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Abstract: This paper presents a fault detection method based on a classical transfer
function parameter estimation algorithm in the discrete time domain. Non persistently
exciting inputs plant an important problem for the convergence of the estimator. Here, the
forgetting factor is adapted on-line in order to improve the convergence. Redundant
discrete time transfer functions are used to improve the isolation capacity and obtain a
signature table. The fault detection and isolation (FDI) is achieved by the exploitation of
this table, with a distance computation. Copyright © 2000 IFAC
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INTRODUCTION

On-line parameter estimation reflects the process
behaviour and therefore allows FDI. Continuous time
parameter estimation can be used if the process is not
too complex and it is possible to estimate its physical
parameters (Isermann 1993). This method brings direct
knowledge of the different system elements and
simplifies the fault diagnosis task. Nevertheless, it is
difficult to obtain the physical model of a complex
process. Therefore the aim of this work is to test
classical parameter estimation methods as diagnostic
tools. These methods are widespread, and can be found
in control toolboxes. Unfortunately, using discrete
transfer function representation, the parameters cannot
be linked to physical elements of the process. Therefore
the estimation task must be followed by a classification
technique in order to achieve FDI.
___________________________________
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This paper is organised as follows: section 1 presents
the winding system used as experiment; and section 2
presents the parameter estimation algorithm. Residual
generation is described in section 3. Afterwards, section
4 details the technique implemented to adapt the
forgetting factor in order to generate residuals robust to
poor excitation of the process inputs. Residual
fuzzification and aggregation are presented in section 5.
Section 6 describes the generation of redundant transfer
functions, which allows to obtain a signature table for
fault isolation. Finally, results obtained with the
winding system simulation are presented in section 7,
before concluding remarks.

1. THE WINDING SYSTEM MODEL

The method proposed is applied to a winding machine
represented in (Weber 1998). It is composed of three
electric motors M1, M2 and M3, controlled by the

input vector [ ]T
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measured outputs [ ]T
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represent the strip tensions, and the motor M2 speed.
The model is an AutoRegressive Moving Average
with eXternal input (ARMAX) structure. The
Extended Least Square (ELS) algorithm (Ljung
1987) can estimate model parameters. In the case of
an m Multiple Inputs Single Output (MISO) model,
ELS method leads to:
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where )(ke  represents the measurement noise, id

represents the delays, )(ˆ qA , )(ˆ qBi
, and )(ˆ qC  are

polynomials in the shift operator q. The model of the
winding system can be written as three MISO
ARMAX models:
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2. PARAMETER ESTIMATION

This section presents the ELS algorithm in order to
define the notations. The initialisation procedure is
detailed in (Weber 1999). Let na, nbi and nc be the
degrees of the polynomials )(ˆ qA , )(ˆ qBi , )(ˆ qC , and

10 += nak . With output measurements from time 1

until time k, equation (1) is transformed to the
following matrix relation:
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where Tkykykyk )](   ...   )1(   )([)( 00 +=Y  is the

output vector. The parameter vector is defined as:
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)(kε  is the prediction error defined as:
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The estimate )(ˆ kθθ  is given by the solution of the

following minimisation problem:
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For on-line implementation of the ELS algorithm,
the estimation is achieved by an orthogonal
transformation in order to guarantee good numerical
properties. Given )(kR  as follows:

[ ])()()( kkk YXR = (8)

there exists a matrix )(kQ , determined by a

Householder transformation, such that
)()( 1 kkT −= QQ , and )()()( kkk RQW ⋅=  is an

upper triangular matrix (Golub 1983):
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The solution is given by:
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The variance of the estimates is:
122
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The variance of the prediction error is estimated
with:
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np  represents the number of parameters
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A forgetting factor 1<λ  is introduced such that
λ×= )()(' kk WW . Observations are organised at

time k+1 as a vector Obs(k+1) and added to the last
line of )(' kW :
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The Givens rotation algorithm enables to transform

)1( +kW  to the form defined by eq. (9). )1(ˆ +kθθ  is

then calculated using eq. (10).



3. RESIDUAL GENERATION

Estimating parameters on-line with a long time
horizon allows to follow their slow variations. These
are not considered as faults, but rather due to normal
evolution of the process. An on-line ELS algorithm
with a forgetting factor equal to 1 computes the long
horizon estimates. This algorithm results in a
reference parameter estimate vector l

hEs  for each

sub-model h of the process (h=1...3 for the winding
machine experiment, see (2)(3)(4)):
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np

hl
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(14)

where nph is the number of parameters of the
model h.
A second estimator based on a short time horizon
allows following fast variations, considered as
symptoms of a fault. This estimator results in a
tracking model (Basseville 1988). The short horizon
estimates are computed by an ELS algorithm similar
to (10) with a smaller forgetting factor, and produce
the tracking model parameter estimate s

hEs  of the

model h (eq. (15)). The tracking capability depends
on the forgetting factor choice.
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Residuals are computed by the difference between
the long horizon estimates and the short horizon
ones:
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The residual mean is:

jjrj θρρρ −= Θ (17)

If no fault occurs rjρ  should be close to zero,

because the ELS algorithm results in unbiased
parameter estimate. Residual variance is more
complicated to evaluate. In the faulty case, estimates
are not correlated, because the models before and
after the fault are not related. The residual variance
is defined by:
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In the fault free case, the long and short horizon
estimates are strongly correlated, and the residual
variance is computed by:

{ }**222 2 jjjjrj θσσσ θ ⋅ΘΕ⋅−+= Θ (19)

where Θ j
* and θj

*  represent the centred estimates.

Thus (18) and (19) bound the residual variance.

The main problem planted by an implementation on
an industrial process is that both estimators may not
converge if the inputs are not persistently exciting. A
Pseudo Random Binary Signal (PRBS) input is
usually used for system identification, but it is
evidently impossible to superpose continuously to the
inputs a PRBS on-line during the production cycle,

in order to ensure a robust diagnosis. In order to
increase the residual robustness, we propose in the
following to adapt on-line the forgetting factor to the
input excitation. This adaptation is based on the
condition number of )(kX  and the estimate

variances )(ˆ 2 keσ  analysis.

4. FORGETTING FACTOR ADAPTATION
METHOD

Using the ELS algorithm presented in section 2, the
condition number of )(kX , ))()(( kk T LL ⋅ξ , is

given by:
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The matrices )()( kk T LL ⋅  and 1))()(( −⋅ kk T LL  are

calculated by the ELS algorithm. Nevertheless in
order to increase robustness to numerical errors, it is
more interesting to compute the condition number of

)(kL  which contains the same information. The

advantage of this method relies on the fact that
))(( kLξ  can be more robustly computed than

))()(( kk T LL ⋅ξ  which leads to very large numerical

values.

))(( kLξ  increases if the excitation of the input

decreases. If the excitation is poor, using a forgetting
factor leads to a degradation of the estimates due to
the multiplication of )(kL  by 1<λ . This

phenomenon is illustrated in Fig. 1 (a): the condition
number increases after 100 sampling periods; the
variance of the estimates increases; the estimate
diverges.

The solution proposed here is to extend the
estimation horizon of the tracking estimator by
increasing )(kλ  to 1. This can be interpreted as an

elastic estimation horizon. After 100 sampling
periods ))(( kLξ  increases, then the adaptation of

the estimates are slowed down, the estimate variance
increases very slowly and the estimates are not
perturbed. These results are presented in Fig. 1 (b).
Increasing )(kλ  results in a tracking estimator close

to the reference estimator, thus residuals are close to
zero if the input is not rich enough. If the input
excitation increases or if a fault occurs, )(kλ  has to

be decreased in order to quickly adapt the estimates.
Nevertheless the time from which )(kλ  must begin

to decrease is difficult to determine because if )(kλ
is very close to 1, the estimates are less sensitive to
the faults. As it can be noted, a fault occurrence
leads to a discrepancy between the model and the
process outputs, resulting in an increase of )(kε  and

)(ˆ 2 keσ . Fig. 2 allows to compare a  fixed  forgetting
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Fig. 1: Comparison between a fixed forgetting
factor and an on-line adapted one in a fault free
case.
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Fig. 2: Comparison between a fixed forgetting
factor and an on-line adapted one under fault
occurrence.

factor and the on-line adaptive solution proposed in
this paper. When a fault occurs the variance of the
estimates increases then )(kλ  is decreased.

The forgetting factor adaptation is based on

)(ˆ 2 keσ  and ))(( kLξ , both computed with the ELS

algorithm. The variation of )(ˆ 2 keσ  and ))(( kLξ
are defined as:

))1(())((=))(( −−∆ kkk LLL ξξξ (21)

)1(ˆ)(ˆ)(ˆ 222 −−=∆ kkk eee σσσ (22)

)(kλ  is adapted between 0λ  and 1 by the simple

following algorithm:

If 0))(( >∆ kLξ ,
αλλλ /))(1()()1( kkk −+=+ (23)

If 0)(ˆ 2 >∆ keσ ,

βλλλλ /))(()()1( 0−−=+ kkk (24)

These formulas are empirical, α  and β  are tuned

to obtain the desired sensitivity.

5. SYMPTOM GENERATION

The symptoms are generated in two steps: the
residual fuzzification, and the aggregation of the
residual fuzzy descriptions. More details can be
found in (Weber and Gentil 1998).

5.1 Residual fuzzification

In order to bypass the unknown residual probability
distribution, fuzzy set theory is used. Two fuzzy
sets are defined in ℜ+ , the universe of discourse of

the residual absolute values: Z for Zero; and NZ for
Not Zero. The fuzzy set Z is the complement of NZ.
The membership functions are dynamically
adapted thanks to the residual variance which is
chosen by linear interpolation between the
equations (18) and (19), depending on the NZ
membership degree computed at the previous step.
Thus the membership functions to the two sets are
defined by:































⋅−⋅

⋅−
=

)(ˆ)(ˆ

)(ˆ)(
,0max,1min))((

kakb

kakr
kr

jj

j

rr

rj

jNZ σσ

σ
µ (25)

 ))((1))(( krkr jNZjZ µµ −= (26)

where a and b are chosen to tune the sensitivity of
the residual fuzzy description to the residual
variations (in the following example a=2 and b=3).

5.2 Aggregation

For fault detection and isolation, the relevant
information is a global perturbation of all
parameter estimates s

hEs . Note that estimate

vectors s

hEs  have not necessarily the same

dimension. Thus a global perturbation degree is
computed for each vector s

hEs , using residual

membership degrees to the fuzzy sets. The
symptom vector sh representing the state of the

model h, is defined on the universe 
hnp

+ℜ  which is

the cartesian product of the residual universes of
discourse, where nph is the dimension of s

hEs .
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Two fuzzy sets are defined on the 
hnp

+ℜ  universe:

Globally Perturbed (GP); and Not Perturbed (NP).
The membership degrees of sh to the sets GP and
NP are computed by aggregation of the residual
fuzzy descriptions. A mean aggregation operator is
chosen as a compromise between a T-norm and a
T-conorm. Membership functions to GP and NP
sets are thus defined by:
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6. FAULT ISOLATION

6.1 Signature table generation

When a fault occurs, all the residuals related to the
estimates of the models linked to the faulty
measurement are sensitive to the fault. Thus, only
the estimation of the transfer functions uncoupled
to the faulty measurements remains unchanged.

Table 1

D1 Ess
1 Es s

2 Es s
3

SgT1 1 0 0
SgΩ2 1 1 1
SgT3 0 0 1

In the following, an incidence matrix ),(1 hnD

(Gertler 1998) is proposed: ‘1’ represents the s

hEs

vectors affected by a fault, and ‘0’ represents the

ones not affected. The columns are related to the
models. The rows represent the fault signatures

nSg  for a fault in 1T , 2Ω  and 3T

(Table 1).

Additional transfer function estimation allows
extending the incidence matrix (Table 1), by
adding new symptoms. They can be obtained using
eq. (2), (3) and (4) as parity relations (Gertler
1998). Substituting eq. (3) into (2) leads to a model
that links T1 to u1 and u2; with this model, T1 and
Ω2 are no longer coupled. The parameters
estimated in this way will not be sensitive to the
faults on Ω2. The same procedure can be applied
for (4) and (3) and so, the vector of estimates Ess

4

and Ess
5  can be obtained from the new models:

)()(ˆ)()(ˆ                 

)()(ˆ)()(ˆ

11111111111

2112211111

keqCdkuqB

dkuqBkTqA

uu

uu

⋅+−⋅+

−⋅=⋅

(30)

)()(ˆ)()(ˆ                

)()(ˆ)()(ˆ

33333333333

2332233333

keqCdkuqB

dkuqBkTqA

uu

uu

⋅+−⋅+

−⋅=⋅

(31)

The incidence matrix ),(2 hnD , is represented in

Table 2 using the vector of estimates sEs4 , sEs2  and
sEs5 .

Table 2

D2
sEs4

sEs2

sEs5

SgT1 1 0 0
SgΩ2 0 1 0
SgT3 0 0 1

6.2 Isolation function

The vector S of GP membership degrees is defined
as:

S = [µGP (s1) ,...,  µ  GP (sH)] (32)
If this vector is close to zero, no fault is detected.
Otherwise a decision procedure isolates the fault.
The isolation function noted FI(S, Sgn) is achieved
comparing S to the signatures Sgn. This function
measures the similarity between Sgn and S. This
similarity can be determined using the Hamming
distance calculated in a sup-space sensitive to the
fault n (Weber and Gentil 1998):
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such that FI(S,Sgn) ∈[0,1], where Wn is the number
of elements D(n,h) ≠ 0.

7. APPLICATION

The above-described method has been applied to the
winding machine simulator using the redundant
signature table (Table 2).
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point.

The inputs u1, u2 and u3 are step inputs at sample 50,
100 and 150 and the sampling period is equal to 0.1s.
The signal to noise ratio was fixed to 31 dB. The fault
was simulated as a 10 % bias on the sensor Ω2, at time
300 (Fig. 4).
Fig. 3 presents the isolation functions related to Table
2. FI(S,SgΩ2) (33) is greater than 0.5, 50 sampling
periods after the fault occurrence, thus the fault is
isolated. With a fixed forgetting factor method, a lot of
false alarms are generated, explained by the
degradation of the estimates due to the problem of
poor input excitation. The proposed forgetting factor
adaptation method results in good isolation of the fault
in spite of the poor input excitation.

CONCLUSION

This paper proposes a method for the fault detection
and isolation based on parameter estimation.
A classical identification method is used to estimate
discrete time transfer function parameters. The
on-line implementation of the ELS algorithm, is
achieved by an orthogonal transformation in order
to guarantee good numerical properties, under this
conditions the estimations used to compute the
symptoms lead to a decision robust to the numerical
errors.
Non persistently exciting inputs plant an important
problem for the convergence of the estimator. The

on-line adaptation of the forgetting factor related to
the condition number of the observation matrix and
the estimate variances improve the convergence of the
estimates. This method leads to a decision robust to
the poor input excitation.
Several sub-models of the system are used in order to
generate structured residuals. The redundancy allows
the generation of a procedure for fault isolation. This
decision is based on fuzzy sets to support the
aggregation of symptoms and a distance to classify the
symptoms in the signature space.
The application on the winding process simulation
proved that this method decreases the false alarms.
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