion

nRP n = 2.

3. Consider the (n+ 1)-dimensional flat torus

T
n+1 = S

1

(
1√
n+ 1

)
× n+1· · · ×S

1

(
1√
n + 1

)
⊂ S

2n+1.

The action of the circle S1 on the sphere S2n+1 fixes Tn+1 and induces
an embedding ι from the corresponding quotient Tn+1/S1, which is
isometric to a certain flat torus Tn, into the complex projective space
CP n such that

T
n+1 ↪→ S

2n+1

↓ ↓
T

n ι→ CP n

is commutative. This is the well-known embedding of the Lagrangian
Clifford torus, which is a minimal embedding.

We define a map  : T
n → S

2n+1/Zn+1 by

{z1, . . . , zn+1} ∈ T
n+1

S1

7→
{

1
n+1
√
z1 · · · zn+1

(z1, . . . , zn+1)

}
∈ S

2n+1

Zn+1
.

One can check that this  is a horizontal lift of the embedding ι and so
it coincides with the horizontal lift 0 determined by the volume form
of Tn up to product by an (n + 1)-th root of the unity. On the other
hand, it is not difficult to see that the induced group homomorphism

∗ : π1(T
n) ∼= Z⊕ n· · · ⊕Z −→ π1

(
S

2n+1/Zn+1

) ∼= Zn+1

is surjective. Then, from definition (3.2), n(Tn, 0) = n(Tn, ) = n+ 1.
Hence

nTn = n+ 1.

It is important to notice that, in this case, the cohomology homomor-
phism

ι∗ : H2(CP n,Z) −→ H2(Tn,Z)

is trivial, and so the restriction of any line bundle Lq = S2n+1/Zq to
the torus Tn is trivial too. That is, the embedding ι may be lifted to
the sphere S

2n+1 but not horizontally (see Remark 6).
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4. For n ≥ 3, consider the product S1 × Sn−1 ⊂ C × Rn ⊂ C × Cn.
The map determined by

(z, x) ∈ S
1×S

n−1 7−→
[

1√
n + 1

(√
n

x
n+1
√
z
, n+1

√
zn

)]
∈ S

2n+1/S1 = CP n

gives a minimal Lagrangian immersion ι : S1 × Sn−1 → CP n belong-
ing to a family of highly symmetric minimal Lagrangian immersions
studied in [10]. But, from this same definition, we see that ι is the pro-
jection of a horizontal immersion  : S1 × Sn−1 → S2n+1/Zn+1 defined
changing the squared brackets denoting homogeneous coordinates by
the curly brackets representing the equivalence classes in the quotient
of the sphere S2n+1. In a way similar to Example 3 above, one easily
sees that the induced homomorphism

∗ : π1(S
1 × S

n−1) ∼= Z −→ π1

(
S

2n+1/Zn+1

) ∼= Zn+1

is surjective. Consequently we have

nS1×Sn−1 = n+ 1.

The immersion ι above is not an embedding. In fact, we observe
that ι(z, x) = ι(z′, x′) if and only if z′ = −z and x′ = −x. So, the
immersion ι yields an embedding

ι̃ : (S1 × S
n−1)/Z2 −→ CP n

where Z2 denotes the group spanned by the diffeomorphism (z, x) ∈
S

1 × S
n−1 7→ (−z,−x) ∈ S

1 × S
n−1. It is clear that ι̃ is a minimal

Lagrangian embedding which is a very well-known example already
studied by Naitoh in [42, Lemma 6.2]. When n is even, the horizontal
lift  of ι may be induced on the quotient (S1 × Sn−1)/Z2, but when n
is odd this is impossible. In this case, the same expression defines an
alternative lift

̃ : {(z, x)} ∈ S1 × Sn−1

Z2
7→

{
1√
n + 1

(√
n

x
n+1
√
z
, n+1

√
zn

)}
∈ S2n+1

Z2n+2
.

This is also a horizontal lift inducing a surjective homomorphism be-
tween the corresponding fundamental groups. Hence

n(S1×Sn−1)/Z2
=

{
n+ 1 if n is even
2n+ 2 if n is odd.

Of course, in this last case, the quotient (S1×Sn−1)/Z2 is not orientable.
5. The special unitary group SU(m) can be immersed into the unit

sphere of the vector space gl(m,C) of complex m-matrices as follows

 : A ∈ SU(m) 7−→ 1√
m
A ∈ S

2m2−1 ⊂ gl(m,C).
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Naitoh saw in [43] that this  is Legendrian and so it induces a minimal

Lagrangian immersion ι = π ◦  : SU(m) −→ CPm2−1 whose level is a
fortiori

nSU(m) = 1.

This immersion ι is not an embedding because you can see that, if
A,B ∈ SU(m), ι(A) = ι(B) if and only if B = zA and z ∈ Zm ⊂ S1.
Then one can consider an embedding

ι̃ : {A} ∈ SU(m)/Zm 7−→
[

1√
m
A

]
∈ CPm2−1

which is also minimal and Lagrangian. But it is obvious that

̃ : {A} ∈ SU(m)/Zm 7−→
{

1√
m
A

}
∈ S

2m2−1/Zm

is a horizontal lift of that embedding inducing an isomorphism

̃∗ : π1 (SU(m)/Zm) ∼= Zm −→ π1

(
S

2m2−1/Zm

)
∼= Zm

between their fundamental groups. This shows that

nSU(m)/Zm
= m.

6. The symmetric space SU(m)/SO(m) can be embedded into the
unit sphere of the vector space Sym(m,C) of symmetric complex ma-
trices in the following minimal Legendrian way

 : A · SO(m) ∈ SU(m)

SO(m)
7−→ 1√

m
AAt ∈ S

m2+m−1 ⊂ Sym(m,C)

described in [43]. So this  yields a minimal Lagrangian immersion in
the corresponding complex projective space ι = π◦ : SU(m)/SO(m) →
CP

1
2
(m2+m−2). Henceforth

nSU(m)/SO(m) = 1.

Like in the case above ι itself is not an injective map, but it induces an
embedding

ι̃ : {A · SO(m)} ∈ SU(m)

SO(m) · Zm
7−→

[
1√
m
AAt

]
∈ CP

1
2
(m2+m−2)

which can be horizontally lifted as follows

̃ : {A · SO(m)} ∈ SU(m)

SO(m) · Zm
7−→

{
1√
m
AAt

}
∈ Sm2+m−1

Zm
.
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The map between the corresponding fundamental groups induced by

this lift is nothing but Zm
2·→ Zm. So its image depends on the parity

of m and we have

nSU(m)/SO(m)·Zm
=

{
m if m is odd
m
2

if m is even.

7. Let so(2m,C) be the Lie algebra of skew-symmetric complex
2m-matrices and consider the minimal Legendrian embedding of the
symmetric space SU(2m)/Sp(m) into its unit sphere given by

 : A · Sp(m) ∈ SU(2m)/Sp(m) 7−→ 1√
2m

AJAt ∈ S
4m2−1 ⊂ so(2m,C),

where we have put

J =

(
0m −Im
Im 0m

)
.

Projecting to the complex projective space we obtain a minimal La-
grangian immersion

ι = π ◦  : SU(2m)/Sp(m) −→ CP 2m2−1

whose horizontal lift is the  above. Hence

nSU(2m)/Sp(m) = 1.

Studying again the equivalence relation associated with the map ι we
can construct a minimal Lagrangian embedding by dividing by a suit-
able discrete subgroup, namely

ι̃ : {A · Sp(m)} ∈ SU(2m)

Sp(m) · Z2m

7−→
[

1√
2m

AJAt

]
∈ CP 2m2−1.

We can see immediately that this embedding is the projection of the
following horizontal map

̃ : {A · Sp(m)} ∈ SU(2m)

Sp(m) · Z2m
7−→

{
1√
2m

AJAt

}
∈ S4m2−1

Z2m
.

As a consequence, by studying the induced map ̃∗ in the homotopy,
we conclude (see [57]) that

nSU(2m)/Sp(m)·Z2m
=

{
2m if m is odd
m if m is even.

8. We are going to compute the level for the last example of minimal
Lagrangian immersions in the complex projective space with parallel
second fundamental form, studied by Naitoh in [43]. Let C be the
Cayley algebra over R endowed with the canonical conjugation and let

H(3,C) = {A ∈ gl(3,C) |At
= A}
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which is a 27-dimensional real vector space. One can define on this
matrix space a C-valued determinant det and a C-inner product (( , ))
(see [43] for details). Consider now the complexification V = H(3,C)⊗
C and extend det and (( , )) C-linearly on V . Then, if τ denotes the
complex conjugation, ( , ) = ((τ , )) is a positive definite Hermitian
product on V . In this setting, the Lie group E6 can be viewed as
the group of C-linear ( , )-isometries of V preserving det and the
Lie subgroup F4 ⊂ E6 as the isotropy subgroup of the identity matrix
I ∈ V . Naitoh considered the following minimal Legendrian embedding

 : g · F4 ∈ E6/F4 7−→
1√
3
g(I) ∈ S

53 ⊂ V

which induces a minimal Lagrangian immersion ι = π ◦  : E6/F4 →
CP 26 with

nE6/F4 = 1.

It is clear that the group of cubic roots of the unity Z3 ⊂ S
1 acts on

E6 as follows

(zg)(A) = zg(A) ∀z ∈ Z3, g ∈ E6, A ∈ V

and that ι(g · F4) = ι(h · F4) if and only if h = zg for some z ∈ Z3.
Then we get a minimal Lagrangian embedding ι̃ : E6/F4 ·Z3 −→ CP 26

that we can horizontally lift to a map

̃ : {g · F4} ∈ E6/F4 · Z3 7−→
{

1√
3
g(I)

}
∈ S

53/Z3.

As a conclusion

nE6/F4·Z3 = 3.

6. Structures on the Maslov coverings and their cones

Suppose now that the Kähler-Einstein 2n-dimensional manifold M
of index p ∈ N∗ is compact and has positive scalar curvature. Up to a
change of scale, we will consider that its value is exactly 4n(n+1), just
the value taken on the complex projective space CP n with constant
holomorphic sectional curvature 4. A result by Kobayashi (see [30])
implies that, in this case, M is simply-connected. Then, a suitable use
of the Thom-Gysin and the homotopy sequences for the principal circle
bundle L → M established in [3] that the maximal Maslov covering L of
the manifoldM is also simply-connected. Moreover, we already pointed
out that the Levi-Cività connection on M yields a corresponding S1-
connection on the principal S

1-bundle L → M , given by a 1-form
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iθ ∈ Γ(Λ1(L) ⊗ iR). With the help of the 1-form θ, one defines a
unique Riemannian metric on L by

(6.1) 〈 , 〉L = π∗〈 , 〉 +
p2

(n + 1)2
θ ⊗ θ

such that the projection π : L →M is an oriented submersion and that
the fundamental vector field V defined by the free S

1-action on L has
constant length p/(n+1), that is, the fibers are totally geodesic circles
of length 2pπ/(n+1). Thus the tangent spaces of the Kähler manifold
M can be seen as subspaces of the tangent spaces of L, as follows

(6.2) TzL = Tπ(z)M ⊕ 〈Vz〉, ∀z ∈ L.

This metric was originally considered by Hatekeyama [20]. Indeed,
the bundle L is nothing but the Boothby-Wang fibration on M , which
is under our hypotheses, a Hodge manifold. The main properties of
the Riemannian manifold L and the submersion π will be listed in
the following theorem of [3] (see also [6, Proposition 2.39 and Lemma
9.10]).

Proposition 11. [3, Example 1, page 84] Let L be the maximal Maslov
covering of a Kähler-Einstein 2n-dimensional compact manifold with
scalar curvature 4n(n+ 1) and index p ∈ N∗. Then L is an orientable
simply-connected compact (2n + 1)-manifold and there exist a unique
orientation and a unique Riemannian metric on L such that the projec-
tion L → M is an oriented Riemannian submersion and the fibers are
totally geodesic circles of length 2pπ/(n + 1). This metric is Einstein
with scalar curvature 2n(2n+ 1) and supports a Sasakian structure on
L whose characteristic field is the normalized fundamental vector field
of the S

1-fibration.

Let U be the normalized fundamental field of the fibration, that is,
the unit oriented field in the direction of the fundamental field V on
L. The Sasakian structure is given by the fact that the vector field U
is a Killing field for the metric (6.1) and the sectional curvature of any
section containing U is one. For other better known definitions and
more details on the notion of a Sasakian structure on a Riemannian
manifold one can consult [5] and [7]. Of course, the simplest example
of a Sasakian manifold is provided by the standard odd-dimensional
sphere S2n+1, which is obtained, via the Proposition 11 above, from
CP n endowed with the Fubini-Study metric of holomorphic sectional
curvature 4. Probably, the most geometric definition of a Sasakian
structure (and also the most useful for our purposes) is the following:
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Let C be the cone R+ ×L over the bundle L endowed with the metric

(6.3) 〈 , 〉C = dr2 + r2〈 , 〉L.
Then L is isometrically embedded in C as the hypersurface r = 1 and
we have

(6.4) TrzC = TzL ⊕ 〈∂r〉, ∀r ∈ R
+, z ∈ L.

Using (6.2) and (6.4), we have that

TrzC = Tπ(z)M ⊕ 〈{Uz, ∂r}〉.
This orthogonal decomposition allows us to define an almost complex
structure Jrz on TrzC by

Jrz|Tπ(z)M = Jπ(z), Jrz (∂r) = Uz.

The fact that L with the metric (6.1) is Sasakian, is equivalent to the
fact that the cone C, with the metric (6.3) and the almost structure
above, is an (2n + 2)-dimensional Kähler manifold (see [1, Lemma 4]
or [7, Definition-Proposition 2]). Moreover, the fact that L is Einstein
is equivalent to C be Ricci-flat. Since L, and so C, is simply-connected,
we conclude that the holonomy group of the cone C is contained in
SU(n+ 1), that is, C is a Calabi-Yau manifold. We may summarize all
these assertions in the following:

Proposition 12. [1, 6, 7] Let L be the maximal Maslov covering of
a Kähler-Einstein 2n-dimensional compact manifold with scalar cur-
vature 4n(n + 1) and C the corresponding cone. Then C is a simply-
connected Calabi-Yau (2n+ 2)-dimensional manifold.

7. Spinc structures

We have seen that the cone C over the maximal Maslov covering
L of M is a Calabi-Yau (2n + 2)-dimensional simply-connected mani-
fold. Hence C is a spin manifold and it has, up to an isomorphism, a
unique spin structure (see any of [3, 6, 14, 32] for generalities about spin
structures). We will denote by ΣC the corresponding complex spinor
bundle. This is a Hermitian vector bundle with rank 2n+1 endowed
with a Levi-Cività spin connection ∇C and a Clifford multiplication
γC : TC → End (ΣC). It is well-known that, if u1, . . . , u2n+2 is an
arbitrary positively oriented orthonormal basis in TC, then

ωC = in+1γC(u1) · · · γC(u2n+2)

does not depend on the chosen basis and it is called the spin volume
form on C. Hence, we can put

(7.1) ωC

rz = in+1γC(e1)γ
C(Je1) · · ·γC(en)γC(Jen)γC(∂r)γ

C(Urz),
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where e1, Je1 . . . , en, Jen is any oriented orthonormal basis of Tπ(z)M
and r ∈ R+, z ∈ L. It is also known that ∇CωC = 0 and (ωC)2 = 1
and that it provides an orthogonal and parallel decomposition into ±1-
eigensubbundles, that is, into the so-called subbundles of positive or
negative chirality,

ΣC = Σ+C ⊕ Σ−C.
The Kähler form ΩC, acting by means of the Clifford multiplication on
the spinors of ΣC in the following way

(7.2) ΩC =
n∑

i=1

γC(ei)γ
C(Jei) + γC(∂r)γ

C(U),

induces another orthogonal decomposition into parallel subbundles

(7.3) ΣC = Σ0C ⊕ · · · ⊕ ΣrC ⊕ · · · ⊕ Σn+1C,
where each ΣrC is the eigenbundle corresponding to the eigenvalue

(2r−n− 1)i, 0 ≤ r ≤ n+ 1, and has rank

(
n+ 1
r

)
. One easily checks

that the spin volume form ωC and the Kähler form ΩC commute and
so they can be simultaneously diagonalized. In fact, we have

Σ+C =
⊕

r even
ΣrC Σ−C =

⊕

r odd

ΣrC.

The S1-bundle L is the hypersurface r = 1 in the cone C. We con-
sider the orientation determined by the orthonormal bases of the form
e1, Je1, . . . , en, Jen, U tangent to L where e1, Je1, . . . , en, Jen are tan-
gent to M . This orientation determines a unique spin structure on
the hypersurface L from that of C (see [3, 2, 24, 54]) and each one of
the restrictions Σ+C|L and Σ−C|L may be identified with a copy of the
intrinsic spinor bundle ΣL of L. From now on we will choose this one

(7.4) ΣL = Σ+C|L.
With this identification, the Clifford multiplication and the spin Levi-
Cività connection of the spin structure on L are

(7.5) γL = −γCγC(∂r), ∇L = ∇C +
1

2
γCγC(∂r) = ∇C − 1

2
γL.

If we denote by ωL the complex spin volume form on L, we have

(7.6) ωL = in+1γL(e1)γ
L(Je1) · · ·γL(en)γL(Jen)γL(U).

Using (7.5), the commutativity relations defining the Clifford algebras
and (7.1), we obtain the equality ωL = ωC|L. Hence

(7.7) ωL = +1 on ΣL.
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It is not difficult to see that the endomorphism of ΣL, given by

ω = inγL(e1)γ
L(Je1) · · ·γL(en)γL(Jen)

is independent on the choice of the J-bases tangent to M and that
ωL = iωγL(U). Hence we have

(7.8) ω = iγL(U), ω2 = 1.

We will think of the action of the endomorphism ω on the spinors of L
as a conjugation and will write

ωψ = ψ, ∀ψ ∈ Γ(ΣL).

Also, the Kähler form on the holomorphic distribution determined by
(6.2) on L, acts on the spinor fields of L by means of the Clifford
multiplication as

Ω =
n∑

i=1

γL(ei)γ
L(Jei).

Indeed, taking into account (7.2) and the definition (7.5), we get the
following relation between the Kähler forms Ω and ΩC

(7.9) Ω = ΩC |L − γL(U) = ΩC|L + iω.

Since the endomorphisms ω and Ω commute on ΣL and the eigenvalues
of ω are clearly ±1, we see that Ω has eigenvalues (2s − n)i for s =
0, . . . , n and obtain an orthogonal decomposition into eigenbundles

ΣL = Σ0L ⊕ · · · ⊕ ΣsL ⊕ · · · ⊕ ΣnL,

where each ΣsL has rank

(
n
s

)
. More precisely, the following relations

between the eigenspaces of Ω and that of ΩC hold:

Σ0C|L = Σ0L, Σn+1C|L = ΣnL (if n + 1 is even)

(7.10)

ΣrC|L = ΣrL ⊕ Σr−1L, 0 < r < n+ 1, r even.

The first two relations can be checked easily. When r = 0 or r = n+1,
Σ0C and Σn+1C are line bundles which can be characterized as follows
(see [14, Section 5.2])

γC ◦ J |Σ0C = iγC|Σ0C, γC ◦ J |Σn+1C = −iγC |Σn+1C.

Then, from definition (7.5), one obtains

γL(Ju)ψ = iγL(u)ψ, γL(Ju)ϕ = −iγL(u)ϕ

where u ∈ TL, u ⊥ U , ψ ∈ Γ(Σ0C|L) and ϕ ∈ Γ(Σn+1C|L).
It is important to point out that the above decomposition into eigen-

bundles of Ω is not parallel with respect to the connection ∇L defined
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in (7.5). The reason is that the almost-complex structure J on the
holomorphic distribution on L is not parallel with respect to the Levi-
Cività connection, although it is parallel when it is induced on the
Kähler manifold M . This is why we will consider an induced Clifford
multiplication γ and a modified connection ∇ on the spinor bundle
ΣL, working only for tangent directions in the holomorphic distribu-
tion, which in some sense, reproduces the Levi-Cività connection of
M . For any u a horizontal vector field according to the decomposition
(6.2), i.e., u ∈ TL, u ⊥ U , set

(7.11) γ(u) := γL(u),

and

(7.12) ∇u := ∇L

u +
1

2
γL(Ju)γL(U) = ∇L

u − i

2
γ(Ju)ω.

Now one can check that, this connection ∇ leaves invariant each eigen-
subbundle ΣsL, with 0 ≤ s ≤ n.

From [26], it is known that any Kähler manifold, and so M , admits
a spinc structure because its second Stiefel-Whitney class w2(M) ∈
H2(M,Z2) is the reduction modulo 2 of the corresponding first Chern
class c1(M) ∈ H2(M,Z). Moreover, the set of spinc structures on M
is parametrized by the cohomology classes β ∈ H2(M,Z) such that
β ≡ c1(M) mod 2 (see also [14, Proposition, p. 53]). Hence, having
in mind the isomorphism (2.3), this set is classified by the equivalence
classes of principal S1-bundles on M whose first Chern classes verify
the above relation. The line bundle β is usually called the auxiliary
or determinant line bundle of the given spinc structure. Under this
correspondence, the spinc structures with auxiliary trivial line bundle,
that is with β = 0, are just the spin structures. Moreover, given a spinc

structure on M with auxiliary line bundle β ∈ H2(M,Z), the oriented
Riemannian submersion π : L → M induces a spinc structure on L
whose auxiliary line bundle is π∗(β) ∈ H2(L,Z) (one can see [6, Lemma
2.40]). On the other hand, the Thom-Gysin sequence associated with
that fibration

0 −→ H0(M,Z) ∼= Z
∪(c1(L)=α)−→ H2(M,Z)

π∗

−→ H2(L,Z) −→ 0

implies that ker π∗ = Z(α). This means that the spinc structures on
the Kähler manifold M whose auxiliary line bundles are the tensorial
powers Lq, for q ∈ Z, are exactly those inducing on L, through the
projection π, its unique spin structure. But, among these powers Lq,
only those satisfying the condition

c1(Lq) ≡ c1(M) mod 2
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provide us a spinc structure. Since c1(L) = α and c1(M) = −c1(KM) =
−pα, this is equivalent to the equation

(q + p)α ≡ 0 mod 2 in H2(M,Z),

where p is the index ofM . Now, as α is an indivisible class inH2(M,Z),
this latter occurs if and only if

p+ q ∈ 2Z.

In other terms, we will be interested in the powers Lq such that Lq⊗KM

has a square root.
We will denote by ΣqM the spinor bundle of the corresponding spinc

structure with auxiliary line bundle Lq, q ∈ −p+ 2Z. All these spinor
bundles are identifiable, via the projection π, with the spinor bundle
ΣL of the spin manifold L (see [6, Lemma 2.40]), that is,

(7.13) π∗ΣqM = ΣL ∀q ∈ Z.

As M is Kähler, the spinor bundle ΣqM associated with any of its
considered spinc structures also decomposes into eigensubbundles cor-
responding to the spinorial action of its Kähler form ΩM

ΣqM = Σq
0M ⊕ · · · ⊕ Σq

sM ⊕ · · · ⊕ Σq
nM.

Each Σq
sM is associated with the eigenvalue (2s− n)i, 0 ≤ s ≤ n and

has rank

(
n
s

)
. It is easy to see that π∗ΩM = Ω and so

π∗Σq
sM = ΣsL 0 ≤ s ≤ n.

Now, as in Section 4, for each integer q ∈ Z, we will consider the
Levi-Cività connection iθq ∈ Γ(Λ1(Lq) ⊗ iR) on the line bundle Lq,
induced from the Kähler metric on M . It is not difficult to see that
all these 1-forms are mapped, via the pull-backs of the q-fold coverings
P1,q : L → Lq, on integer multiples of the same 1-form on L. In fact,
we have

P ∗

1,qθ
q = qθ1

where the connection θ1 = θ was already used in Section 6 to construct
the metric on L. We will denote by ∇q the Hermitian connection on
the spinor bundle ΣqM , of any of the spinc structures that we are
considering on M , constructed from the Levi-Cività connection of M
and from the connection θq on the auxiliary line bundle Lq. Then
(see for example [6, Theorem 2.41]), if we use the definitions (7.11)
and (7.12), we conclude that all the ∇q are identified with ∇ via the
projection π, that is,

π∗∇q
uψ = ∇u∗π∗ψ, ∀u ∈ TM, ψ ∈ Γ(ΣqM).
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where u∗ ∈ TL means the horizontal lift of vectors with respect to the
decomposition (6.2).

As a consequence from (7.13), we see that the spinor fields ψ ∈
Γ(ΣqM) of the spinc structure on M with auxiliary bundle Lq can be
identified with certain spinor fields ϕ = π∗ψ ∈ Γ(ΣL) on the Maslov
covering L. These fields are usually called q-projectable spinor fields
and they have of course a particular behaviour with respect to the
vertical direction of the submersion. This can be seen, for instance, in
the second equation of [6, Theorem 2.41]. We have in fact

∇L

Uϕ+
q

2
iθ(U)ϕ = ∇L

Uϕ+
q(n+ 1)

2p
iϕ =

1

2
Ωϕ

for every ϕ ∈ Γ(ΣL), q-projectable. This is a necessary condition for
the spinor fields ϕ on the manifold L to be obtained, via the projection
π : L → M , from spinor fields ψ ∈ Γ(ΣqM) on M . It is not difficult to
see that, in fact, this is also a sufficient condition.

Proposition 13. A spinor field ϕ ∈ Γ(ΣL) on the total space of the
oriented Riemannian submersion π : L → M is projectable onto a
spinor field ψ ∈ Γ(ΣqM) corresponding to the spinc structure of the
Kähler manifold M with auxiliary line bundle Lq, q ∈ −p+ 2Z, if and
only if

∇L

Uϕ+
q(n+ 1)

2p
iϕ =

1

2
Ωϕ,

where p is the index of the Kähler manifold M , the endomorphism Ω
is the Kähler form of the holomorphic distribution on L and U is the
normalized fundamental vector field of the principal S1-fibration.

8. Parallel and Killing spinor fields

M. Wang classified in [56] the simply-connected spin Riemannian
manifolds supporting non-trivial parallel spinor fields. Hitchin had
already pointed out in [26] that they must be Ricci-flat and Wang
proved that the only possible holonomies are 0, SU(n), Sp(n), Spin7 and
G2. Among them we find the Calabi-Yau manifolds, whose holonomy
is contained in SU(n). Henceforth, that holonomy must be 0, and the
manifold is flat, or Sp(n/2) with n even, and the manifold is hyper-
Kähler, or just SU(n).

We already know that the cone C constructed over the maximal
Maslov covering L of the Kähler-Einstein manifold M is a Calabi-Yau
(2n + 2)-dimensional manifold. Hence it carries a non-trivial parallel
spinor field ψ ∈ Γ(ΣC). Since the eigensubbundles (7.3) of ΣC for the
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Kähler form ΩC are parallel, each r-component of ψ is also parallel and
so, we will suppose that ψ ∈ Γ(ΣrC), for some 0 ≤ r ≤ n+ 1. That is

∇Cψ = 0, ΩCψ = (2r − n− 1)iψ.

Suppose now that r is even. Then the identification (7.4) allows to
see the restriction ξ = ψ|L as a section of Γ(ΣL), that is, as a spinor
field on L which is also non-trivial since ψ has constant length. Taking
into account (7.5) and (7.10), we have that

ξ ∈ Γ(ΣrL ⊕ Σr−1L), ∇Lξ = −1

2
γLξ,

with the convention Σ−1L = Σn+1L = L × {0}. In particular, ξ is a
real Killing spinor field on the spin manifold L (see [3] for a definition
and references). Using this Killing equation satisfied by ξ for horizontal
vectors v ∈ TL, we obtain from (7.8), (7.11) and (7.12)

∇vξ = −1

2
γ(v)ξ − i

2
γ(Jv)ξ ∀v ∈ TL, v ⊥ U.

Since the connection ∇ stabilizes each ΣsL and the Clifford multipli-
cation γ satisfies

γ(ΣsL) ⊂ Σs−1L ⊕ Σs+1L,
if 0 < r < n+1 and one of the two components ξr−1 or ξr of ξ vanished,
then we would have ∇ξ = 0 and γ(Jv)ξr = iγ(v)ξr or γ(Jv)ξr−1 =
−iγ(v)ξr−1for any horizontal v. But this latter would imply that Ωξr =
−niξr or Ωξr−1 = niξr−1 and so r = 0 in the first case or r − 1 = n
in the second one, which is a contradiction. Then, when ξ has two
components, its two components are non-trivial. On the other hand,
taking now the unit vertical direction U ∈ TL and using (7.9), one has

∇L

Uξ =
i

2
ξ =

1

2
Ωξ − 2r − n− 1

2
iξ.

This last equality, according Proposition 13, means that ξ is a q-
projectable spinor field on L with

q =
p

n + 1
(2r − n− 1) =

2rp

n+ 1
− p.

From it, we will be able to get spinor fields of a spinc structure of M
provided that q+ p is even. In fact, only in this case, there will exist a
spinc structure on M whose auxiliary line bundle is Lq. We now show
that q + p = 2rp

n+1
is divisible by 2. If the holonomy of C is 0, then

C = Cn+1, L = S2n+1 and M = CP n. Then p = n + 1 and we have
a parallel spinor for each 0 ≤ r ≤ n + 1. But then 2rp

n+1
= 2r and we

conclude. If the holonomy group of the Calabi-Yau cone C is Sp(k+1)
with 2k+ 1 = n, then C is a hyper-Kähler manifold. This implies that
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L is 3-Sasakian and M is a complex contact manifold. In this case
the index of M is exactly p = k + 1 (see, for example, Remark 2 and
[7, Proposition 2.12]) and there are parallel spinor fields on C only for
0 ≤ r ≤ n + 1 even (see [56]). But then 2rp

n+1
= r is even and we also

conclude. The last case is when the holonomy of C is just SU(n + 1).
In this case we only know that p < n + 1 but the only parallel spinor
fields carried by C are for r = 0, n + 1 (see [56]) and then 2rp

n+1
= 0, 2p

is also even.
If the parallel spinor field ψ ∈ Γ(ΣrC) has degree r odd, we would

not work with the identification (7.4), but with

ΣL = Σ−C|L.
In this case, one can check that all equalities involved are still true ex-
cept (7.8) and (7.9) where the sign of ω has to be changed. Hence, only
some minor changes are obtained in the conclusion. We will summarize
this information in the following statement.

Theorem 14. Let C be the cone over the maximal Maslov covering L
of an 2n-dimensional Kähler-Einstein compact manifold M with scalar
curvature 4n(n+ 1) and index p ∈ N

∗. Each non-trivial parallel spinor
field ψ ∈ Γ(ΣrC) with degree r, 0 ≤ r ≤ n + 1 induces two non-
trivial spinor fields ξr ∈ Γ(Σq

rM) and ξr−1 ∈ Γ(Σq
r−1M) of the spinc

structure on M with auxiliary bundle Lq, where q = p
n+1

(2r−n−1) ∈ Z,
satisfying the first order system

{
∇q

vξr = −1
2
γ(v)ξr−1 + i

2
γ(Jv)ξr−1

∇q
vξr−1 = −1

2
γ(v)ξr − i

2
γ(Jv)ξr,

for all v ∈ TM . Such coupled spinor fields on the Kähler manifold M
are usually called Kählerian Killing spinor fields.

Remark 15. Kählerian Killing spinor fields on Kähler manifolds play a
rôle analogous to what of Killing spinors on Riemannian spin manifolds
(see [28, 23]). Both two classes appear when one studies the so-called
limiting manifolds, that is, those attaining the equality for the standard
(Friedrich ([13]), Hijazi ([22]), Kirchberg ([27]), Herzlich-Moroianu ([21,
39, 40])) lower estimates for the eigenvalues of the Dirac operator. In
the case of Kähler manifolds (see [28, 36, 37, 38], a usual strategy
to classify manifolds admitting these particular fields is to construct
the cone over a suitable principal S1-bundle in order to get manifolds
carrying parallel spinor fields and to apply the corresponding results.
In the proof of Theorem 14 we adopted the opposite approach. Also,
details of the proof are given since we need an exact control on the
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behaviour of the Kähler form on the Kählerian Killing spinor fields
and on the spinc structure.

Remark 16. Consider now the Dirac operatorDq : Γ(ΣqM) → Γ(ΣqM)
acting on smooth spinor fields of the spinc structure on M with auxil-
iary bundle Lq. This operator is locally defined by

Dq =
2n∑

i=1

γ(ei)∇q
ei

where e1, . . . , e2n is any orthonormal basis tangent to M . A direct
consequence from Theorem 14 is that we can compute the images by
Dq of the fields ξr ∈ Γ(Σq

rM) and ξr−1 ∈ Γ(Σq
r−1M) obtained from the

parallel spinor ψ ∈ Γ(ΣrC). We have

Dqξr = 2(n + 1 − r)ξr−1, Dqξr−1 = 2rξr.

Hence ξr and ξr−1 are eigenspinors for the same eigenvalue of the second
order operator (Dq)2. In fact

(Dq)2ξr,r−1 = 4r(n+ 1 − r)ξr,r−1

and so the eigenvalue λ1(D
q) of Dq with least absolute value satisfies

λ1(D
q)2 ≤ 4r(n+ 1 − r). But we can observe that

4r(n+ 1 − r) =
n+ 1

4n
inf S − (n+ 1 − 2r)2 =

n+ 1

4n
inf S − q2,

where S denotes the scalar curvature of M . If we take into account the
generalization given in [21] to spinc manifolds of Friedrich’s estimate
and the fact that the manifold M is Kähler, we could expect that a
similar generalization would exist for Kirchberg’s inequalities in the
context of Kähler manifolds. It is natural to think that, in fact,

λ1(D
q)2 = 4r(n+ 1 − r)

and the Kähler manifolds involved must be limiting manifolds for the
Dirac operator of the spinc structures with suitable auxiliary bundle
Lq. In fact, q = p or q = −p when the holonomy of C is SU(n + 1);
q = 2s − k − 1, 0 ≤ s ≤ k + 1, when the holonomy of C is Sp(k + 1)
with n = 2k+ 1; and q = 2r− n− 1, 0 ≤ r ≤ n+ 1 when the M is the
complex projective space.

If we bear in mind, like in Remark 16, the possible holonomies for
the cone C, the possible degrees of its parallel spinor fields, the corre-
sponding multiplicities and the possible spinc structures on the Kähler
manifold M , we can rewrite Theorem 14 to show that it improves The-
orem 9.11 in [6] (see also [40, 39, 29]).
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Theorem 17. Let M be an 2n-dimensional Kähler-Einstein compact
manifold with scalar curvature 4n(n + 1).

(1) The vector space of Kählerian Killing spinors carried by the
canonical spinc structure on M is one (and all of them have
degree n).

(2) The vector space of Kählerian Killing spinors carried by the
anti-canonical spinc structure on M is one (and all of them
have degree 0).

(3) If M has a complex contact structure and so n = 2k + 1, then,
for each 0 ≤ s ≤ k + 1, the space of Kählerian Killing spinors
ψ ∈ Γ(Σ2s−k−1

2s−1 M ⊕ Σ2s−k−1
2s M) has dimension one.

(4) If M is the complex projective space CP n, then, for each 0 ≤
r ≤ n+1, the space of Kählerian Killing spinors ψ ∈ Γ(Σ2r−n−1

r−1 M⊕
Σ2r−n−1

r M) has dimension

(
n + 1
r

)
.

9. Lagrangian submanifolds and induced Dirac operator

Let us come back to the situation that we studied in Section 4, i.e.,
consider a Lagrangian immersion ι : L → M from an n-dimensional
manifold L into the Kähler-Einstein manifold M . We will denote by
ΣqL the restriction to the submanifold L of the spinor bundle ΣqM on
M corresponding to the spinc structure with auxiliary line bundle Lq,
with q ∈ Z. That is,

(9.1) ΣqL = ΣqM |L.

It is clear that this ΣqL is a Hermitian vector bundle over L whose
rank is 2n and that it admits an orthogonal decomposition

(9.2) ΣqL = Σq
0L⊕ · · · ⊕ Σq

sL⊕ · · · ⊕ Σq
nL,

where each summand is the restriction Σq
sL = Σq

sM |L, with 0 ≤ s ≤
n, hence a Hermitian bundle with rank

(
n
s

)
. Since the immersion ι

allows to view the tangent bundle TL as a subbundle of TM , we can
consider the restrictions ∇q : TL⊗ ΣqL → ΣqL and γ : TL ⊂ TM →
End(ΣqL) to the submanifold L of the connection and of the Clifford
multiplication corresponding to the spinc structure on M . The problem
of these two restrictions is that they are compatible with respect to the
Levi-Cività connection of M , but not with respect to the Levi-Cività
∇L of the induced metric on L. To avoid this difficulty, we consider a
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modified connection, also denoted by ∇L on the bundle ΣqL. We put

(9.3) ∇q,L
v ψ = ∇q

vψ − 1

2

n∑

i=1

γ(ei)γ(σ(v, ei))ψ, v ∈ TL,

where σ is the second fundamental form of the immersion ι and e1, . . . , en

is any basis tangent to L. Now one can verify that

∇q,L
v γ(X)ψ = γ(∇L

XY )ψ + γ(Y )∇q,L
v ψ, v ∈ TL, X ∈ Γ(TL).

It is immediate to check that this new connection ∇q,L also parallelizes
the Hermitian product because the endomorphism

∑n
i=1 γ(ei)γ(σ(v, ei))

is skew-Hermitian for every v ∈ TL. Even more interesting is the fact
that ι being Lagrangian and minimal implies that ∇q,L fixes each sub-
bundle Σq

sL in (9.2). To see this, first one must use the well-known
property that the 3-form

〈σ(X, Y ), JZ〉, X, Y, Z ∈ Γ(TL)

is symmetric (see [42], for example). In this way, one obtains

n∑

j=1

γ(ej)γ(σ(v, ej)) =
1

2i

n∑

j,k=1

〈σ(ej , ek), Jv〉γ(ej − iJej)γ(ek + iJek)

because one has
n∑

j,k=1

〈σ(ej, ek), Jv〉γ(ej)γ(ek) = n〈H, Jv〉 = 0.

Now recall that

γ(T 1,0M)(Σq
rM) ⊂ Σq

r−1M, γ(T 0,1M)(Σq
rM) ⊂ Σq

r+1M.

As a conclusion the Hermitian vector bundle ΣqL endowed with the
metric connection ∇q,L and the Clifford multiplication γ is a Dirac
bundle (see any of [14, 32]) over the Riemannian manifold L. Moreover
the orthogonal decomposition (9.2) is preserved by ∇q,L and

γ(TL)(Σq
sL) ⊂ Σq

s−1L⊕ Σq
s+1L.

Let D : Γ(ΣqL) → Γ(ΣqL) be the Dirac operator of this Dirac bun-
dle, called induced Dirac operator, defined locally, for any orthonormal
basis e1, . . . , en tangent to L, by

D =
n∑

i=1

γ(ei)∇q,L
ei
.

Of course, when the submanifold L is endowed with a given spin struc-
ture, the corresponding intrinsic Dirac operator could be different than
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D. ¿From the Gauß equation (9.3) one can deduce the following ex-
pression for D,

(9.4) Dξ =

n∑

i=1

γ(ei)∇q
ei
ξ +

n

2
γ(H)ξ ∀ξ ∈ Γ(ΣqL).

A first obvious consequence from formula (9.4) is that, if the im-
mersion ι is minimal, then parallel spinor fields on the Kähler-Einstein
manifold M yield harmonic spinor fields on the submanifold L. Note
that this restriction is non-trivial, since the spinor field is parallel.
Hence, looking at Wang’s and Moroianu-Semmelmann’s classifications
[56, 41] of complete spin manifolds carrying non-trivial parallel spinors,
we have the following result.

Proposition 18. Let L be an n-dimensional minimal Lagrangian sub-
manifold immersed into a complete Calabi-Yau manifold M of dimen-
sion 2n and let ΣL be the Dirac bundle induced over L from the spinor
bundle of M .

(1) There exists a non-trivial harmonic spinor in Γ(Σ0L) and an-
other one in Γ(ΣnL).

(2) If M has a hyper-Kähler structure, and so n = 2k, for each 0 ≤
s ≤ k, there exists a non-trivial harmonic spinor in Γ(Σ2sL).

(3) If M = Cn/Γ, where Γ is a discontinuously acting group of
complex translations, then, for every 0 ≤ r ≤ n, the space of

harmonic spinors in Γ(ΣrL) has dimension at least

(
n
r

)
.

The harmonicity of the spinor fields above is always referred to the
induced Dirac operator D of the submanifold.

A second consequence from the same formula (9.4) is obtained when
the spinor field ξ = ξr−1,r is no longer parallel, but a Kählerian Killing
spinor as those constructed in Theorem 14, when the Kähler-Einstein
manifold M is compact and has positive scalar curvature. In this case,
we have

∑n
j=1 γ(ej)∇q

ej
ξr = n

2
ξr−1 + i

2
Ωξr−1 = (n+ 1 − r)ξr−1

∑n
j=1 γ(ej)∇q

ej
ξr−1 = n

2
ξr − i

2
Ωξr = rξr

and so, if the Lagrangian submanifold L is minimal, we obtain

(9.5) Dξr = (n+ 1 − r)ξr−1 Dξr−1 = rξr.

Hence, the spinor fields ξr and ξr−1 are eigenspinors for the second
order operator D2, namely

D2ξr−1,r = r(n+ 1 − r)ξr−1,r.
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Theorem 19. Let L be an n-dimensional minimal Lagrangian subman-
ifold immersed into a Kähler-Einstein compact manifold M of dimen-
sion 2n and scalar curvature 4n(n + 1). Let ΣqL be the Dirac bundle
induced over L from the spinor bundle of M corresponding to the spinc

structure with auxiliary line bundle Lq, q ∈ Z.

(1) There exists a non-trivial harmonic spinor in Γ(Σ−p
0 L) and an-

other one in Γ(Σp
nL), where p is the index of M .

(2) If M has a complex contact structure, and so n = 2k + 1,
for each 0 ≤ s ≤ k + 1, there exists a non-trivial spinor in
Γ(Σ2s−k−1

2s L) and another one in Γ(Σ2s−k−1
2s−1 L) which are eigen-

spinors of D2 associated with the eigenvalue 4s(k + 1 − s).
(3) If M = CP n, then, for every 0 ≤ r ≤ n + 1, the eigenspace

of D2 in Γ(Σ2r−n−1
r−1 L) or in Γ(Σ2r−n−1

r L), associated with the

eigenvalue r(n+ 1 − r), have dimension at least

(
n + 1
r

)
.

The harmonicity of the spinor fields mentioned in (1) above is referred
to the induced Dirac operator D of the submanifold L.

Proof : It only remains to point out that the restrictions of ξr and
ξr−1 in Theorem 14 to the submanifold L cannot be trivial. In fact,
from (9.5), if one of them vanishes, then both of them have to vanish.
But this is impossible because ξ = ξr−1 + ξr has constant length along
the manifold M . Q.E.D.

10. The Hodge Laplacian on minimal Lagrangian

submanifolds

In this section, we show that the Dirac bundles ΣqL constructed
over a Lagrangian immersed submanifold from the spinor bundles ΣqM
of different spinc structures on a Kähler-Einstein manifold M can be
identified with standard bundles. In fact, it is well-known (see [14,
Section 3.4] for an explicit expression) that, for each possible r, we
have an isometry of Hermitian bundles

(10.1) Σq
rM = Λ0,r(M) ⊗ Σq

0M

and Σq
0M is a square root of the tensorial product Lq ⊗KM , where L is

the auxiliary line bundle of the spinc structure and KM is the canonical
bundle of M . This fact was originally discovered by Hitchin [26] for
spin structures. That is, the spinor fields of the spinc structure can be
thought of as anti-holomorphic r-forms taking values on the line bundle
Σq

0M . Under this isometric identification, one can easily see that the
connection ∇q constructed on ΣqM from the Levi-Cività connection of
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the Kähler metric on M and from the connection iθq on the line bundle
Lq, satisfies

(10.2) ∇q|Σq
rM = ∇M ⊗∇q|Σq

0M ,

where ∇M is the usual Levi-Cività connection on the exterior bundle.
This is a consequence of the compatibility of ∇q and the Levi-Cività
connection on M . One can also see (for example in [14, page 23] or in
[32]) that the Clifford multiplication γ : TM → End(Λ0,r(M) ⊗ Σq

0M)
can be viewed as follows

(10.3) γ(v)(β ⊗ ψ) = ((v[ ∧ β)0,r+1 − vyβ) ⊗ ψ,

for all v ∈ TM , β ∈ Γ(Λ0,r(M)) and ψ ∈ Γ(Σq
0M).

Now we consider the corresponding restrictions to the Lagrangian
submanifold L. The definitions (9.1) and (9.2), the isometry (10.1)
above and Lemma 3 imply another isometric identification of Hermitian
bundles over L, namely

Σq
rL = Λr(L)C ⊗ Σq

0L.

The expressions above for the connection ∇q and the Clifford product,
together with the definition (9.3) of the modified connection ∇q,L on
ΣqL, give

∇q,L|Σq
rL = ∇L ⊗∇q,L|Σq

0L,

where ∇L is the Levi-Cività connection on the exterior bundle over L,
and

γ(v)(β ⊗ ψ) = (v[ ∧ β − vyβ) ⊗ ψ,

for all v ∈ TL, β ∈ Γ(Λr(L)C) and ψ ∈ Γ(Σq
0L).

Hence, as a consequence of these last three identifications, if we could
find some situations in which the line bundle Σq

0L is topologically trivial
and admits a non-trivial parallel section, we would be able to identify
the Dirac bundle (ΣqL,∇q,L, γ) in a very pleasant manner.

Proposition 20. Suppose that the restriction Σq
0L to a Lagrangian

submanifold L of the 0-component Σq
0M of the spinor bundle of a spinc

structure of a Kähler manifold M is topologically trivial and admits
a non-zero parallel section. Then the Dirac bundle (ΣqL,∇q,L, γ) is
isometrically isomorphic to the complex valued exterior bundle

(Λ∗(L) ⊗ C,∇L, ·[ ∧−·y)

with its standard (see [32]) Dirac bundle structure. Henceforth the
Dirac operator D is nothing but the Euler operator d+ δ and its square
D2 is the Hodge Laplacian ∆ of L.
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We will present two situations where Proposition 20 above can be
applied. The first one is when M is an n-dimensional Calabi-Yau man-
ifold and q = 0, that is, we consider a spin structure on M . More
precisely, we choose the trivial spin structure on M , in other words,
the spin structure determined by taking as a square root of KM , the
bundle KM itself. In this case, we have that Σ0M = KM , which is
topologically trivial and admits a non-trivial parallel section Θ (with
respect to ∇q). Take the restriction Υ = Θ|L ∈ Γ(Σ0L). From (9.3),
we have for each v ∈ TL that

∇0,L
v Υ = −1

2

n∑

j,k=1

〈σ(ej, ek), Jv〉γ(ej)γ(Jek)Υ.

But Θ is a 0-spinor and then γ(Jv)Θ = iγ(v)Θ for every v ∈ TM .
Then

∇0,L
v Υ = − i

2

n∑

i,j=1

〈σ(ei, ej), Jv〉γ(ei)γ(ej)Υ = −ni
2
〈JH, v〉Υ.

So Υ is a non-trivial parallel section of Σ0L if and only if L is a minimal
submanifold.

Remark 21. As a consequence, we get to trivialize the restricted bun-
dle Σ0L, but this is not a necessary condition in order to have this
trivialization. In fact, from the equality above, we can conclude, as in
Remark 9, that, when the ambient manifold M is a Calabi-Yau mani-
fold, Σ0L is geometrically trivial if and only if 1

4
[η] ∈ H1(L,Z), where

η is the mean curvature form of the Lagrangian submanifold L, that in
this case of Ricci-flat ambient space, coincides with the Maslov class.
This explains why, in case n = 1 invoked in [17], one obtains the de-
sired identification for the Lagragian immersion z ∈ S1 7→ z2 ∈ C and
not for the embedding z ∈ S1 7→ z ∈ C.

Using Proposition 20, the assertions in Proposition 18 on the spec-
trum of the Dirac become now conditions on the Hodge Laplacian
acting on differential forms of the Lagrangian submanifold.

Theorem 22. Let L be an n-dimensional minimal Lagrangian sub-
manifold immersed into a complete Calabi-Yau manifold M of complex
dimension n.

(1) There exists a non-trivial harmonic complex n-form on L. So,
if L is compact, then L is orientable. Hence L is a special
Lagrangian submanifold (see [19]) of M .

(2) If M has a hyper-Kähler structure, and so n = 2k, for each
0 ≤ s ≤ k, there exists a non-trivial harmonic complex 2s-form
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on L. As a conclusion, if L is compact then the even Betti
numbers of L satisfy b2s(L) ≥ 1.

(3) If M = C
n/Γ, where Γ is a discontinuously acting group of

complex translations, then, for every 0 ≤ r ≤ n, the space of

harmonic complex r–forms on L has dimension at least

(
n
r

)
.

In particular, all the Betti numbers of a compact minimal La-
grangian submanifold L immersed in a flat complex torus T2n

satisfy br(L) ≥ br(T
n).

Remark 23. We point out that part (2) in Theorem 22 is an improve-
ment of the result by Smoczyk obtained in [50]. He proved Theorem
22 for s = 1 without using spin geometry. He showed that the equality
b2(L) = 1 implies that L is a complex submanifold for one of the com-
plex structures of M . For the moment, we are not able to treat the
case b2s(L) = 1 with s > 1.

There is a second situation where Proposition 20 could be applied.
It is the case, extensively studied in Section 7, of a Kähler-Einstein
compact n-dimensional manifold with positive scalar curvature, nor-
malized to be 4n(n + 1). For integers r with 0 ≤ r ≤ n + 1 and
such that rp

n+1
∈ Z, where p ∈ N∗ is the index of M , we have already

considered the spinc structures on M whose auxiliary bundles are Lq,
q = 2rp

n+1
− p, where L is a fix p-th root of the canonical bundle KM of

M . In this situation, we have that the line bundle of 0-spinors of this
spinc structure satisfies

(Σq
0M)2 = Lq ⊗KM = L 2rp

n+1 = (L rp

n+1 )2.

Recall that (see comments after (2.4)) the space of square roots of
this last bundle is an affine space over H1(M,Z2). But this cohomol-
ogy group is trivial since M is simply-connected under our hypotheses.
This implies that the line bundle Σq

0M is just L rp

n+1 . Hence, the desired
condition in Proposition 20 is that we can find a non-trivial parallel
section on the line bundle L rp

n+1 |L over the submanifold L. But this is
equivalent to find a horizontal (or Legendrian) lift of the Lagrangian

immersion ι : L → M to the Maslov covering L rp

n+1 (see Section 3). In
other terms, this means that the level nL (see Section 4) of the subman-
ifold divides the integer rp

n+1
. On the other hand, just before Theorem

17, we considered the admissible values, under our hypotheses, for the
index p and the integers r. We will use this information, together with
Theorem 19, to translate the assertions about spinors and Dirac oper-
ator in the induced Dirac bundle ΣqL into results about exterior forms
and Euler operator on L, when L is minimal.
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Theorem 24. Let L be an n-dimensional minimal Lagrangian sub-
manifold immersed into a Kähler-Einstein compact manifold M of di-
mension 2n and scalar curvature 4n(n+ 1). Let p ∈ N

∗ be the index of
M and 1 ≤ nL ≤ 2p the level of this submanifold.

(1) If nL|p, then there exists a non-trivial complex harmonic n-
form on L. In particular, when L is compact, if nL|p, then L
is orientable, as in Proposition 8.

(2) If M has a complex contact structure, and so n = 2k + 1, for
each 0 ≤ s ≤ k + 1 such that nL|s, there exists a non-trivial
exact 2s-form and another non-trivial co-exact (2s−1)-form on
L which are eigenforms of the Hodge Laplacian ∆ associated
with the eigenvalue 4s(k + 1 − s).

(3) If M = CP n, then, for every 0 ≤ r ≤ n+ 1 such that nL|r, the
eigenspace of ∆ on the subspace of exact forms of Γ(Λr(L)⊗C)
or on the subspace of co-exact forms in Γ(Λr−1(L) ⊗ C) asso-
ciated with the eigenvalue r(n+ 1 − r) have dimension at least(
n + 1
r

)
.

Using the computation of levels for the minimal Lagrangian subman-
ifolds of the complex projective space made in Section 5, we obtain
some information about the spectra of the Hodge Laplacian on some
symmetric spaces.

Corollary 25. 1. For each r = 0, . . . , m2, the numbers r(m2 − r) are
in the spectrum of the Hodge Laplacian for r-forms and (r − 1)-forms

on the Lie group SU(m) with multiplicity at least

(
m2

r

)
.

2. For each r = 0, . . . , 1
2
m(m+1), the numbers r(1

2
m(m+1)−r) are

in the spectrum of the Hodge Laplacian for r-forms and (r − 1)-forms

on the symmetric space SU(m)
SO(m)

with multiplicity at least

(
1
2
m(m+ 1)

r

)
.

3. For each r = 0, . . . , 2m2, the numbers r(2m2 − r) are in the
spectrum of the Hodge Laplacian for r-forms and (r − 1)-forms on the

symmetric space SU(2m)
Sp(m)

with multiplicity at least

(
2m2

r

)
.

4. For each r = 0, . . . , 27, the numbers r(27− r) are in the spectrum
of the Hodge Laplacian for r-forms and (r−1)-forms on the symmetric

space E6

F4
with multiplicity at least

(
27
r

)
.

Remark 26. Part (3) in Theorem 24 above was partially proved in [51]
when the submanifold was Legendrian in the sphere S

2n+1, that is, when
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the level of the submanifold verifies nL = 1. In fact, Smoczyk made
a näıf mistake by calculating some differentials and he got the wrong
eigenvalue n+1−r instead of r(n+1−r). Moreover, he obtained only(
n
r

)
as an estimate for the multiplicity of this eigenvalue. Our estimate

(
n+ 1
r

)
for this multiplicity is sharp. For example, we studied in

Example 1 of Section 5 the totally geodesic Lagrangian immersion of
the sphere Sn into the projective space CP n. The induced metric is
the standard round unit metric. For this metric, the spectrum of the
Hodge Laplacian on the exterior bundle is well-known (see [15]). In
fact, the first eigenvalue for exact r-forms is just r(n + 1 − r) and its

multiplicity is

(
n+ 1
r

)
. Analogously, the corresponding eigenvalue for

co-exact forms is (r + 1)(n− r) and its multiplicity is

(
n + 1
r + 1

)

Remark 27. Nicolas Ginoux started in his Ph. D. Thesis [16] the
study of the spin geometry of Lagrangian spin submanifolds L in spin
Kähler manifolds M and got upper estimates for the eigenvalues of the
Dirac operator of the restriction to the submanifold of the spinor bundle
on the ambient manifold. Later, in [17], Ginoux found some conditions
in order to be able to identify this restriction with the exterior bundle
of L and the Dirac operator with the Hodge operator. Our Proposition
20 also gives some answers to that problem of identification. When M
is a Calabi-Yau manifold endowed with the trivial spin structure, we
have observed before that Σ0M = KM and so Σ0L = KM |L. Hence, the
identification works if and only if 1

4
[η] is an integer cohomology class

(see Remarks 9 and 21), where η is the mean curvature form. Then,
when L is minimal, we have always the identification of the bundles
and the identification of the operators. When M is Kähler-Einstein
with positive scalar curvature and so index p ∈ N∗, we have that M
is spin if and only if p is even and, in this case, Σ0M = L p

2 . Hence
we have the identification of bundles when and only when nL|p2 and
1
4
[η] ∈ H1(L,Z). The identification of operators occurs if L is also

minimal. In fact, we already knew (Proposition 8) that nL|p if and
only if L is orientable.

11. Morse index of minimal Lagrangian submanifolds

Let L be a compact n-dimensional minimal Lagrangian submani-
fold immersed into a Kähler-Einstein manifold M of dimension 2n and
scalar curvature c. Then L is a critical point for the volume functional
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and it is natural to consider the second variation operator associated
with such an immersion. This operator, known as the Jacobi operator
of L, is a second order strongly elliptic operator acting on sections of
the normal bundle T⊥L, and it is defined as

J = ∆⊥ + B + R,
where ∆⊥ is the second order operator

∆⊥ =

n∑

i=1

{∇⊥

ei
∇⊥

ei
−∇⊥

∇ei
ei
},

the operators B and R are the endomorphisms

B(ξ) =
n∑

i,j=1

〈σ(ei, ej), ξ〉σ(ei, ej), R(ξ) =
n∑

i=1

(
R̄(ξ, ei)ei

)⊥
,

where {e1, . . . , en} is an orthonormal basis tangent to L, σ is the second
fundamental form of the submanifold L, R̄ is the curvature tensor of M
and ⊥ denotes normal component. Let Q(ξ) = −

∫
L
〈Jξ, ξ〉dV be the

quadratic form associated with the Jacobi operator J . We will denote
by ind(L) and nul(L) the index and the nullity of the quadratic form Q,
which are respectively the number of negative eigenvalues of J and the
multiplicity of zero as a eingenvalue of J . The minimal submanifold L
is called stable if ind(L) = 0.

In [45], Oh studied the Jacobi operator for minimal Lagrangian sub-
manifolds, proving that it is an intrinsic operator on the submanifold
and can be written in terms of the Hodge Laplacian acting on 1-forms
of L. In fact, if we consider the identification

T⊥L = Λ1(L), ξ 7→ −(Jξ)[,

then the Jacobi operator J is given by

J : Γ(Λ1(L)) −→ Γ(Λ1(L)), J = ∆ + c,

where ∆ is the Hodge Laplacian operator. In particular,

Any compact minimal Lagrangian submanifold of a Kähler-
Einstein manifold with negative scalar curvature (c < 0)
is stable and its nullity is zero.

Also, when the scalar curvature of the ambient manifold is zero, we
have

Any compact minimal Lagrangian submanifold of a Ricci
flat Kähler manifold (c = 0) is stable and its nullity
coincides with its first Betti number,

and when the scalar curvature is positive,
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The index is the number of eigenvalues of ∆ less than c,
and the nullity is the multiplicity of c as an eigenvalue
of ∆.

As a consequence, if we denote by b1(L) the first Betti number of L,
it follows that, when c = 0, nul(L) ≥ b1(L) and that, when c > 0,
ind(L) ≥ b1(L).

When the ambient space is the complex projective space CP n, Law-
son and Simons (see [33]) proved that any compact minimal Lagrangian
submanifold of CP n is unstable and Urbano proved in [55] that the in-
dex of a compact orientable Lagrangian surface of CP 2 is at least 2 and
only the Clifford torus T2 (see Example 3 in Section 5) has index 2.
As a consequence of a result proved by Oh ([45]) we can get a lower
bound for the nullity of this kind of submanifolds.

Corollary 28. Let L be a compact minimal Lagrangian submanifold
immersed in CP n. Then

nul(L) ≥ n(n+ 3)

2
,

and the equality holds if and only if L is either the totally geodesic
Lagrangian immersion of the unit sphere Sn or the totally geodesic La-
grangian embedding of the real projective space RP n (Examples 1 and
2 in Section 5).

Proof : It is clear that if X is a Killing vector field in CP n, then the
normal component of its restriction to the submanifold L is an eigen-
vector of the Jacobi operator J with eigenvalue 0. These normal vectors
fields are called Jacobi vector fields on L. If Ω denotes the vector space
of Killing vector fields on CP n, we will denote by Ω⊥ the vector space of
the normal components of their restrictions to L. Then, Oh proved in
[45, Proposition 4.1] that dim Ω⊥ ≥ n(n+3)/2 and the equality implies
that the submanifold is totally geodesic. Hence ind(L) ≥ n(n + 3)/2
and the equality implies that L is totally geodesic. The proof is com-
plete if we take into account that 2(n+1) is an eigenvalue of ∆ (acting
on 1-forms) with multiplicity n(n+3)/2 when L is the totally geodesic
Lagrangian sphere S

n or the totally geodesic Lagrangian real projective
space RP n (see [15]). Q.E.D.

For other Kähler-Einstein manifolds with positive scalar curvature
only very few results are known. We mention one due to Takeuchi [53],
which says
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If M is a Hermitian symmetric space of compact type
and L is a compact totally geodesic Lagrangian subman-
ifold embedded in M , then L is stable if and only if L
is simply-connected.

As a consequence of Theorem 22, it follows:

Corollary 29. Let L be a compact minimal Lagrangian submanifold
immersed into a complex torus C

n/Γ, where Γ is a lattice of complex
translations. Then nul(L) ≥ n.

Also, from Theorem 24, we have the following consequence.

Corollary 30. Let L be a compact minimal Lagrangian submanifold
immersed in a Kähler-Einstein compact manifold M of dimension 2n
and scalar curvature 4n(n + 1). If M has a complex contact structure
and the level of L is one, i.e. nL = 1, then L is unstable.

Proof : In this case, the Jacobi operator is J = ∆ + 2(n + 1). But
from Theorem 24, it follows that there exists a nontrivial 1-form on
L which is an eigenform of ∆ associated with the eigenvalue 2(n− 1).
Hence we obtain a negative eigenvalue of J . So the corollary follows.
Q.E.D.

Corollary 31. Let L be a compact minimal Lagrangian submanifold
immersed in the complex projective space CP n. Then,

(1) If the level of L is one, i.e. nL = 1, then

ind(L) ≥ (n+ 1)(n+ 2)

2
,

and equality holds if and only if L is the totally geodesic La-
grangian immersion of the n-dimensional unit sphere Sn (Ex-
ample 1 in Section 5).

(2) If the level of L is two, i.e. nL = 2, then

ind(L) ≥ n(n + 1)

2
,

and equality holds if and only if L is the totally geodesic La-
grangian embedding of the n-dimensional real projective space
RP n (Example 2 in Section 5).

Proof : If nL = 1, then, taking in Theorem 24 r = 1, 2, we obtain two
orthogonal eigenspaces of ∆ in Γ(Λ1(L)) of dimensions n+1 and n(n+
1)/2 corresponding to the eigenvalues n and 2(n−1) respectively. These
spaces are also eigenspaces of the Jacobi operator J with eigenvalues
−(n+ 2) and −4 respectively. Hence the inequality in (1) follows.
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If nL = 2, then, taking in Theorem 24 r = 2, we obtain an eigenspace
of ∆ in Γ(Λ1(L)) of dimension n(n + 1)/2 corresponding to the eigen-
value 2(n− 1). This space is also an eigenspace of the Jacobi operator
J with eigenvalue −4. Hence the inequality in (2) follows.

To study equality, we need to use [55, Theorem 1]. Such a result
states that the first eigenvalue ρ1 of ∆ acting on 1-forms of any compact
minimal Lagrangian submanifold of CP n satisfies ρ1 ≤ 2(n − 1) and
that, if the equality holds, then L is totally geodesic. As the index
of the totally geodesic real projective space RP n is n(n + 1)/2, this
completes the proof of part (2).

To study equality in part (1) we need a modified version of [55, Theo-
rem 1]. As in this case nL = 1, L is orientable and hence from the Hodge
decomposition Theorem, we have that Γ(Λ1(L)) = H(L) ⊕ dC∞(L) ⊕
δ Γ(Λ2(L)), where H(L) stands for harmonic 1-forms. To prove [55,
Theorem 1], the author used certain test 1-forms that actually belong
to H(L)⊕ δ Γ(Λ2(L)). So really this Theorem says that the first eigen-
value ρ1 of ∆ acting on H(L)⊕ δ Γ(Λ2(L)) satisfies ρ1 ≤ 2(n− 1), with
equality implying that L is totally geodesic. Now, if equality in (1)
holds we have that the two first eigenvalues of ∆ acting on 1-forms are
n and 2(n − 1) with multiplicities n + 1 and n(n + 1)/2 respectively.
But the eigenspace corresponding to n is included in dC∞(L). So we
can use the modified version of the above result to get that L is totally
geodesic. Q.E.D.
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