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A Synchronous Process Calculus for Service Costs

Siva Anantharaman, Jing Chen, Gaétan Hains
LIFO - Université d’Orléans (France),
e-mail: {si va, chen, ghains}@ifo.univ-orleans.fr

Abstract our view, while remaining simple, will also show a natu-
ral way based on our synchronization operatorfor re-

We present a process calculus where synchronous comducing the bisimilarity problem between finite state recur-
position is the central algebraic notion; equivalences be- sive processes to the case of finieursion fregprocesses;
tween processes via bisimilarity or trace can be studied the interest is that such a reduction can be used for decid-
quite simply in this calculus, which in addition allows us ing (non-)bisimulation via equational techniques. Thia-co
to model naturally other notions such as service, and qual- stitutes the essence of the first part of the paper.
ity of service. They can be studied in an algebraic semi-ring  The second part of the paper is a little less formal and
setup using notions of cost on the transitions. has a software engineering bias; we show there how our

synchronous composition operatet is handy for build-

ing a method for modeling a notion of quality of service for
1. Introduction a given client with respect to servers serving one or more

clients.

In an earlier work [1], we proposed a calculus for build- This paper is structured as follows. We first recall (in
ing finite recursion free processes, with synchroniza- Section 2) our synchronous calculus for finite recursia@efr
tion as the central parallel composition operation; such aprocesses, essentially as was donein [1]. In Section 3 we de-
view allowed us in particular to show that strong bisim- fine recursive finite state processes as a set of nodes (er ‘pro
ulation between finite processes can be identified with cess constants’) and a given set of guarded equalities be-
the equational congruence between such processes sedween them. The principal result is that two finite state pro-
as terms, with respect to an equational signature re-cessesP, @ are bisimilar (notationP ~ Q) if and only
ferred to as PACUID: +' denoting non-deterministic  if, for every finite processJ without ‘choice’ (i.e., with-
choice is Associative-Commutative, Idempotent, and ad- out ‘+"), we haveP x J ~ @ = J. Similar results hold
mits the null action as Unit; a binary* denoting syn- also for equivalence under weak bisimulation or trace (al-
chronous composition i2-sided Distributive over +’, though not mentioned in this paper). The less formal part
and Prefixes for actions. To underline the difference with of the paper starts from Section 4, where we present an ap-
the classical process calculi, we denoted the internal acproach for modeling a notion of service in a clients-server
tion of processes a8 in [1], instead of using the usual configuration; subsequently is also defined a notion of cost
notationr; it was also shown that the interleaving seman- for a given client for getting the service done; the synchro-
tics of CCS, although not part of the formal algebraic setup nization operator«’ gives a natural and functional setup for
presented [1], is recoverable in terms of . developing these notions. A notion of quality of service is

The purpose of the current paper is two-fold. The first is defined, for a given client in a given clients-server configu-
on the formal side where the concern will be to extend suchration, where the various server agents are assumed to op-
a synchronous calculus to the caseexfursivefinite state erate on a shared memory basis. These aspects are all pre-
processes, so as to provide a sufficiently expressive algesented in an algebraic setup where every atomic eventin the
braic basis: we mean thereby it should be able to serve forservice is assigned a symbolic cost, and the set of all such
the formal analysis of processes, based on strong or wealcosts forms a semi-ring. Such a view in particular allows us
bisimulation equivalence, and strong or weak trace equiva-also to compute the service costs as the powers of a suit-
lence. For achieving such a formal goal, we shall be shift- able matrix over the semi-ring. We then outline the applica-
ing the view from processes-as-terms to processes-a&s-stat tion of classical matrix algorithms to the efficient computa
machines, as is classically done: Recursive finite state pro tion of service costs, thanks to the semi-ring setup, and est
cesses will be defined as state machines with guarded tranmate the practical gain in these algorithms that is due to our
sitions, e.g., as in [7], or the ACP calculus of [3] or [2]. But synchronous composition operator. In a concluding section



we give some indications on how to extend this cost calcu- i) If P, Q are processes aad= aias . .. a, iS any string
lus to the case where the server agents operate on a multiof actions, then the notatioR —— @ will mean that there
processor. exist processe®;,0 < i < psuchthat’y = P, P, = @,
and for anyi € {0,p — 1} we haveP, 3 P,,4; the
P;,0 < i < pwill be said to be sub-processesif = P;
Our processes are constructed over a givenandQ is said to be am-successor of.

set EAct of (extended) action symbols. Let Bijsimulation: Simulation, simulation equivalence and

2. A Calculus for Finite State Processes

EAct = {0} {a,a,b,b,...}; hered is a special  pisimulation between processes are defined as usual: Let
‘internal’ action similar to ther of ccs, but in our cal- P7Q be two processes. A binary relatigh from the set
culus it will also be used to Symb0|ize an ‘idling’ action of Sub_processes a? into the P set of Sub_processes of

of any processAct will denote the subset of nof-ac- Q is said to be asimulationof P by Q, iff the follow-

tions of EAct , referred to occasionally atandardactions; ing holds: (P,Q) € S and for everya € EAct such

bars serve in pairing out synchronizing (or communicat- yhat p %, P, there exists a sub-proce€¥ of Q such
ing) actions, in particular it is assumed that= z; we thatQ —% ¢ and (P',Q') € S. Notation: P <Is Q,
refer toz as the conjugate af. The special actiofl is as- ¢ more simplyP < Q if the relationS can be left im-
sumed self-conjugate. In our calculus, the synchronimatio plicit. If we haveP <1 Q andQ < P, thenP, Q are said to
between actions is assumed defined via a (partial) bi-pe simulation equivalent.

nary operation denoted as, and defined as follows: A relation R which is a simulation ofP by Q is said

to be abisimulationbetweenP and( iff its opposite rela-
tion R ! defines a simulation @ by P. If P is bisimilar to

@ underR we shall writeP ~z @, or more simplyP ~ @

if the relationR can be left implicit. Bisimulation satisfies
the usual ‘congruence’ relations on processes; in particu-
lar, it is classical that the set of all processes (withoyt an
We first consider finite non-recursive processes; the finiteness constraint) satisfies the following equational a

0 fx=y
(STAR) zxy = xz ify=0;oryifz=20
undef or_L, otherwise

2.1. Finite Recursion Free Processes

grammar for generating them is as follows: ioms (referred to as ACUI up to bisimulation:
Proc ::= 0| EAct .Proc | Proc + Proc A X+Y+2)=X+Y)+Z
| Proc = Proc | Proc\ Act. ©C) X+Y=Y+X, (U X+0=X.
lts operations are respectively called null process, pre- ) X+X=X.

fix, (non-deterministic) choice, (parallel) synchronous
composition, and restriction. Proces® will be abbrevi-
ated tox andz.(y.0) to 2.y when no confusion is likely be-
tween processes and their traces. In general ... will
stand for actions, an®, Q, R, ... for processes. Anyi-

2.2. Recursive Finite State Processes

The usual definitions of finite state recursive processes,
e.g. as given in [7], extend a grammar for finite processes
. . e (similar to the one of our previous section, except that *
nite p.rocessP can (and WI‘||) Pe seen as a finite term over is traditionally replaced by the'of asynchronous paral-
t_he S|gn_ature formed by_+, +, and thg seEAct of ac- _lel composition); this extension resorts to operators ssch
tion prefixes. The operational semantics of our processes is. yop o « Re¢, which make use of the so-called ‘process

a labeled transition system, defined by the following infer- .-t ang defining equalities between them; tramsitio

ence rules: are defined via operational semantics as above, plus some
(Prefix) P p additional conditions of ‘non-empty guards’. For instance
' if X,Y,Z are given process constants, then the following
(Sum p_=, p Q-2 ¢ equationsX =a.Y, Y = Z, Z = b.X —wherea,b,c, ..
= = are action symbols — define a recursive process whiere
P+Q—F P+Q — @ ‘can go back’ toX, after first performingz, thenb; the
. v ‘guard’ for this composite loop fronX to X is by defi-
(Sync) P—P Q—Q zxy=2#0 nition the worda.b over the set of action symbols. But a set
PxQ - P «Q’ of equalities likeX = a.Y + 7, Z = X, Y = c.0is not al-
PP, HCAct, z¢H lowed since the guard for going back frakhto X would
(Restr) - — then be the empty word(the empty action symbol).

x /
P\H — P'\H Itis clear that these definitions are based on viewing pro-
Remark 1. i) Rule (Sync) is symmetric iz,  because we  cesses as state machines; so we shall henceforth use the
are assuming = . word nodeor state instead of ‘process constant’; in the



following, nodes will be denoted by capital letters such as where the binary«’ is defined as above. The last branch
UV, X,Y, Z ..., with or without suffixes. As previously, concerns only synchronization between standardthan-
EAct will denote a given finite set of action symbols (in- tions, so it is straightforward that we get the asynchronous
cluding#), set run over by the symbolsb,c, ..., z,y, 2., , composition of P and Q of CCS, once every occur-
rence off in the resulting term is replaced by CCS’sAs

for finite state recursive processes, observe that theyeare d
fined via equalities; now the above definition Bf| Q is
also via equalities, so is extended naturally to the case of fi
nite state recursive processes. To be consistent with the
point of view developed in this paper, we shall adopt a
slightly different definition for |', however: the last sum-

mand of the above definition will be taken ol pairs of
The “+' of these equalities is assumed to satisfy the actions ofP and@, includingsé.

ACUlI-axioms of Section 2.1; as usualvill denote the ad- Parallel asynchronous composition of any finite fam-
ditive unit. (Itis obvious that any finite processes as define iy of processes?, ..., P, is defined similarly, by treat-
earlier, in Section 2.1, can be translated into the format of jng the processes successively in pairs; it is uniquelyrdete
defining equalities.) On a procegsdefined as above, the  mined up to bisimulation, and is associative-commutative
a;;'s are called theéransitions of>; we shall say more pre-  on p, ..., P,; we shall employ the standard CCS notation
cisely there is am;;-transition fromZ; to X;. (Asusual,  p, | .. | P, for this parallel asynchronous composition.

€ stands for an empty label on the transition between the,q Synchronous composition is non-associative in gen-
nodes concerned.) Given any two stateandV” on a pro- eral; i.e., in generaP « (Q  R) o (P = Q) # R; for in-

cessP and awordy € (EAct Ue)*, the notion of arx-path _ .
. k . X stance,((a.0) * (a.0)) * (¢.0) can do actiorr, but (a.0)
from statelU to statel” on P is defined as in Section 2.1. ((a.0) = (¢.0)) can do no action.

A processP is said to beecursiveiff there is a path on o ] )
P from some state of to itself. P is said to beguarded Remarks 2 On the set of finite state (possibly recursive)

iff there is noe-path onP from any state to itself; we shall ~ ProCesses, the notions of simulation, simulation equinade
assume that every recursive process is guarded. and bisimulation are defined exactly as in Section 2.1, keep-

ing in mind now that the sub-processes of a prodessr-
respond to its nodes. Besides satisfying ACUI, bisimutatio
has also the following additional properties:

Definition 1 i) A finite state proces$ is a pair (£, X)
where £ is a finite set of finite equalities of the form:
Z; = ¥ja;;X;, where theZ;’s , X;’s are nodes, and:

(i) distinct equalities have distinct left-hand-sid#ss);

(i) the a;;’s, are elements oEACt Uce;

(iiiy X is anode appearing as the lhs of an equalitfirre-
ferred to as thestarting statef P.

Given two processes;,: = 1,2 with X;,s = 1,2 as
their respective starting states, their sutn+ P, is de-
fined as the process obtained by adding to the union of their

defining equality-sets, an additional equaliy= X + X5, (i) For any P, we have amdditive normal form

whereX is assumed not presentiti, P,. Their ‘«’-product P~ Z a.P'.

P, x P, is defined as the process whose states are all of the pP-*.pr

formU«V whereU (resp.V) is a state otP; (resp.P,), and The proof is classical, needs only that processes are de-
with X * X, as starting state; the transitions®f« P, are  fined via equalities.

defined by using the distributivity of over +, and the ta- (i) Prefix and synchronous composition ‘commute’:

ble (STAR) of Section 2 defining+' on actions, extended a.Pxb.Q ~ (axb).(PxQ).

in an obvious manner to cover the casecofWhen such The proof is by showing that the binary relati®de-

a product gets constructed in practice, its nodes may be refined as the set of pai(a. P  b.Q, (a * b).(P * Q)) where
named for notational convenience.) a,b run over actions and®, Q over processes, is a strong

- ‘ bisimulation. (The next assertion is proved similarly joo.
Asynchronous Parallel Composition (the ‘Interleav- (iii) Synchronous composition:' is commutative, and

ing Semantics’): Although not formally part of our setup, distributes over+’, up to bisimulation: We have:
the notion of asynchronous parallel composition be- PxQn~QxP P%0~ 0.

twgen processes — for Whic_h we shall use the cllassical no- P+(Q+R)~PxQ+PxR.
tation ‘" - can be defined uniquely up to bisimulation. Con-
sider first recursion-free processes. et Zaq, a;.P; and

Q@ = 2., b;-Q; be additive normal forms, respectively

In other words, bisimulation satisfies the equational the-
ory PACUID, that one obtains by augmenting ACUI with
the following additional axioms:

}‘O{ P,Q. ThenP | Q is defined uniquely up to bisimu- D) X+«+(Y+2)=X+Y+XxZ
ation, as. (Z) X%x0=0, (P) a.X*bY = (axb).(X*Y)
PlQ = > ai(P|Q) + Y b(P| Q)
a; bj Bisimulation is PACUID-Congruence, for finite pro-
+ Z (a; % b;).(P; | Qj) cessesiLet = be the smallest congruence on the set
ai£04b; Proc of all finite non-recursive process terms de-



fined byP = Q iff P = Q or P can be obtained fromf 3. Deciding Strong Bisimulation
by applying one or more of the PACUID-equational ax-

ioms. Then, for any twdinite processesP, Q we have: ~ For any processP and X’ node on P, we de-
P ~ Q ifandonly if P = Q. The proof is by putting to- ~ fine Actp(X") as the set of alk € EAct such thatX” has
gether the following two propositions. ana-successor otr.

» o Suppose given two finite state processes), with re-
Proposition 1 P = () impliesP ~ @ spective initial state(, Y. We give here an algorithm for
Proof: SupposeR = R’ be an instance of any one of the deciding thatP ~ @, based on classical reasonings e.g. as
axioms. Then from the properties mentioned in Remarks 2,given in [7]. We shall be denoting the 'generic’ nodes on
we haveR ~ R’, and since bisimulation is a congruence for P (resp. onQ) by X', X" ... (resp. byY” Y ...) with or
process terms, we also ha#?¢R] ~ P[R’]. Now any equa-  without suffixes. AndInEqu will denote a set of ‘inequiv-
tional proof of P = @ is a finite sequence of transforma- alences’ (or inequalities), of the ford’ # Y”; it is as-
tions via such instances. All of them preserve bisimulation sumed thatinEqu = ) at the start.
so by the transitivity of bisimulation? ~ Q. 0

For the reverse implication, we need a lemma. _
o o addX’ #Y'to InEquif Actp(X') # Acto(Y').
Lemma 1 For finite P, P ~ OimpliesP = 0. Stepii) If InEqu = (), then return P bisimilar toQ”,
Proof: SinceP is bisimilar to0, we getEAct (P) = (. We else setPairs = {(X',Y')| X' # Y’ ¢ InEqu}.
then reason by induction, on the size of the finite proégss PR .
since anyP is bisimilar to its additive normal form. Step i) Choose anX",Y") € Pairs;

Stepi) For every paitX’,Y"),

If P = Othere is nothing to prove. Note th&may not - leta € BAct such thatY’ = X" if for every Y”
be of the formu. P’ becaus&Act (P) = 0. with Y = Y we haveX"” # V" € InEqu, then
If P = P’ + P” then we must hav&Act (P') = addX’ # Y to InEqu;
EAct (P"”) = 0; but then, since”’, P” are smaller terms - letb € EAct such thaty’ & Y"; if for every X"
than P, we have by induction hypothesi¥ = 0, P” = 0, with X’ 2 X7 we haveXx” £ Y" € InEqu, then

soP =P + P"=0.
If P = P’ P”, let the additive normal form foP’ ) . o
and P" be respectively"; a;. P/, 3~ b;. P} By induction - setPairs := Pairs \ {(X',Y")}.
hypothesis,P’ and P” are also equationally equivalent to Step iv) If Pairs # (), then GOTO Step iii).
those sums and distributivity implieB = P’ « P’ = Stepv) IfXy # Y, € InEqu,
>ij(ai.P;) = (b;.P)"). Now every product; * b; must then return ‘P not bisimilar toQ”,
be undefined, otherwise the rule for transitions of a prod- else return P is bisimilar toQ".
uct would have implied a transition fé&* = P’ « P’. Hence
the axioms imply thats, j, (a;.P;)* (b;.P;") = 0,andthus  Note: This simple backward reasoning algorithm suffices
P=Ps«pP'=% .0=0. for our purposes here: namely its use in the proof of Propo-
If P = P'\a then eitherP’ ~ 0, or not. In the first  sition 3 below. (Several optimizations are possible for-low
case, by induction we have’ = 0, soP = (0\a) = 0. ering appreciably its complexity; see e.g., [6].)
In the other case, suppose there exists @ EAct (P’);
sinceP’ \ a has no possible actioh,must bea and hence  3.1. Process Equivalences via*
P’ ~ %".a.P]. SinceP’ is smaller thanP, by induction

addX’ # Y’ to InEqu;

; _ _ _ We give here a characterization for strong bisimulation
hypothesis we gef”” = > .a.P!. So,P = P’ = : : .
(%?_ a.P)\a= %_(a P! \Za:)zi 2’: 0=0 \a based on #’; the idea is straightforward, and shows the
v e e O usefulness of our synchronization operatoand the role
Proposition 2 For finite P, Q, P ~ @ impliesP = Q. played by the action symbél

Proof: If P ~ 0 then this follows by the previous lemma. Proposition 3 Given processe®, @, P ~ @ holds if and
So we assume th&Act (P) andEAct (Q) are non-empty.  only if for all finite linear processes (meaning:J has no

Now from the assumption we g&Act (P) = EAct (Q); ‘choice’, i.e.J is any finite sequence of actionsye have:
let A denote this common set of actions. Then we know P x J ~ @ * J.
thatP ~ > .4 PoandQ ~ >, Q.. Bisimulation im- Proof : To prove the “only if" assertion, we check that given

plies that for every: € A and aP, we have &, such that ~ anyJ the setB of pairs{(X' «+ U',Y' « U’) | X' ~ Y},
P, ~ Qg; by induction hypothesis, the terni3,, Q,, be- whereU’ is any state on/, and X', Y’ are respectively
ing smaller than the term®,  respectively, we get then states onP and@, is a strong bisimulation. Now, by def-
P, = Q.. One deduces then, by commutativity and asso- inition, the possible transitions from’X’ x U’ must be of

ciativity of +, thatP = Q. n the form: X’ « U’ “*% X" x U” whereX’ - X" on



PandU’ % U” on J: but then there must be a transi- 1. A = (P’ | Q) andP = P’: obviously we have here

tionY’ < Y” onQ with X" ~ Y"; so there is a transi- P pPrand) L O, andtherP+ ) % P« = B,
tion Y’ «U’ “% Y« U” and the pait X"« U",Y" « U") therefore( A, B) € R.
is in the sets.

_ _ 2. A=(P| Q") andQ % Q': similar to case 1.
As for the “if” assertion, assume th&t and (@ are not

bisimilar. Then, the senEqu as defined in the algorithm 3. A = (P’ | Q') andP % P/, Q % Q' with a = 6:

of Segtion 2.3 is non_-empty when the algorithm halts_, and obviously then? LR P', andQ LR O, soP 0 b,

contglns the inequalityy, # Yy formed. of the respgg’uve P'+0 = B. Thereforg 4, B) € R.

starting nodes o and@. Then there exists, by definition a

shortestsequencer € EAct * of actions satisfying the fol- ~ We show next that the opposite relatiorfs a weak sim-

lowing condition: ulation; that is to sayP | @ weakly simulates” « Q: for
Xo % X’ onP, and forany Y, % Y’ onQ, thi; consider any no#-transitionc fron_w P c%; by defi-

we have Actp(X') # Acto(Y"), nition ¢ must be such that = a x b with P — P’ and

%, @, with f i he other;
(and/or a similar condition with the roles &% Q reversed). aQ;:HQb _WI; ;)gce 3 Cg-bbzflph%rﬁe\;vgl&iﬂor:;:; tit)ar;l;ay
If « = aj.az...an, we define a finite linear processas o - ’

J=a1.G2...a4,.0. We then haveP x J « Q * J. 0 the/reforel? | Q = P Q - P | @', and we deduce:
(P'|Q, P +Q)eR. O
Remark 3. The above Proposition together with Proposi-
tion 2, suggests another way for deciding bisimulation, by
looking at the problem in its negated form; i.e., deciding
non-bisimulation betweeR and@. For doing this we look

foralinearJ = zy.z2...2n5.0 (WhereN is the maximum A Notion of Timeout: The ‘hatted’ processes as they are
number of transitions of¥ or @, and) thex;,i = 1..N are  defined above can idle indefinitely, in particular can indef-
‘action variables’ to be solved for, such that J % Q * J; initely delay the choice between two branches. In practical
since.J is assumed finite, solving for such/Jaamounts to  sjtuations however, it is often useful or even necessary to
solving a special and weak case of disunification problem pound such a delay. This leads to the followtirgeoutno-
over the PACUID-equational theory. tion. Given two processeB, Q, for any positive integen,

For any action symbat, classically== stands for the ~ define inductively a process as follows:
weak transitiorrelation. defined ag%)* % ()*; and~ Timout(P,0,Q) =P +@Q, -
denotes the notion of weak bisimulation between processes, ~ /70ut(P,n, Q) = P+ 0.Timout(P,n —1,Q).
defined w.r.t. these weak transition relations. The operato Intuitively: Timout(P,n, Q) is the process which can do
‘| of asynchronous parallel composition can be expressedthe (idling) 6-action at most. times before choosing be-
in a very concise manner in terms of,'up to weak bisim- ~ fweenP andQ.

Corollary 1 1t follows that %’ is associative-commutative
on the class of ‘hatted’ processes (those which can ‘idle’ as
and when needed).

ulation, as follows. To every procegs(defined by a set of Such a potion_ is easil_y. defin_ed also for finite state pro-
guarded equalities) associate a process denotdd] ab- cesses defined via equalities: Given such _aprcf&mad an
tained by adding @-loop at every node. E.g., iP is de- integern > 0, we shall denote by, the finite state pro-

fined byX = a.X +b.Y,Y = 0, then P is defined by ~ C€ss, which at any of its nodes can do the idlikgction at

X =a.X+bY +0.X,Y =0.Y +0. ltis clear that? is mostn times before being forced to branch off to a succes-
weak-bisimilar toP for any P (intuitively, P is justP ex- ~ SOrnode. For instance, i = Eis any one of the defining
cept that it may ‘idle’ before doing any action). The process equalities of” andn = 1, then the corresponding defin-
P thus constructed will be referred to as timatted exten- NG equality forP;) willbe X' = E'+¢.E. The timeout no-

sioni of P. We then have the following result. tion can actually be seen as a ‘timed’ notion, part of a timed
- o process calculus extending ours. We shall be using the time-
Proposition4 P | Q ~ P Q. outs only in a limited manner in the following section, for

Proof: This is done by showing that the following relation Modeling notions of services and their costs.
R —whereP, @) run over the set of all processes — is a weak

bisimulation: 4. Modeling Services

R =A{P|Q, PxQ)}. Our concern in this section will not be on the formal side,
We first show that whenevé?t | Q % A, there exists * but rather will have an engineering flavor. We propose to
Q % B, thereforeP x Q) == B too, such thatA, B) € R; show how our calculus - with its obvious bias for the syn-
thus actually? = Q simulatesP | Q. The proof is by case ~ chronous branches - is handy for modeling notions such as
analysis onP | Q % A. service, and quality or denial of service, in a clients-serv



configuration. Services rendered by a server to a client carnthe server as the proceSg = S| S| ... | .S, (N times);
certainly be modeled as processes in various ways; but it isit is assumed that any actiary of any of the server agents
most natural to specify them informally as protocols of the is conjugate to any actiof: of any clientC’. We propose
following form: then to define the service rendered$yy to the given client

- The client sends out a nonce (identity, date,...) to C, asanyappropriate trace of a product process « C'(p)
the server, which on reception sends back a session key; £nding up with the exit actioac, andsatisfying some addi-
sequence of messages then get exchanged, and the sessitiinal requirements, specified in the next subsectiode-
ends when the client ‘exits’. notes here and in the pages to come, a given positive integer

The issues of security concerning the messages will notreferred to as the timeout bound (on the client).

be our concern here (they will be studied elsewhere). We are  The reason for using a timeout extensiop, instead
only concerned with the issue of modeling the notion of ser- of C'itself (cf. end of previous section) is easily explained:
vice in an appropriate way, that will allow us to propose a after any machine process corresponding to a synchroniza-
model for defining a notion of cost for the client to get the tion step between a server agent and cl@nthe operating
service done. The modeling we present is best understoodystem may take over a machine process concerning some
in the setup of value-passing processes, but it is not difficu Other client; consequently, the sequence of synchrooizati
to bring out the ideas in the pure (non value-passing) casesteps between the given clieitand the servey, con-
Let S denote the server and the client; then, schemati-  stituting what has beespecifiedas service rendered 0,
cally we can depict them as the following finite state pro- Will be interleaved in general with steps of synchronizatio

cesses: not part of this specified service; operationally such steps
C = fi¢ ke mo .ec.0 can (and will) be viewed as those where the given cl&nt
S :=ng .kg.mg .05.9 waits or ‘idles’, before the operating system continuesraga

The phase (or action)c is where the clien€ sends out ~ With steps concerning’. The timeout bounds of C g, is
a nonce k¢ is where he gets the session keyc is for actually a fairness assumption on the client: no client will
his sending the message requesting the servicecarid be allowed to idle indefinitely, since otherwise he could oc-
where he exits. The phases of action of the sefvare the ~ cupy a server agent indefinitely. The clients-server corfigu

respective conjugates of these actiongpfexcept the fi- ration presenteq this way also shows that it is unnecessary
nal 5 which symbolizes an idling step &f when register-  to specify any given number of clients.

ing the exit ofC' (this, to be in accordance with our syn- Such a vision of service as a trace is in conformity with
chronous view). The recursive definition §fmeansS can ~ the usual operational notion. Moreover, in any clients/ser

get back to serve again, possibly some other client. configuration a client may get a service done in more than

A service having beespecifiedn such a manner, what one way, and not all of them will be costing him the same
we want actually is to model a situation where some given amount. This will be discussed in the next section.
numberN of server agents will be serving more than one
clients. For this, we shall make the following assumptions:

- each server agent is a copy.®fas defined above;

4.1. Representing a Service and its Cost

In the context of process algebras it is useful to associate
- the N copies are in parallel asynchronous composition costs to processes so as to calculate for instance: maximal
and use a given operating system oshared memory  duration, minimal time before deadlock, maximal space re-
basis, for the various steps of synchronization with the quirement etc. Notions of cost usually relate paths on la-

actions of the various clients; beled graphs with path weights. A useful approach is to ap-
- each such synchronization step is a ‘machine process’p|y the classical algebra of paths [5] to the labeled graphs o
of the operating system. processes. In such a vision, the space of costs is a semi-ring

] ) . . (i.e. an additive monoid, enriched with a ‘product’ opera-
(Itis tacitly assumed that the various machine processies gejon distributing over the ‘sum’), and one associates ari-a pr
executed by the operating system on a fair basis.) ori cost to every processvent The desired ‘global cost’ is
Service as a Trace: The notions of service, as well as its then computed for each problem considered, as the ‘sum’ in
quality or its denial, will all be defined with respect to some the semi-ring of costs of the various traces (this ‘sum’ bein
(arbitrarily) given clientC. Consider first case where the union, or maximum, or minimum, or disjunction.. depend-
serversS is unique; the service rendered Byto C is de- ing on the problem); the cost of a trace is calculated as the
fined as a trace, namely the finite prefix of the synchronoussemi-ring product (resp. intersection, or sum, or maximum,
productC x S ending up with the exit actioa- of C, and or conjunction, ...) of the costs of its individual events.
such that there is no otheg along the trace. In the case Such a semi-ring vision will be followed here only in a
of N server agents operating under the above assumptionéimited manner, to propose a notion of cost for a service ren-
and several (unspecified number of) clients, we define thedered by the serve®y to a given clienC'. To every ‘event’



in a service, which is by definition a machine process, i.e. aX*. 0, ). X*. 0, c). X*. 0(4,,,0)- X" 1.
synchronization step, we first associatyanbolic costWe Any such trace will be referred to asservice traceA
shall be doing this by annotating ofis suitably, as per the  wasted traces a trace of(Sy * C(5))/H which is not a

following rules (where the symbol ™ will stand for some  gayyice trace. The procesSy * C(B>)/H itself will be re-

unknown clientother thanC’): ferred to as thesymbolic modebf the clients-server config-
(i) To any non-idling actioru # 6 of the servetSy, is uration (for cost analysis).

attached a fixed positive real numbgr referred to as its S A .

‘weight’ (interpretable if desired as the time spent by op- In intuitive terms: a trace ofSy * Cip))/H is a sym-

erating system for a synchronizing machine process step inbOIIC representation of a service rendereddso C' iff it

a service). Any two conjugate actions are assumed to haveends up with al with no earlier occurrence df, and all

the same weight the actions constituting the service have been accompljshe
(i) For a (non.-idling) actior # 0 of the servesSy, if possibly interspersed with some idling actions. (Noterehe

. N . m r ndin wi nd with n rlier r-
the conjugate action is performed byC, then their syn- ay be traces ending up withizand with no earlier occu

. . ; rence ofl, but which may not be a service trace.
chronous produd is annotated with the pait,, C); the y )
symbolic cost of this event in the service is defined as the Costs of a Service: The definition of cost for a service ren-

annotated symbdl;, . dered to givenclient C, is based on a given non-negative
(iii) For a (non-idling) actiona # 6 of the serverSy, real denoted as¢, referred to as théilling coefficient

synchronizing with &-action of C' (i.e., when the conju-  for C, and a given random functiofi_) generating non-

gate actioru is supposedlyrom some client other thafi — negative reals, meant as the billing coefficients for the un-

so the event visible in the trace will kg, the symbolic cost ~ known clients other tha@'.

ofthe eventis defined &, ,, ). _ Definition 3 To every atomic event ¢8x * C(z))/H, we
(iv) For the event where the idling actiéig of the server  associate a non-negative real number, calculated as:
Sy synchronizes with a non-exit actianof C, the sym- e t, x zc if the eventis of the forn, ¢y;

bolic cost of the event in the trace is definedlas ). e t, x f(_) ifthe eventis of the fornd;, ).

(v) For the event where the idling acti@g of the server .
Sy synchronizes with the exit action of some client, the i) Thetotal cosiof any trace of Sy + C ) /H is defined
symbolic cost of the event is defined as the special sym-as the sum of all the real numbers associated to the atomic
bol 1, with an empty annotation. events composing the trace.

In other words, the symbolic cost of the atomic events on i) Thetotal functioning cosof the clients-server config-
Sy *(}(B) is defined via @ost observation operatdt such uration is defined as the sum of all the total costs of all the

that, along the traces 6fy +C| ), each atomic event is seen maximaltraces of(Sy * C'z) )/ H. _ o _
as its symbolic cost. The proceSs € ;5 observed under iii) The total service cosbf the configuration is defined
: (B)

) . ) as the sum of the total costs of all the service traces.

H will be denoted agSy * C(p))/H,; the set of all atomic

events of this process is then obviously a semi-ring under ~ These notions are all well-defined: indeed, the process

the following operations: the ‘product’ is the concateoati (S~ * C())/H is necessarily finite sinc€ ) is finite.We

*? of the symbols, and the ‘sum’ is the choice™between  define theQuality of Service (QoS)f the clients-server

the branches. (Since we are considering traces now, the folconfiguration with respect to the given clieat, as the

lowing equation is also assumed(X +Y) = z.X +.Y.) non-negative real number which is the rattotél service
cos)/(total functioning cogt Note that it depends on the

Symbolic Representation of a ServiceWe assume that  nymperN of server agents rendering the service, as well as
the service has been specified schematically as above via thgye timeout bounds for the clientC.

protocol processes. The traces of the pro(:ﬁm@ B))/H
which correspond to a service rendereddio C, in some
manner, can be defined as follows. [%fost be the al-

Example 1.For better readability, we shall shorten the ser-
vice protocol as follows:

phabet formed of the symbglic costs associated to the var- © *= @S'ks'es's

ious atomic events afSy * C(py)/H; for notational con- C u= nckc.ecO

venience, we shall drop the suffix§sC, _, of the action ~ and defineS; = .5 | S, i.e., there are two server agents
symbols in the annotations of tifés. functioning in parallel. We also assume that the cliéht

has a timeout bound df. Then, with the above notation,
Definition 2 Let X = SCost \ {1}, be the set of ele- the processS, * é(g))/H has many traces, among which
ments# 1 in SCost. Then a trace of Sx * C(p))/H the following two, ending with, represent branches where
represents a service rendered by to C, if and the service for clien€ gets done:
only if it is an element of the following language: Ot,.0)-0,, )Oe,0)-1



Octn.0)0.,0) 0, )t )1 other hand, letSC' be a regular automaton (or state ma-

On the other hand the following trace represents a branchchine) over the alphab&Cost , which recognizes the ser-
whereC' cannot get the service done (due to other clients’ Vice language (i.e., the set of service traces) defined in Def
competition)d,, .6, ). The reason why this trace has inition 2. Such an automaton may have loops, and that
only length? is due to the timeout bound faf" é@ can is not suitable for the matrix calculation that we are go-

idle at most twice before executing.: during two such  "d 10 present; for that we need a directed acyclic graph,

idling steps, both server agents get busy with serving otherwhlch as an automaton recognizes the service language.

clients, and the only possible actions &f ready to syn- To achieve this we first define the ‘synchronous prod-
chronize are their respective actiofs Butkg cannotsyn- ~ UCtx"on /the;/z_ilpha_beso_ost as f0/”0WS/i for arllyc’/, c’ €
chronize withic, so after these two idling steps 6fthe ~ SCost, ¢’xc”is defined ifand only’ = ¢”; andc’«c’ = ¢'.

system cannot proceed on; we therefore get a branch withhen the '-product automaton (or state machingj =
the wasted tracé;, _.0¢,. - ((Sn * C(py)/H) * SC that one can define in an obvious

manner (by induction from.P x b.Q = (a * b).(P x Q)),
is then a dag, recognizing exactly the language of service
traces for the client.

If the client has a timeout bound dfand N = 4, we
get the configuratioqS, * C4)) /H; here we have an exam-
ple of a branch with trace,, .0, )-0(+.,.)-1, ending up

with 1, containing no earlier occurrence of but this is a We can now detail the efficient computation of the sum
wasted trace. O of trace costs for eitheP (for the total function cost) oP’

(for the total service cost), which is sufficient to obtaie th
4.2. Service Costs as Matrix Powers QoS value. Without loss of generality we shall consiffer

SinceP is a directed acyclic graph, it follows that the set of

The application of semi-ring techniques is actu- traces between any two nodes can be represented as a regu-
ally generic and is readily adapted to any other cost lar expression withoutthe Kleene-star, i.e., a regulares{
model by simply changing the semi-ring algebra: rede- sion using only actions (frorf8Cost ), choice and concate-
fine the ‘sum’ and ‘product’ operators suitably. This al- nation. LetRE be the set of such regular expressions. Then
lows us to show how the classical algorithms can be applied(RE, +, ., 0, ¢) is a semi-ring where{’ is union, ‘.’ de-
to the computation of service costs for large-scale pro- notes concatenatiofi,the empty language ardhe empty
cesses in our model. trace. Moreover the set of square matrices over this semi-

To compute the QoS value (definition 3 above) one needsring, with the usual matrix operations, is also a semi-ring.
to compute the set of all traces @) * C‘(B))/H andthe  The rows and columns of such matrices represent the nodes
set of service traces for the same process, and then the raX on the graphP.
tio of the sum of costs over those sets. Now we already ob- et M be the (square) transition matrix & defined
served that the procesS ny * Cp)) is finite. Moreover, it as follows: M(X,Y) = a if X -5 Y, and0 other-
admits an additive normal form defined via guarded equali- wise. Define also the identity matrix d$X, X) = e and
ties; actually we have an easy, more general, result: I(X,Y) = 0if X # Y. Then it is well known that ma-
trix M*(X,Y) contains a regular expression for all traces
(paths) of lengtlhk from stateX to stateY. Moreover if we
defineM® =T+ M+ M? 4 ...+ M* thenM ¥ (X,Y)
contains a regular expression for all traces of length
mostk from stateX to stateY. Finally, in an idempotent
Proof: Write I; = f3;.Jiy1,i = 0.N,withIp = I,In4+1 = semi-ring as is the case here (In RE, the ‘sum’ represents
0. Now the defining equalities of the proceBsare of the  get unjon and is therefore idempotent, and so is a poste-
form X; = >_; @i;. X, where one of théhs ‘variables’is  rjori the pointwise addition of matrices over RE) we have
the starting state aP. So,P « I = I = P can be represented (I + M)k = M®) for the simple reason that the Pascal tri-

Lemma 2 For any finite state (possibly recursive) process
P and any linear proces$ = (y.01....0n.0, Px I is a
finite process, defined by equalities explicitly consthleti
from those ofP.

by a finite term using induction on the size of angle coefficients in the expansion(@f+ M )* are all equal
- ForanyX, 0« X = Ois a finite term; to one, since M+M=M. This last identity allows us to apply
-If X =30 @5 X;, and if Iy« X is afinite term  gyccessive matrix powers to compite®) in O(log k) ma-
forany;j, then _ trix products.
Ly x Xi = 52;(Bi * wij).(Ii41 * X;) is of course Finally we observe that if. is the number of states of

also a finite term. O P, then)M (™ contains regular expressions for all traces be-

The state machine of the finite proce€? = tween given pairs of states. In particularXip is the ini-
(S = C(B))/H modeling our clients-server configura- tial state then the sum of row/ (™) (Xp, ) is a regular ex-
tion can therefore be seen as a directed acyclic graph (dag)pression for the trace languagef®f This expression is thus
its edges labeled with cost symbols frd@@ost . On the computed inO(log n) matrix products, without enumerat-



ing the potentially exponential set of tracesfnFrom this Example 3.This example illustrates the interest of our cost
expression, the total functioning cost can be computed inmodel above from a complexity viewpoint. We consider
linear time by interpreting RE operations in bottom-up fash now the systen® = (S, * C(1))/H where

ion on the syntax. S =n.k.0.S,
The same algorithm, polynomial in the number of states, S=518,
can be applied to compute the total service cost from pro- C =n.k.e0

cessP’ and hence obtain the QoS value. The advantage ofand C‘(U is processC with a timeout bound oft, in the

our synchronous process algebra is then made clear: to obsense defined above. Expansion of the asynchronous paral-
tain finite service descriptions, use explicit dag desmniy lel composition yields 7 states f&k which is equivalent to

and then reuse classical matrix algorithms without concernthe following equations, with initial statgs:

for convergence conditions. SS = n.ST
_ ST = k.SU +n.TT
4.3. Examples, Comments on Complexity SU =0.85 + n.TU +n.ST
. . . TT = kTU
Example 2. We study here the client-server configuration TU = k.UU + 0.ST + k.SU
P = (81 +Cq))/H, where: UU = 0.5U + .55
S =n.k.0.8S, _ . _ .
Si = S, i.e., just one server agent, The client proces€’(,) is equivalent to the following
C = n.k.e0 acyclic equations, with initial statg2:
The proces@(l) is clientC with a timeout bound ot, in C2=nD+0.C2
the sense defined above. To present the symbolic model of C2' =n.D
the configuration, we first develop the server and the client D=kE+6.D
as state machines, as follows: D' =kE
S=ns, S =£kS" S"=4., E=e0+0.F
Ci1 =n.Dy+0.C{, C| =n.k.e0, E' =e0
Dy =k.D2 +6.Dy, Dj = k.e0, Now the synchronous produft = (S, * C‘(l)) is equiv-
Dy =e0+0.e.0 alent to the following acyclic equations, with initial stat

The symbolic model of the configuration is given in Figure gg . ¢2 and 14 states (12 plus two fei0 andn.0):
1. The QoS evaluates 33, under the assumption that all

the real numbers of Definition 3 are setlto 0 SS % 02 = 0.(ST + D) + n.(ST * C2)
ST+ D =0.(SU * E) + k.(SU % D') +n.(TT % D')
ST «C2' =0.(TT = D)

@ SU+«FE=e0+60.04+n.e0+n.0
SU x D' = k.n.0
" / \tn@\,_) TT « D' = 6.(TU % E)
eta_(n,Z) -
TT*D =0.(TU x E) + k.(TU = D')
0 TU*E =k.e0+60.0+k.e0+e0

TU+«D' =0.(UU*E)+k.(ST*E)+0.(SU x E)
UUxE=¢e0+0.e0+6.0
ki ta_(k,_) ST*E = k€0+ nO
theta_(k/C) SU*E =¢e0+60+n.e0+n0
This synchronous product has generated only 14 of the
theta_(k_) 36 possible states for the product 8f and C(;). As a
result the matrix encodingS, * C(y))/H will be 14*14,
heta 0 compared to the almost 36*36 matrix that an asynchronous
product model would have generated. Since the overall al-
0 gorithm for calculating costs i©(n?) * logn (logn prod-

0 ucts ofn * n matrices, as explained earlier), the practical
gain due to synchronous composition is here estimated to a
Figure 1. Symbolic Cost Model for Example 2 factor of (36/14)% ~ 17, even on this small example.
We have also carried out some further calculations (es-
sentially by hand) in order to study the evolution of the QoS




measure wheV (the number of servers) arl (the time- such a vision of cost setup has been defined in [9]; it uses
out bound for the client) vary. The following table gives a new syntaxs,sS,...,S) to denote "data-parallel” com-
these numerical results, obtained again under the assumpposition i.e. a process whose compone$itare placed on

tion that all the real numbers of Definition 3 are setto asynchronous processors. The operational semanticssof thi
N\ B | 0 1 2 operator is similarte6 | S | ....S except for the possibil-
1 1.0 033 o0.08 ity of barrier synchronizations (notion not relevant tosthi

2 1.0 071 038 paper) and the labeling of interleaved actions by their pro-

cessor of origin. The general case withdifferent from the
number of processors can be treated by a mixture of asyn-
chronous and data-parallel composition.

One direction of possible future work - on the practi-
cal side - is to adapt our “synchronous algebraic vision”
suitably, so as to express the cost calculus of a distributed
memory setup, in a manner similar to the one presented
above for the shared memory case. A possible application
is the parallel implementations of the matrix power algo-
rithm of Section 4.2 for large-scale verification, indepen-
dently of the actual shared- or distributed- memory repre-
sented by the model. A second possible direction for further
developments is on the formal side: it consists in formulat-
ing the notion of non-interference (cf. e.g., [4]) in our syn
chronous calculus, and to apply such a vision to the formal
analysis of information flow on communicating systems.

These values confirm the following intended features of
our model and support its relevance:

i) B = 0 forces a server to follow its protocol trace
and thus complete the service. In other words, the client ac-
cepts no delay and is served in 100% of the time.

i) QoS increases with the number of servéfseven
if some of the service branches get slowed down.

Our current state of work thus confirms the qualitative
value of the QoS measure and its correlation with the pa-
rameters of the protocol being analyzed. Future work on
our model will necessitate an implementation of the poly-
nomial time algorithm for QoS evaluation mentioned at the
end of Section 4.2, and some experimental work to con-
firm the actual numerical values of QoS as a statistics of re-
sponse time.
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