N

N

A Simple Paradigm for Graph Recognition: Application
to Cographs and Distance Hereditary Graphs
Guillaume Damiand, Michel Habib, Christophe Paul

» To cite this version:

Guillaume Damiand, Michel Habib, Christophe Paul. A Simple Paradigm for Graph Recognition :
Application to Cographs and Distance Hereditary Graphs. Theoretical Computer Science, 2001, 263
(1-2), pp.99-111. 10.1016/S0304-3975(00)00234-6 . lirmm-00090372

HAL Id: lirmm-00090372
https://hal-lirmm.ccsd.cnrs.fr /lirmm-00090372
Submitted on 30 Aug 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00090372
https://hal.archives-ouvertes.fr

A Simple Paradigm for Graphs Recognition:
Application to Cographs and Distance Hereditary
Graphs

Guillaume DAMIAND Michel HABIB Christophe PAUL

LIRMM, France

Abstract

An easy way for graphs recognition algorithms is to use a two-steps
process. First compute a characteristic feature as if the graph belong to
that class. Secondly check whether the computed feature really defines
the input graphs. Although in some cases the two steps can be merged.
But separating them may yield to new and much more easily understood
algorithms. In this paper we apply that paradigm to the cographs and
distance hereditary graphs recognition problem.

1 Introduction

The design of efficient combinatorial algorithms still remains an art, and only
few paradigms are available and can be re-used such as: greediness, divide and
conquer or dynamic programming techniques In the particular case of
graph recognition algorithms, i.e. algorithms which compute if a given graph
G belongs to a class C of graphs, let us consider a paradigm called Compute
as if and Check after which seems to be very powerful to produce efficient and
easy to implement algorithms. More precisely we use the following two steps
recognition paradigm:

a. Compute a characteristic feature as if the graph belongs to the class C.
B. Check whether the computed feature really defines the input graph.

Some well known graphs recognition algorithms are already based on this
principle. Perhaps the most famous examples are given by the recognition algo-
rithms for chordal graphs, namely Lex-BFS [10] and MCS [11]. These algorithms
compute an elimination ordering of the vertices that is a perfect elimination or-
dering if and only if the input graph is chordal. Similarly the very recent interval
graphs recognition algorithms [3, 7] are also based on this paradigm. In some
simple cases it could be more efficient to merge the two steps, unfortunately it
is not always the case as shows the following very interesting example of com-
parability graphs recognition. Linear time algorithms [9] are now available to
compute a characteristic feature, i.e. an orientation of G which is transitive if
and only if G is a comparability graph. Up to now a linear test is still not known
(i.e. testing in linear time if an oriented graph is transitive). Therefore in this
case the two steps do not seem to have the same time-complexity, and the two

steps separation enlights where the bottleneck could be for time complexity. Of
course in order to apply such a paradigm the given class of graphs C must be
equipped with a characteristic feature, ideally a decomposition theorem or a
representation theorem.

In this paper to enlight the above paradigm, we will focus on two families of
graphs, namely: the cographs and the distance hereditary graphs and present
two new recognition algorithms. Cographs are characterized by cotrees and
distance hereditary graphs by pruning sequences. There already exits a linear
time recognition algorithm for cographs [4]. But due to its incrementality it
is rather complicated. Nevertheless applying the above paradigm yields to a
simpler O(n + mlogn) algorithm. For distance hereditary graphs, Damiand [?]
finds a counter-example to Hammer and Maffray’s algorithm [8]. Using the
above paradigm, it can easily be repaired. The interested reader should refer
to [5] for parallel recognition algorithms of these classes of graphs.

Section 2 introduces some well known definitions and results. Then in section
3, a new cographs recognition algorithm is presented. The repaired distance
hereditary graphs recognition algorithm is designed in section 4.

2 Preliminaries

All graphs considered in this paper are supposed to be undirected graphs with
no loop and no multiple edge. Let G = (V, E) be such a graph, we denote by
N(z) the neighborhood of a vertex z, and by N[z] = N(z) U {z} the closed
neighborhood of x. Two vertices x and y are true twins iff N(z) = N(y), they
are false twins iff N[z] = N[y]. A pendant vertex is a vertex of degree 1. The
distance between two vertices z and y, denoted by dg(z,y), is the length of a
shortest path between = and y.

A graph G is distance hereditary iff for any connected vertices z and y of a
subgraph H of G, then dg(z,y) = di(x,y). Here is a well known characteriza-
tion of distance hereditary graphs :

Theorem 1 [8] The following conditions are equivalent:
1. G is a distance hereditary graph
2. Any subgraph of G has either a pendant vertex or a pair of twins

3. G has no induced subgraph isomorph to a hole (chordless cycle of length
k> 5), a domino, a house or a gem

C

b

hole house domino gem

Definition 1 A pruning sequence is an ordering o = [(21,5,y) ... (2,5, 2) ... Zy]
such that for any 1 < i< mn:

o (x;, P,x;) if in Gi, N(z;) = {z;} (v: is a pendant vertex)

o (2;,T,z;) if in Gi, N(z;) = N(z;) (x; and z; are true twins)

o (x;, F,x;) if in G;, N[z;] = N[z;] (x; and x; are false twins)

The second point of theorem 1 shows that a graph G = (V, E) is a distance
hereditary graph iff there exists a pruning sequence of V.

Definition 2 Cographs is the smallest class of graphs containing the single ver-
tex graph and closed under disjoint union and complement.

Cographs are distance hereditary graphs : the vertices of a cograph can be
pruned without the pendant vertex removal. They have been intensively studied.
Moreover cographs are exactly the Py-free graphs. They have a canonical tree-
decomposition, called cotree (see above figure). The leaves of the cotree are the
vertices of the cograph. Let N be an internal node of the cotree and T the
subtree rooted at N. N is labelled by 0 (resp. by 1) if the subgraph induced by
the leaves of the subtree rooted at N is disconnected (resp. connected)

a » b /1\
CW; =7 O)
e f a c

/\
3 Cographs recognition algorithm

e f

Let us make two useful remarks. In a cograph, two vertices are adjacent iff their
least common ancestor (LCA) in the cotree is labelled by 1. The internal nodes
of a path from a leaf to the root are alternatively labelled by 1 and 0.

Definition 3 A set of vertices M of a graph G is a module iff for any x and
yin M, N(z)\ M = N(y) \ M. A module M is prime is no non-trivial subset
of M is a module.

Definition 4 [2] A factorizing permutation «y is a permutation of the vertices
where the vertices of any module appear consecutively.

For any internal node IV, the set of leaves of T is a module. For example
{a, ¢, e, f} in a module of the graph in figure ?? : all these vertices are adjacent
to b and d. The permutation v = [b,d, a, ¢, e, f] is a factorizing permutation.

Theorem 2 [2] Given a factorizing permutation of a cograph, a cotree can be
build in linear time.

The presented algorithm computes a factorizing permutation iff the input
graph is a cograph (this is step a of the paradigm). The reader should notice
that a cotree can be build directly (without using theorem 2), but this version
of the algorithm is simpler. The main idea is to use the first two remarks of
this section. Given a vertex v, the leaves of the cotree T' can be rearranged such
that N(v) is on the left of v and N(v) on the right (see the next figure). The
problem is to gather the leaves of any subtree Ty where N ancestor of v in 7T'.

Let z be a non-neighbor of v (ie the LCA of v and z is a O-node N on the
path in 7' From v to the root). Let N’ be an ancestor of v in T labelled by 1. If
N’ is a descendant of N, then the LCA of z and any leaf y of N’ is N (thus x

N(v) N(v)
— "
N(z) N N(v)

and y are non-adjacent). Therefore separating N (v) N N(z) from N (v) N N(z)
distinguishes the leaves of a subtree T+ (N’ descendant of N) from the other.
Now to respect a factorizing permutation N(z) N N(v) have to appear on the
right of N(z) N N(v). The same argument holds when z is a non-neighbor of
v. To compute a factorizing permutation, we put N(z) N N(v) on the right of
N(z)NN(v). Since the class of cographs is an hereditary class, this process can
be applied recursively.

Algorithm 1: Cograph(z,X)
Input: A set of vertices X of a graph G and a vertex z € X
Output: A factorizing permutation iff G[X] is a cograph
begin
if |X| =1 then return the ordered list (z);
if [N(z)| > |N(z)| then let L = (N(z)) and L' = (N(z));
else let L = (N(z)) and L' = (N(z)) be ordered lists;
1 foreach vertex y € Y a class of L do
foreach class V' of L' do
if YNNy)#Y and Y N N(y) # 0 then
L | replace V' in L' by V' N N(y), V' N N(y);
2 foreach class)' of L' do
Choose an arbitrary vertex y' €)';
pivot(Y') = y';
foreach class Y of L do
if YNN(y')#Y and YN N(y') # then
L | replace Y in L by YN N(y'),Y N N(y');

| cograph(y".)");
foreach class YV of L do
choose an arbitrary vertex y € V;
| cograph(y,));
if [N(z)| > |N(z)| then return the ordered list (L', {z}, L);
else return the ordered list (L, {z}, L');

end

To launch the process on a graph G = (V, E), the first call to algorithm 1
is: Cograph(v,V) where v is an arbitrary vertex of V.

Theorem 3 Let G = (V, E) be a graph. The algorithm 1 computes a factorizing
permutation of G iff G is a cograph. It runs in O(n + mlogn).

The idea of the correctness has already been explained. Let us give the
outlines of the complexity analysis. In loop 1, the neighborhood of each vertex
of L is used. Since the size of L is less than half of the size of X, in the whole
process the neighborhood of a given vertex can be visited logn time. Loop 2
just uses the neighborhood of one vertex y’. Then N(y') will be used once
more to recursively launch the process. It means that in the whole process the
neighborhood of each vertex is visited at most logn + 2 times. This yields to
the O(n + mlogn) complexity.

4 Distance hereditary graphs algorithm

The expected result of Hammer and Maffray’s algorithm [8] is to build a pruning
sequence iff the input graph is distance hereditary. But it fails on the domino or
the house if it starts with a degree 3 vertex. It means that the algorithm answers
“yes, there exist a pruning sequence” although the domino and the house are
not distance hereditary graphs.

To recognize distance hereditary graphs, let us use our two steps paradigm.
The first step computes a pruning sequence as if the input graph is distance
hereditary and the second just check its correctness. Cographs are distance
hereditary graphs. Using the cotree, Hammer and Maffray proposed a linear
algorithm that computes a pruning sequence of a cograph: if two vertices are
sons of a same 0-node (resp. 1-node) then are true twins (resp. false twins). So
algorithm 2 joined to the algorithm 4 can be the 3 step of the paradigm for the
cograph recongition.

Algorithm 2: Prune-cograph(G,j)
Input: A cograph G
Output: A pruning sequence o iff G is cograph
begin
Compute a cotree T of G}
Let S be the nodes of T having only leaves as descendant;
while S # () do
Pick an arbitrary node N € S;
Pick an arbitrary son z of IV;
For any son y # z of N do
if N is a I-node then o(j) « (yTz);
\; else o(j) « (yFz);
Je i+ L
Replace N by z in T
if the father(N) has only leaves as descendant then
| add father(N) to S;

end

Theorem 4 [8] Algorithm 2 computes a pruning sequence of a cograph G in
O(n +m).

To get a linear complexity for algorithm 2, we have to build a cotree in linear
time. Clearly, it can not be done by algorithm 1. But the expected complexity
can be achieved using the classical Corneil, Pearl and Stewart’s algorithm [4].
The rest of algorithm 2 can be compared to a postfix search in a tree. Since the
size of the cotree is O(n + m), the whole complexity is O(n + m).

The distance hereditary graphs recognition algorithm is based on theorem 5.
Let us introduce some notations. Let G be a connected graph and Ly,..., L
be the distance layout from an arbitrary vertex v of G. For any vertex z and
for 1 < i < k, we note by N;(z) = N(z) N L;. Let x be a vertex of L;, we call
inner degree of x the cardinality of N;_;(x).

Theorem 5 [1] Let G be a connected graph and Li,...,L; be the distance
layout from an arbitrary vertex v of G. Then G is a distance hereditary graphs
iff the following conditions are verified for any 1 <i < k:
1. Ifz andy belong to the same connected component of G[L;], then N;_1(z) =
Ni—1(y)
2. G[L;] is a cograph
3. If 1 € Ni—1(u) and y € N;_1(u) are in different connected components X
andY of G[L;_1], then X UY C N(u) and N;_2(z) = N;_2(y)
4. If z,y are in the different connected components of G[L;], then N;_1(z)
and N;_1(y) are either disjoint or comparable for the inclusion order
5 Ifx € Ni_1(u) and y € N;_1(u) are in the same connected component C
of G[L;_1], then the vertices of C non-adjacent to u are either adjacent to
both x and y or none of them

Algorithm 3 is the « step of the recognition paradigm for distance hereditary
graphs. The 3 step will be given by algorithm 4.

Theorem 6 Let G be a graph. Algorithm 8 computes in linear time a pruning
sequence of G iff G is distance hereditary.

Proof: If the computed sequence is a pruning sequence, then G is a distance
hereditary graph (theorem 1). So we just have to prove the converse. During
the 4-th loop 1, all the vertices of the sets L; for i < j < k has been removed.

By theorem 5.1, each connected component of G[L;] is a module. Since G[L;]
is a cograph (theorem 5.2), twins in G[L;] are also twins in G. Thus in loop 2,
we can contract each connected component cc of G[L;] and build of pruning
sequence of G[cc] with the algorithm 2.

At this step L; is a stable set. Thus (loop 5) the remaining vertices of L;
with inner degree 1 can be removed as pendant vertices.

Now by theorem 5.4, the neighborhood of two distinct vertices of L; are
either disjoint or comparable. Let us consider a linear extension of the inclusion
of these neighborhoods (ordering the vertices with respect to their inner degree
produces such a linear extension). Let x be the first vertex in this ordering. Let
u and v be two distinct vertices of N;_;1(z). By theorem 5.4, N;(u) = N;(v).
If 4 and v are in distinct connected component cc(u) and cc(v) of L;_;, then
N;_2(u) = N;_2(v) (theorem 5.3). Moreover, cc(u) and cc(v) are included in
N;_1(z). Finally, if v and v are in the same connected component cc of L;_1,
theorem 5.4 shows that N;_3(u) = N;_»(v) and by theorem 5.5, if w € cc is not
adjacent to z then w is adjacent to both w and v or none of them. Therefore

Algorithm 3: Prune(G)
Input: A graph G = (V, E)
Output: A pruning sequence o iff G is a distance hereditary graph
begin
pick an arbitrary vertex v;
J< 1
compute the distance layout L4, ..., Ly from v;
for i = k downto 1 do
For each connected component cc of G[L;] do
contract cc into a single vertex;
prune-cograph(Glcc],j);
L J & J+ec] =1
4 sort the vertices of G[L;] by increasing inner degree;
5 For each verter x of L; with inner degree 1 do
Let y the only neighbor of z;
o(j) « («Py);
LJi<i+]
if i #1 then
6 For each x € L; taken in increasing inner degree order do
contract N;_1(z) into a single vertex;
prune-cograph(G[N;_1(z)],j);
J < J+INica(@)| - 1
Let y the only neighbor of z;
o(j) « (zPy);
I3+

end

N;_1(z) is a module. Since it is contained in L;_1, G[N;—1(z)] is a cograph.
Twins in G[N;_1(z)] are twins in G: N;_;(z) can be contracted into a single
vertex and compute a pruning sequence of G[N;_1(z)].

Respecting the linear extension of the neighborhoods, the previous argument
can be applied for all remaining vertices of L;. That ends the correctness proof.

Let us now give some ideas for the complexity issues. Computing the distance
layouts can be done in O(n + m) via a breadth first search. At line 3, each
connected component of G[L;] into a single vertex can be contracted in O(G[l;]).
Sorting the vertices of L; with respect to their inner degree (line 4) can also be
done in linear by a bucket sort. For each distance layout, the global complexity
of line 7 is O(G[L; U L;—1]). Thus the whole complexity is O(n + m). O

To make the recognition procedure complete, let us now present the veri-
fication algorithm (3 step of the recognition paradigm). Each vertex and his
neighborhood are visited at most twice. This yields to a linear complexity.

Theorem 7 Distance hereditary graphs can be recognized in linear time

Algorithm 4: Verification-step(G,y)
Input: A graph G = (V, E) and a sequence v = [s1,. .., 8p]
Output: True iff v is a pruning sequence of G
begin
for j = n downto 2 do
xSy + sj;
if S=P then
‘ if [IN(z)| #1 or (z,y) ¢ E then return false;
else
L if N(z)n{z1,...,zj—1} # N@y) N{z1,...,2j_1} then
| return false;

| return true;

end

5 Conclusions

Based on the Compute as if and Check after paradigm, two new recognition
algorithms for cographs and distance hereditary graphs have been presented.
These algorithms seem to be simpler than the already known algorithms. For
distance hereditary graphs, we put right Hammer and Maffray’s algorithm. For
cographs, although the optimal complexity is not achieved, the data structures
of presented algorithm are simpler than those of Corneil Pearl and Stewart
algorithm. The next problem is now to improve this complexity without using
complicated data structures.

Many other applications of this paradigm could have been quoted (as for
example the recognition of distributive lattices [6] in linear time) and we hope
that it will be helpful in the near future to design new algorithms.

References

[1] H.J. Bandelt and H.M Mulder. Distance hereditary graphs. Journ. of
Combin. Theory serie B, 41:182-208, 1986.

[2] C. Capelle. Decomposition de graphes et permutations factorisantes. PhD
thesis, Univ. de Montpellier I, 1996.

[3] D.G Corneil, S. Olariu, and L. Stewart. The ultimate interval graph recog-
nition algorithm. Extended abstract, 1997.

[4] D.G. Corneil, Y. Pearl, and L.K. Stewart. A linear recognition algorithm
for cographs. SIAM Journal of Computing, 14(4):926-934, Novenber 1985.

[5] E. Dahlhaus. Efficient parallel recognition algorithms of cographs and dis-
tance hereditary graphs. Discrete Applied Mathematics, 57:29-44, 1995.

[6] M. Habib et L. Nourine. On some tree representation for distributive lat-
tices. Technical Report 93042, LIRMM, 93.

[7]

[8]

[10]

[11]

M. Habib, R. McConnell, C. Paul, and L. Viennot. Lex-bfs and parti-
tion refinement, with applications to transitive orientation, interval graph
recognition and consecutive ones testing. Theoretical Computer Sc. to
appear.

P.L. Hammer and F. Maffray. Completely separable graphs. Discrete Ap-
plied Mathematics, 27:85-99, 1990.

R.M. McConnell and J.P. Spinrad. Linear-time modular decomposition
and efficient transitive orientation of undirected graphs. In SODA, pages
19-35, 1997.

Donald J. Rose, R. Endre Tarjan, and George S. Leuker. Algorithmic
aspects of vertex elimination on graphs. SIAM Jour. of Comp., 5(2):266—
283, 1976.

R.E. Tarjan and M. Yannakakis. Simple linear algorithms to test chordality
of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic
hypergaphs. SIAM Jour. of Comp., 13:566-579, 1984.

