
HAL Id: hal-00079676
https://hal.science/hal-00079676

Submitted on 13 Jun 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Synchronous Process Calculus for Service Costs
Siva Anantharaman, Jing Chen, Gaétan Hains

To cite this version:
Siva Anantharaman, Jing Chen, Gaétan Hains. A Synchronous Process Calculus for Service Costs.
Software Engineering and Formal Methods (SEFM) 2005, 2005, Koblenz, Germany. pp.435–444. �hal-
00079676�

https://hal.science/hal-00079676
https://hal.archives-ouvertes.fr

A Synchronous Process Calculus for Service Costs

Siva Anantharaman, Jing Chen, Gaétan Hains
LIFO - Université d’Orléans (France),

e-mail: {siva, chen, ghains}@lifo.univ-orleans.fr

Abstract

We present a process calculus where synchronous com-
position is the central algebraic notion; equivalences be-
tween processes via bisimilarity or trace can be studied
quite simply in this calculus, which in addition allows us
to model naturally other notions such as service, and qual-
ity of service. They can be studied in an algebraic semi-ring
setup using notions of cost on the transitions.

1. Introduction

In an earlier work [1], we proposed a calculus for build-
ing finite recursion free processes, with synchroniza-
tion as the central parallel composition operation; such a
view allowed us in particular to show that strong bisim-
ulation between finite processes can be identified with
the equational congruence between such processes seen
as terms, with respect to an equational signature re-
ferred to as PACUID: ‘+’ denoting non-deterministic
choice is Associative-Commutative, Idempotent, and ad-
mits the null action as Unit; a binary ‘∗’ denoting syn-
chronous composition is2-sided Distributive over ‘+’,
and Prefixes for actions. To underline the difference with
the classical process calculi, we denoted the internal ac-
tion of processes asθ in [1], instead of using the usual
notationτ ; it was also shown that the interleaving seman-
tics of CCS, although not part of the formal algebraic setup
presented [1], is recoverable in terms of ‘+, ∗’.

The purpose of the current paper is two-fold. The first is
on the formal side where the concern will be to extend such
a synchronous calculus to the case ofrecursivefinite state
processes, so as to provide a sufficiently expressive alge-
braic basis: we mean thereby it should be able to serve for
the formal analysis of processes, based on strong or weak
bisimulation equivalence, and strong or weak trace equiva-
lence. For achieving such a formal goal, we shall be shift-
ing the view from processes-as-terms to processes-as-state-
machines, as is classically done: Recursive finite state pro-
cesses will be defined as state machines with guarded tran-
sitions, e.g., as in [7], or the ACP calculus of [3] or [2]. But

our view, while remaining simple, will also show a natu-
ral way based on our synchronization operator ‘∗’ for re-
ducing the bisimilarity problem between finite state recur-
sive processes to the case of finiterecursion freeprocesses;
the interest is that such a reduction can be used for decid-
ing (non-)bisimulation via equational techniques. This con-
stitutes the essence of the first part of the paper.

The second part of the paper is a little less formal and
has a software engineering bias; we show there how our
synchronous composition operator ‘∗’ is handy for build-
ing a method for modeling a notion of quality of service for
a given client with respect to servers serving one or more
clients.

This paper is structured as follows. We first recall (in
Section 2) our synchronous calculus for finite recursion-free
processes, essentially as was done in [1]. In Section 3 we de-
fine recursive finite state processes as a set of nodes (or ‘pro-
cess constants’) and a given set of guarded equalities be-
tween them. The principal result is that two finite state pro-
cessesP, Q are bisimilar (notation:P ∼ Q) if and only
if, for every finite processJ without ‘choice’ (i.e., with-
out ‘+’), we haveP ∗ J ∼ Q ∗ J . Similar results hold
also for equivalence under weak bisimulation or trace (al-
though not mentioned in this paper). The less formal part
of the paper starts from Section 4, where we present an ap-
proach for modeling a notion of service in a clients-server
configuration; subsequently is also defined a notion of cost
for a given client for getting the service done; the synchro-
nization operator ‘∗’ gives a natural and functional setup for
developing these notions. A notion of quality of service is
defined, for a given client in a given clients-server configu-
ration, where the various server agents are assumed to op-
erate on a shared memory basis. These aspects are all pre-
sented in an algebraic setup where every atomic event in the
service is assigned a symbolic cost, and the set of all such
costs forms a semi-ring. Such a view in particular allows us
also to compute the service costs as the powers of a suit-
able matrix over the semi-ring. We then outline the applica-
tion of classical matrix algorithms to the efficient computa-
tion of service costs, thanks to the semi-ring setup, and esti-
mate the practical gain in these algorithms that is due to our
synchronous composition operator. In a concluding section

1

we give some indications on how to extend this cost calcu-
lus to the case where the server agents operate on a multi-
processor.

2. A Calculus for Finite State Processes

Our processes are constructed over a given
set EAct of (extended) action symbols. Let
EAct = {θ}

⋃

+ {a, ā, b, b̄, . . .}; here θ is a special
‘internal’ action similar to theτ of CCS, but in our cal-
culus it will also be used to symbolize an ‘idling’ action
of any process.Act will denote the subset of non-θ ac-
tions ofEAct, referred to occasionally asstandardactions;
bars serve in pairing out synchronizing (or communicat-
ing) actions, in particular it is assumed that¯̄x = x; we
refer tox̄ as the conjugate ofx. The special actionθ is as-
sumed self-conjugate. In our calculus, the synchronization
between actions is assumed defined via a (partial) bi-
nary operation denoted as ‘∗’, and defined as follows:

(STAR) x∗y =







θ if x = ȳ
x if y = θ; or y if x = θ

undef or⊥, otherwise

2.1. Finite Recursion Free Processes

We first consider finite non-recursive processes; the
grammar for generating them is as follows:

Proc ::= 0 | EAct.Proc | Proc+ Proc
| Proc ∗ Proc | Proc \Act.

Its operations are respectively called null process, pre-
fix, (non-deterministic) choice, (parallel) synchronous
composition, and restriction. Processx.0 will be abbrevi-
ated tox andx.(y.0) to x.y when no confusion is likely be-
tween processes and their traces. In generalx, y, . . . will
stand for actions, andP, Q, R, . . . for processes. Anyfi-
nite processP can (and will) be seen as a finite term over
the signature formed by ‘+, ∗’, and the setEAct of ac-
tion prefixes. The operational semantics of our processes is
a labeled transition system, defined by the following infer-
ence rules:

(Prefix)
x.P

x
−→ P

(Sum) P
x

−→ P ′

P + Q
x

−→ P ′

Q
x

−→ Q′

P + Q
x

−→ Q′

(Sync) P
x

−→ P ′ Q
y

−→ Q′ x ∗ y = z 6= 0

P ∗ Q
z

−→ P ′ ∗ Q′

(Restr)
P

x
−→ P ′, H ⊆ Act, x 6∈ H

P \H
x

−→ P ′ \H

Remark 1. i) Rule (Sync) is symmetric inx, x̄ because we
are assuminḡ̄x = x.

ii) If P, Q are processes andα = a1a2 . . . ap is any string
of actions, then the notationP

α
−→ Q will mean that there

exist processesPi, 0 ≤ i ≤ p such thatP0 = P, Pp = Q,

and for anyi ∈ {0, p − 1} we havePi

ai+1

−→ Pi+1; the
Pi, 0 ≤ i ≤ p will be said to be sub-processes ofP0 = P ;
andQ is said to be anα-successor ofP .

Bisimulation: Simulation, simulation equivalence and
bisimulation between processes are defined as usual: Let
P, Q be two processes. A binary relationS from the set
of sub-processes ofP into theP set of sub-processes of
Q is said to be asimulationof P by Q, iff the follow-
ing holds: (P, Q) ∈ S and for everya ∈ EAct such
that P

a
−→ P ′, there exists a sub-processQ′ of Q such

that Q
a

−→ Q′ and (P ′, Q′) ∈ S. Notation: P ES Q,
or more simplyP E Q if the relationS can be left im-
plicit. If we haveP E Q andQ E P , thenP, Q are said to
be simulation equivalent.

A relationR which is a simulation ofP by Q is said
to be abisimulationbetweenP andQ iff its opposite rela-
tionR−1 defines a simulation ofQ byP . If P is bisimilar to
Q underR we shall writeP ∼R Q, or more simplyP ∼ Q
if the relationR can be left implicit. Bisimulation satisfies
the usual ‘congruence’ relations on processes; in particu-
lar, it is classical that the set of all processes (without any
finiteness constraint) satisfies the following equational ax-
ioms (referred to as ACUI up to bisimulation:

(A) X + (Y + Z)
.
= (X + Y) + Z

(C) X + Y
.
= Y + X , (U) X + 0 .

= X .
(I) X + X

.
= X .

2.2. Recursive Finite State Processes

The usual definitions of finite state recursive processes,
e.g. as given in [7], extend a grammar for finite processes
(similar to the one of our previous section, except that ‘∗’
is traditionally replaced by the ‘|’ of asynchronous paral-
lel composition); this extension resorts to operators suchas
“def” or “ Rec”, which make use of the so-called ‘process
constants’ and defining equalities between them; transitions
are defined via operational semantics as above, plus some
additional conditions of ‘non-empty guards’. For instance:
if X, Y, Z are given process constants, then the following
equations:X = a.Y, Y = Z, Z = b.X – wherea, b, c, ..
are action symbols – define a recursive process whereX
‘can go back’ toX , after first performinga, then b; the
‘guard’ for this composite loop fromX to X is by defi-
nition the worda.b over the set of action symbols. But a set
of equalities likeX = a.Y +Z, Z = X, Y = c.0 is not al-
lowed since the guard for going back fromX to X would
then be the empty wordǫ (the empty action symbol).

It is clear that these definitions are based on viewing pro-
cesses as state machines; so we shall henceforth use the
word nodeor state, instead of ‘process constant’; in the

2

following, nodes will be denoted by capital letters such as
U, V, X, Y, Z, . . ., with or without suffixes. As previously,
EAct will denote a given finite set of action symbols (in-
cludingθ), set run over by the symbolsa, b, c, ..., x, y, z., ,

Definition 1 i) A finite state processP is a pair (E , X)
where E is a finite set of finite equalities of the form:
Zi = ΣjaijXj , where theZi’s , Xj ’s are nodes, and:
(i) distinct equalities have distinct left-hand-sides(lhs);
(ii) the aij ’s, are elements ofEAct ∪ ǫ;
(iii) X is a node appearing as the lhs of an equality inE , re-
ferred to as thestarting stateof P .

The ‘+’ of these equalities is assumed to satisfy the
ACUI-axioms of Section 2.1; as usual0 will denote the ad-
ditive unit. (It is obvious that any finite processes as defined
earlier, in Section 2.1, can be translated into the format of
defining equalities.) On a processP defined as above, the
aij ’s are called thetransitions ofP ; we shall say more pre-
cisely there is anaij -transition fromZi to Xj. (As usual,
ǫ stands for an empty label on the transition between the
nodes concerned.) Given any two statesU andV on a pro-
cessP and a wordα ∈ (EAct∪ǫ)∗, the notion of anα-path
from stateU to stateV onP is defined as in Section 2.1.

A processP is said to berecursiveiff there is a path on
P from some state ofP to itself. P is said to beguarded
iff there is noǫ-path onP from any state to itself; we shall
assume that every recursive process is guarded.

Given two processesPi, i = 1, 2 with Xi, i = 1, 2 as
their respective starting states, their sumP1 + P2 is de-
fined as the process obtained by adding to the union of their
defining equality-sets, an additional equalityX = X1+X2,
whereX is assumed not present inP1, P2. Their ‘∗’-product
P1 ∗ P2 is defined as the process whose states are all of the
formU∗V whereU (resp.V) is a state onP1 (resp.P2), and
with X1 ∗X2 as starting state; the transitions ofP1 ∗P2 are
defined by using the distributivity of∗ over+, and the ta-
ble (STAR) of Section 2 defining ‘∗’ on actions, extended
in an obvious manner to cover the case ofǫ. (When such
a product gets constructed in practice, its nodes may be re-
named for notational convenience.)

Asynchronous Parallel Composition (the ‘Interleav-
ing Semantics’): Although not formally part of our setup,
the notion of asynchronous parallel composition be-
tween processes – for which we shall use the classical no-
tation ‘|’ - can be defined uniquely up to bisimulation. Con-
sider first recursion-free processes. LetP =

∑

ai
ai.Pi and

Q =
∑

bj
bj.Qj be additive normal forms, respectively

for P, Q. ThenP | Q is defined uniquely up to bisimu-
lation, as:

P | Q =
∑

ai

ai.(Pi | Q) +
∑

bj

bj .(P | Qj)

+
∑

ai 6=θ 6=bj

(ai ∗ bj).(Pi | Qj)

where the binary ‘∗’ is defined as above. The last branch
concerns only synchronization between standard non-θ ac-
tions, so it is straightforward that we get the asynchronous
composition of P and Q of CCS, once every occur-
rence ofθ in the resulting term is replaced by CCS’sτ . As
for finite state recursive processes, observe that they are de-
fined via equalities; now the above definition ofP | Q is
also via equalities, so is extended naturally to the case of fi-
nite state recursive processes. To be consistent with the
point of view developed in this paper, we shall adopt a
slightly different definition for ‘|’, however: the last sum-
mand of the above definition will be taken overall pairs of
actions ofP andQ, includingθ.

Parallel asynchronous composition of any finite fam-
ily of processesP1, . . . , Pr is defined similarly, by treat-
ing the processes successively in pairs; it is uniquely deter-
mined up to bisimulation, and is associative-commutative
on P1, . . . , Pr; we shall employ the standard CCS notation
P1 | . . . | Pr for this parallel asynchronous composition.

Note: Synchronous composition is non-associative in gen-
eral; i.e., in generalP ∗ (Q ∗ R) 6∼ (P ∗ Q) ∗ R; for in-
stance,((a.0) ∗ (ā.0)) ∗ (c.0) can do actionc, but (a.0) ∗
((ā.0) ∗ (c.0)) can do no action.

Remarks 2. On the set of finite state (possibly recursive)
processes, the notions of simulation, simulation equivalence
and bisimulation are defined exactly as in Section 2.1, keep-
ing in mind now that the sub-processes of a processP cor-
respond to its nodes. Besides satisfying ACUI, bisimulation
has also the following additional properties:

(i) For anyP , we have anadditive normal form:
P ∼

∑

P
a

−→P ′

a.P ′.

The proof is classical, needs only that processes are de-
fined via equalities.

(ii) Prefix and synchronous composition ‘commute’:
a.P ∗ b.Q ∼ (a ∗ b).(P ∗ Q).

The proof is by showing that the binary relationR de-
fined as the set of pairs(a.P ∗ b.Q, (a ∗ b).(P ∗ Q)) where
a, b run over actions andP, Q over processes, is a strong
bisimulation. (The next assertion is proved similarly too.)

(iii) Synchronous composition ‘∗’ is commutative, and
distributes over ‘+’, up to bisimulation: We have:

P ∗ Q ∼ Q ∗ P, P ∗ 0 ∼ 0.
P ∗ (Q + R) ∼ P ∗ Q + P ∗ R.

In other words, bisimulation satisfies the equational the-
ory PACUID, that one obtains by augmenting ACUI with
the following additional axioms:

(D) X ∗ (Y + Z)
.
= X ∗ Y + X ∗ Z

(Z) X ∗ 0 .
= 0, (P) a.X ∗ b.Y

.
= (a ∗ b).(X ∗ Y)

Bisimulation is PACUID-Congruence, for finite pro-
cesses:Let ≡ be the smallest congruence on the set
Proc of all finite non-recursive process terms de-

3

fined byP ≡ Q iff P = Q or P can be obtained fromQ
by applying one or more of the PACUID-equational ax-
ioms. Then, for any twofinite processesP, Q we have:
P ∼ Q if and only if P ≡ Q. The proof is by putting to-
gether the following two propositions.

Proposition 1 P ≡ Q impliesP ∼ Q

Proof : SupposeR ≡ R′ be an instance of any one of the
axioms. Then from the properties mentioned in Remarks 2,
we haveR ∼ R′, and since bisimulation is a congruence for
process terms, we also haveP [R] ∼ P [R′]. Now any equa-
tional proof ofP ≡ Q is a finite sequence of transforma-
tions via such instances. All of them preserve bisimulation,
so by the transitivity of bisimulation,P ∼ Q.

For the reverse implication, we need a lemma.

Lemma 1 For finiteP , P ∼ 0 impliesP ≡ 0.

Proof : SinceP is bisimilar to0, we getEAct(P) = ∅. We
then reason by induction, on the size of the finite processP ,
since anyP is bisimilar to its additive normal form.

If P = 0 there is nothing to prove. Note thatP may not
be of the forma.P ′ becauseEAct(P) = ∅.

If P = P ′ + P ′′ then we must haveEAct(P ′) =
EAct(P ′′) = ∅; but then, sinceP ′, P ′′ are smaller terms
thanP , we have by induction hypothesisP ′ ≡ 0, P ′′ ≡ 0,
soP = P ′ + P ′′ ≡ 0.

If P = P ′ ∗ P ′′, let the additive normal form forP ′

andP ′′ be respectively
∑

i ai.P
′
i ,

∑

j bj .P
′′
j . By induction

hypothesis,P ′ andP ′′ are also equationally equivalent to
those sums and distributivity impliesP = P ′ ∗ P ′′ ≡
∑

i,j(ai.P
′
i) ∗ (bj .P

′′
j). Now every productai ∗ bj must

be undefined, otherwise the rule for transitions of a prod-
uct would have implied a transition forP = P ′ ∗P ′. Hence
the axioms imply that∀i, j, (ai.P

′
i)∗(bj.P

′′
j) ≡ 0, and thus

P = P ′ ∗ P ′′ ≡
∑

i,j 0 ≡ 0.
If P = P ′ \ a then eitherP ′ ∼ 0, or not. In the first

case, by induction we haveP ′ ≡ 0, soP ≡ (0\ a) ≡ 0.
In the other case, suppose there exists ab ∈ EAct(P ′);
sinceP ′ \ a has no possible action,b must bea and hence
P ′ ∼

∑

i a.P ′
i . SinceP ′ is smaller thanP , by induction

hypothesis we getP ′ ≡
∑

i a.P ′
i . So, P = P ′ \ a ≡

(
∑

i a.P ′
i) \ a ≡

∑

i(a.P ′
i \ a) ≡

∑

i 0 ≡ 0.

Proposition 2 For finiteP, Q, P ∼ Q impliesP ≡ Q.

Proof : If P ∼ 0 then this follows by the previous lemma.
So we assume thatEAct(P) andEAct(Q) are non-empty.
Now from the assumption we getEAct(P) = EAct(Q);
let A denote this common set of actions. Then we know
thatP ∼

∑

a∈A Pa andQ ∼
∑

a∈A Qa. Bisimulation im-
plies that for everya ∈ A and aPa we have aQa such that
Pa ∼ Qa; by induction hypothesis, the termsPa, Qa be-
ing smaller than the termsP, Q respectively, we get then
Pa ≡ Qa. One deduces then, by commutativity and asso-
ciativity of +, thatP ≡ Q.

3. Deciding Strong Bisimulation

For any processP and X ′ node on P , we de-
fine ActP (X ′) as the set of alla ∈ EAct such thatX ′ has
ana-successor onP .

Suppose given two finite state processesP, Q, with re-
spective initial statesX0, Y0. We give here an algorithm for
deciding thatP ∼ Q, based on classical reasonings e.g. as
given in [7]. We shall be denoting the ’generic’ nodes on
P (resp. onQ) by X ′, X ′′, ... (resp. byY ′, Y ′′, ...) with or
without suffixes. AndInEqu will denote a set of ‘inequiv-
alences’ (or inequalities), of the formX ′ 6= Y ′; it is as-
sumed thatInEqu = ∅ at the start.

Step i) For every pair(X ′, Y ′),

addX ′ 6= Y ′ to InEqu if ActP (X ′) 6= ActQ(Y ′).

Step ii) If InEqu = ∅, then return “P bisimilar toQ”,
else setPairs = {(X ′, Y ′) | X ′ 6= Y ′ 6∈ InEqu}.

Step iii) Choose an(X ′, Y ′) ∈ Pairs;

- let a ∈ EAct such thatX ′ a
−→ X ′′; if for every Y ′′

with Y ′ a
−→ Y ′′ we haveX ′′ 6= Y ′′ ∈ InEqu, then

addX ′ 6= Y ′ to InEqu;

- let b ∈ EAct such thatY ′ b
−→ Y ′′; if for every X ′′

with X ′ b
−→ X ′′ we haveX ′′ 6= Y ′′ ∈ InEqu, then

addX ′ 6= Y ′ to InEqu;

- setPairs := Pairs \ {(X ′, Y ′)}.

Step iv) IfPairs 6= ∅, then GOTO Step iii).

Step v) IfX0 6= Y0 ∈ InEqu,
then return “P not bisimilar toQ”,
else return “P is bisimilar toQ”.

Note: This simple backward reasoning algorithm suffices
for our purposes here: namely its use in the proof of Propo-
sition 3 below. (Several optimizations are possible for low-
ering appreciably its complexity; see e.g., [6].)

3.1. Process Equivalences via ‘∗’

We give here a characterization for strong bisimulation
based on ‘∗’; the idea is straightforward, and shows the
usefulness of our synchronization operator∗ and the role
played by the action symbolθ.

Proposition 3 Given processesP, Q, P ∼ Q holds if and
only if for all finite linear processesJ (meaning:J has no
‘choice’, i.e.J is any finite sequence of actions), we have:
P ∗ J ∼ Q ∗ J .
Proof : To prove the “only if” assertion, we check that given
anyJ the setB of pairs{(X ′ ∗ U ′, Y ′ ∗ U ′) | X ′ ∼ Y ′},
whereU ′ is any state onJ , and X ′, Y ′ are respectively
states onP andQ, is a strong bisimulation. Now, by def-
inition, the possible transitions fromX ′ ∗ U ′ must be of

the form:X ′ ∗ U ′ a∗b
−→ X ′′ ∗ U ′′ whereX ′ a

−→ X ′′ on

4

P andU ′ b
−→ U ′′ on J ; but then there must be a transi-

tion Y ′ a
−→ Y ′′ on Q with X ′′ ∼ Y ′′; so there is a transi-

tion Y ′ ∗U ′ a∗b
−→ Y ′′ ∗U ′′, and the pair(X ′′ ∗U ′′, Y ′′ ∗U ′′)

is in the setB.
As for the “if” assertion, assume thatP andQ are not

bisimilar. Then, the setInEqu as defined in the algorithm
of Section 2.3 is non-empty when the algorithm halts, and
contains the inequalityX0, 6= Y0 formed of the respective
starting nodes ofP andQ. Then there exists, by definition a
shortestsequenceα ∈ EAct∗ of actions satisfying the fol-
lowing condition:

X0
α
−→ X ′ onP , and for any Y0

α
−→ Y ′ onQ,

we have ActP (X ′) 6= ActQ(Y ′),

(and/or a similar condition with the roles ofP, Q reversed).
If α = a1.a2 . . . am, we define a finite linear processJ as
J = ā1.ā2 . . . ām.θ. We then haveP ∗ J 6∼ Q ∗ J .

Remark 3. The above Proposition together with Proposi-
tion 2, suggests another way for deciding bisimulation, by
looking at the problem in its negated form; i.e., deciding
non-bisimulation betweenP andQ. For doing this we look
for a linearJ = x1.x2 . . . xN .0 (whereN is the maximum
number of transitions onP or Q, and) thexi, i = 1..N are
‘action variables’ to be solved for, such thatP ∗J 6∼ Q ∗J ;
sinceJ is assumed finite, solving for such aJ amounts to
solving a special and weak case of disunification problem
over the PACUID-equational theory.

For any action symbola, classically
a

=⇒ stands for the

weak transitionrelation. defined as(
θ
−→)∗

a
−→ (

θ
−→)∗; and≈

denotes the notion of weak bisimulation between processes,
defined w.r.t. these weak transition relations. The operator
‘ |’ of asynchronous parallel composition can be expressed
in a very concise manner in terms of ‘∗’, up to weak bisim-
ulation, as follows. To every processP (defined by a set of
guarded equalities) associate a process denoted asP̂ , ob-
tained by adding aθ-loop at every node. E.g., ifP is de-
fined byX = a.X + b.Y, Y = 0, then P̂ is defined by
X = a.X + b.Y + θ.X, Y = θ.Y + 0. It is clear thatP̂ is
weak-bisimilar toP for anyP (intuitively, P̂ is justP ex-
cept that it may ‘idle’ before doing any action). The process
P̂ thus constructed will be referred to as the ‘hatted exten-
sion’ of P . We then have the following result.

Proposition 4 P | Q ≈ P̂ ∗ Q̂.

Proof : This is done by showing that the following relation
R – whereP, Q run over the set of all processes – is a weak
bisimulation:

R = {(P | Q , P̂ ∗ Q̂)}.

We first show that wheneverP | Q
a
−→ A, there existsP̂ ∗

Q̂
a
−→ B, thereforeP̂ ∗ Q̂

a
=⇒ B too, such that(A, B) ∈ R;

thus actuallyP̂ ∗ Q̂ simulatesP | Q. The proof is by case
analysis onP | Q

a
−→ A.

1. A = (P ′ | Q) andP
a
−→ P ′: obviously we have here

P̂
a
−→ P̂ ′ andQ̂

θ
−→ Q̂, and thenP̂ ∗ Q̂

a
−→ P̂ ′ ∗ Q̂ = B,

therefore(A, B) ∈ R.

2. A = (P | Q′) andQ
a
−→ Q′: similar to case 1.

3. A = (P ′ | Q′) andP
b
−→ P ′, Q

b̄
−→ Q′ with a = θ:

obviously thenP̂
b
−→ P̂ ′, andQ̂

b̄
−→ Q̂′, so P̂ ∗ Q̂

θ
−→

P̂ ′ ∗ Q̂′ = B. Therefore(A, B) ∈ R.

We show next that the opposite relation ofR is a weak sim-
ulation; that is to say,P | Q weakly simulateŝP ∗ Q̂: for
this consider any non-θ transitionc from P̂ ∗ Q̂; by defi-
nition c must be such thatc = a ∗ b with P̂

a
−→ P ′ and

Q̂
b
−→ Q′, with one ofa, b being aθ, but not the other; say

a 6= θ, b = θ, soc = a; but then we will have,P
a
−→ P ′,

thereforeP | Q
a
−→ P ′ | Q

θ
−→ P ′ | Q′, and we deduce:

(P ′ | Q′, P̂ ′ ∗ Q̂′) ∈ R.

Corollary 1 It follows that ‘∗’ is associative-commutative
on the class of ‘hatted’ processes (those which can ‘idle’ as
and when needed).

A Notion of Timeout: The ‘hatted’ processes as they are
defined above can idle indefinitely, in particular can indef-
initely delay the choice between two branches. In practical
situations however, it is often useful or even necessary to
bound such a delay. This leads to the followingtimeoutno-
tion. Given two processesP, Q, for any positive integern,
define inductively a process as follows:

T imout(P, 0, Q) = P + Q,
T imout(P, n, Q) = P + θ.T imout(P, n − 1, Q).

Intuitively: T imout(P, n, Q) is the process which can do
the (idling) θ-action at mostn times before choosing be-
tweenP andQ.

Such a notion is easily defined also for finite state pro-
cesses defined via equalities: Given such a processP and an
integern ≥ 0, we shall denote bŷP(n) the finite state pro-
cess, which at any of its nodes can do the idlingθ-action at
mostn times before being forced to branch off to a succes-
sor node. For instance, ifX = E is any one of the defining
equalities ofP andn = 1, then the corresponding defin-
ing equality forP̂(1) will be X = E +θ.E. The timeout no-
tion can actually be seen as a ‘timed’ notion, part of a timed
process calculus extending ours. We shall be using the time-
outs only in a limited manner in the following section, for
modeling notions of services and their costs.

4. Modeling Services

Our concern in this section will not be on the formal side,
but rather will have an engineering flavor. We propose to
show how our calculus - with its obvious bias for the syn-
chronous branches - is handy for modeling notions such as
service, and quality or denial of service, in a clients-server

5

configuration. Services rendered by a server to a client can
certainly be modeled as processes in various ways; but it is
most natural to specify them informally as protocols of the
following form:

- The client sends out a nonce (identity, date,...) to
the server, which on reception sends back a session key; a
sequence of messages then get exchanged, and the session
ends when the client ‘exits’.

The issues of security concerning the messages will not
be our concern here (they will be studied elsewhere). We are
only concerned with the issue of modeling the notion of ser-
vice in an appropriate way, that will allow us to propose a
model for defining a notion of cost for the client to get the
service done. The modeling we present is best understood
in the setup of value-passing processes, but it is not difficult
to bring out the ideas in the pure (non value-passing) case:
Let S denote the server andC the client; then, schemati-
cally we can depict them as the following finite state pro-
cesses:

C ::= n̄C .kC .m̄C .eC .0
S ::= nS .k̄S .mS .θS .S

The phase (or action)̄nC is where the clientC sends out
a nonce,kC is where he gets the session key,m̄C is for
his sending the message requesting the service, andeC is
where he exits. The phases of action of the serverS are the
respective conjugates of these actions ofC, except the fi-
nalθS which symbolizes an idling step ofS when register-
ing the exit ofC (this, to be in accordance with our syn-
chronous view). The recursive definition ofS meansS can
get back to serve again, possibly some other client.

A service having beenspecifiedin such a manner, what
we want actually is to model a situation where some given
numberN of server agents will be serving more than one
clients. For this, we shall make the following assumptions:

- each server agent is a copy ofS as defined above;

- theN copies are in parallel asynchronous composition
and use a given operating system on ashared memory
basis, for the various steps of synchronization with the
actions of the various clients;

- each such synchronization step is a ‘machine process’
of the operating system.

(It is tacitly assumed that the various machine processes get
executed by the operating system on a fair basis.)

Service as a Trace: The notions of service, as well as its
quality or its denial, will all be defined with respect to some
(arbitrarily) given clientC. Consider first case where the
serverS is unique; the service rendered byS to C is de-
fined as a trace, namely the finite prefix of the synchronous
productC ∗ S ending up with the exit actioneC of C, and
such that there is no othereC along the trace. In the case
of N server agents operating under the above assumptions
and several (unspecified number of) clients, we define the

the server as the processSN = S | S | . . . | S, (N times);
it is assumed that any actionaS of any of the server agents
is conjugate to any action̄aC′ of any clientC′. We propose
then to define the service rendered bySN to the given client
C, asanyappropriate trace of a product processSN ∗ Ĉ(B)

ending up with the exit actioneC , andsatisfying some addi-
tional requirements, specified in the next subsection.B de-
notes here and in the pages to come, a given positive integer
referred to as the timeout bound (on the client).

The reason for using a timeout extensionĈ(B) instead
of C itself (cf. end of previous section) is easily explained:
after any machine process corresponding to a synchroniza-
tion step between a server agent and clientC, the operating
system may take over a machine process concerning some
other client; consequently, the sequence of synchronization
steps between the given clientC and the serverSN , con-
stituting what has beenspecifiedas service rendered toC,
will be interleaved in general with steps of synchronization
not part of this specified service; operationally such steps
can (and will) be viewed as those where the given clientC
waits or ‘idles’, before the operating system continues again
with steps concerningC. The timeout boundB of Ĉ(B) is
actually a fairness assumption on the client: no client will
be allowed to idle indefinitely, since otherwise he could oc-
cupy a server agent indefinitely. The clients-server configu-
ration presented this way also shows that it is unnecessary
to specify any given number of clients.

Such a vision of service as a trace is in conformity with
the usual operational notion. Moreover, in any clients-server
configuration a client may get a service done in more than
one way, and not all of them will be costing him the same
amount. This will be discussed in the next section.

4.1. Representing a Service and its Cost

In the context of process algebras it is useful to associate
costs to processes so as to calculate for instance: maximal
duration, minimal time before deadlock, maximal space re-
quirement etc. Notions of cost usually relate paths on la-
beled graphs with path weights. A useful approach is to ap-
ply the classical algebra of paths [5] to the labeled graphs of
processes. In such a vision, the space of costs is a semi-ring
(i.e. an additive monoı̈d, enriched with a ‘product’ opera-
tion distributing over the ‘sum’), and one associates an a pri-
ori cost to every processevent. The desired ‘global cost’ is
then computed for each problem considered, as the ‘sum’ in
the semi-ring of costs of the various traces (this ‘sum’ being
union, or maximum, or minimum, or disjunction.. depend-
ing on the problem); the cost of a trace is calculated as the
semi-ring product (resp. intersection, or sum, or maximum,
or conjunction, ...) of the costs of its individual events.

Such a semi-ring vision will be followed here only in a
limited manner, to propose a notion of cost for a service ren-
dered by the serverSN to a given clientC. To every ‘event’

6

in a service, which is by definition a machine process, i.e. a
synchronization step, we first associate asymbolic cost. We
shall be doing this by annotating ourθ’s suitably, as per the
following rules (where the symbol “” will stand for some
unknown client,other thanC):

(i) To any non-idling actiona 6= θ of the serverSN , is
attached a fixed positive real numberta, referred to as its
‘weight’ (interpretable if desired as the time spent by op-
erating system for a synchronizing machine process step in
a service). Any two conjugate actions are assumed to have
the same weight.

(ii) For a (non-idling) actiona 6= θ of the serverSN , if
the conjugate action̄a is performed byC, then their syn-
chronous productθ is annotated with the pair(ta, C); the
symbolic cost of this event in the service is defined as the
annotated symbolθ(ta,C).

(iii) For a (non-idling) actiona 6= θ of the serverSN ,
synchronizing with aθ-action ofC (i.e., when the conju-
gate action̄a is supposedlyfrom some client other thanC –
so the event visible in the trace will bea), the symbolic cost
of the event is defined asθ(ta,).

(iv) For the event where the idling actionθS of the server
SN synchronizes with a non-exit actiona of C, the sym-
bolic cost of the event in the trace is defined asθ(ta,).

(v) For the event where the idling actionθS of the server
SN synchronizes with the exit action of some client, the
symbolic cost of the event is defined as the special sym-
bol 1, with an empty annotation.

In other words, the symbolic cost of the atomic events on
SN ∗Ĉ(B) is defined via acost observation operatorH such

that, along the traces ofSN ∗Ĉ(B), each atomic event is seen

as its symbolic cost. The processSN ∗ Ĉ(B) observed under

H will be denoted as(SN ∗ Ĉ(B))/H; the set of all atomic
events of this process is then obviously a semi-ring under
the following operations: the ‘product’ is the concatenation
‘ .’ of the symbols, and the ‘sum’ is the choice ‘+’ between
the branches. (Since we are considering traces now, the fol-
lowing equation is also assumed:x.(X+Y) = x.X+x.Y .)

Symbolic Representation of a Service:We assume that
the service has been specified schematically as above via the
protocol processes. The traces of the process(SN∗Ĉ(B))/H
which correspond to a service rendered byS to C, in some
manner, can be defined as follows. LetSCost be the al-
phabet formed of the symbolic costs associated to the var-
ious atomic events of(SN ∗ Ĉ(B))/H; for notational con-
venience, we shall drop the suffixesS, C, , of the action
symbols in the annotations of theθ’s.

Definition 2 Let Σ = SCost \ {1}, be the set of ele-
ments 6= 1 in SCost. Then a trace of(SN ∗ Ĉ(B))/H
represents a service rendered byS to C, if and
only if it is an element of the following language:

Σ∗. θ(tn,C). Σ
∗. θ(tk,C). Σ

∗. θ(tm,C). Σ
∗.1.

Any such trace will be referred to as aservice trace. A
wasted traceis a trace of(SN ∗ Ĉ(B))/H which is not a

service trace. The process(SN ∗ Ĉ(B))/H itself will be re-
ferred to as thesymbolic modelof the clients-server config-
uration (for cost analysis).

In intuitive terms: a trace of(SN ∗ Ĉ(B))/H is a sym-
bolic representation of a service rendered byS to C iff it
ends up with a1 with no earlier occurrence of1, and all
the actions constituting the service have been accomplished,
possibly interspersed with some idling actions. (Note: there
may be traces ending up with a1 and with no earlier occur-
rence of1, but which may not be a service trace.)

Costs of a Service: The definition of cost for a service ren-
dered to agivenclient C, is based on a given non-negative
real denoted asxC , referred to as thebilling coefficient
for C, and a given random functionf() generating non-
negative reals, meant as the billing coefficients for the un-
known clients other thanC.

Definition 3 To every atomic event of(SN ∗ Ĉ(B))/H, we
associate a non-negative real number, calculated as:

• ta × xC if the event is of the formθ(ta,C);
• ta × f() if the event is of the formθ(ta,).

i) Thetotal costof any trace of(SN ∗ Ĉ(B))/H is defined
as the sum of all the real numbers associated to the atomic
events composing the trace.

ii) The total functioning costof the clients-server config-
uration is defined as the sum of all the total costs of all the
maximaltraces of(SN ∗ Ĉ(B))/H.

iii) The total service costof the configuration is defined
as the sum of the total costs of all the service traces.

These notions are all well-defined: indeed, the process
(SN ∗ Ĉ(B))/H is necessarily finite sincêC(B) is finite.We
define theQuality of Service (QoS)of the clients-server
configuration with respect to the given clientC, as the
non-negative real number which is the ratio (total service
cost)/(total functioning cost). Note that it depends on the
numberN of server agents rendering the service, as well as
the timeout boundB for the clientC.

Example 1.For better readability, we shall shorten the ser-
vice protocol as follows:

S ::= nS .k̄S .θS .S
C ::= n̄C .kC .eC .0

and defineS2 = S | S, i.e., there are two server agents
functioning in parallel. We also assume that the clientC
has a timeout bound of2. Then, with the above notation,
the process(S2 ∗ Ĉ(2))/H has many traces, among which
the following two, ending with1, represent branches where
the service for clientC gets done:

θ(tn,C).θ(tn,).θ(tk,C).1

7

θ(tn,C).θ(tk,C).θ(tn,).θ(tk,).1

On the other hand the following trace represents a branch
whereC cannot get the service done (due to other clients’
competition):θ(tn,).θ(tn,). The reason why this trace has

only length2 is due to the timeout bound forC: Ĉ(2) can
idle at most twice before executinḡnC ; during two such
idling steps, both server agents get busy with serving other
clients, and the only possible actions ofS2 ready to syn-
chronize are their respective actionsk̄S . But k̄S cannot syn-
chronize withn̄C , so after these two idling steps ofC the
system cannot proceed on; we therefore get a branch with
the wasted traceθ(tn,).θ(tn,).

If the client has a timeout bound of4 andN = 4, we
get the configuration(S4 ∗ Ĉ(4))/H; here we have an exam-
ple of a branch with trace:θ(tn,).θ(tn,).θ(tk,).1, ending up
with 1, containing no earlier occurrence of1, but this is a
wasted trace.

4.2. Service Costs as Matrix Powers

The application of semi-ring techniques is actu-
ally generic and is readily adapted to any other cost
model by simply changing the semi-ring algebra: rede-
fine the ‘sum’ and ‘product’ operators suitably. This al-
lows us to show how the classical algorithms can be applied
to the computation of service costs for large-scale pro-
cesses in our model.

To compute the QoS value (definition 3 above) one needs
to compute the set of all traces of(S(N) ∗ Ĉ(B))/H and the
set of service traces for the same process, and then the ra-
tio of the sum of costs over those sets. Now we already ob-
served that the process(S(N) ∗ Ĉ(B)) is finite. Moreover, it
admits an additive normal form defined via guarded equali-
ties; actually we have an easy, more general, result:

Lemma 2 For any finite state (possibly recursive) process
P and any linear processI = β0.β1. . . . βN .0, P ∗ I is a
finite process, defined by equalities explicitly constructible
from those ofP .

Proof : Write Ii = βi.Ii+1, i = 0..N , with I0 = I, IN+1 =
0. Now the defining equalities of the processP are of the
form Xi =

∑

j xij .Xj , where one of thelhs ‘variables’ is
the starting state ofP . So,P ∗ I = I ∗P can be represented
by a finite term using induction on the size ofI:

- For anyX , 0 ∗ X = 0 is a finite term;
- If Xi =

∑

j xij .Xj , and if Ii+1 ∗ Xj is a finite term
for anyj, then

Ii ∗ Xi =
∑

j(βi ∗ xij).(Ii+1 ∗ Xj) is of course
also a finite term.

The state machine of the finite processP =
(S ∗ Ĉ(B))/H modeling our clients-server configura-
tion can therefore be seen as a directed acyclic graph (dag),
its edges labeled with cost symbols fromSCost. On the

other hand, letSC be a regular automaton (or state ma-
chine) over the alphabetSCost, which recognizes the ser-
vice language (i.e., the set of service traces) defined in Def-
inition 2. Such an automaton may have loops, and that
is not suitable for the matrix calculation that we are go-
ing to present; for that we need a directed acyclic graph,
which as an automaton recognizes the service language.

To achieve this we first define the ‘synchronous prod-
uct ∗’ on the alphabetSCost as follows: for anyc′, c′′ ∈
SCost, c′∗c′′ is defined if and onlyc′ = c′′; andc′∗c′ = c′.
Then the ‘∗’-product automaton (or state machine)P ′ =
((SN ∗ Ĉ(B))/H) ∗ SC that one can define in an obvious
manner (by induction froma.P ∗ b.Q = (a ∗ b).(P ∗ Q)),
is then a dag, recognizing exactly the language of service
traces for the clientC.

We can now detail the efficient computation of the sum
of trace costs for eitherP (for the total function cost) orP ′

(for the total service cost), which is sufficient to obtain the
QoS value. Without loss of generality we shall considerP .
SinceP is a directed acyclic graph, it follows that the set of
traces between any two nodes can be represented as a regu-
lar expression without the Kleene-star, i.e., a regular expres-
sion using only actions (fromSCost), choice and concate-
nation. LetRE be the set of such regular expressions. Then
(RE, +, . , 0, ǫ) is a semi-ring where ‘+’ is union, ‘.’ de-
notes concatenation,0 the empty language andǫ the empty
trace. Moreover the set of square matrices over this semi-
ring, with the usual matrix operations, is also a semi-ring.
The rows and columns of such matrices represent the nodes
X on the graphP .

Let M be the (square) transition matrix ofP defined
as follows: M(X, Y) = a if X

a
−→ Y , and 0 other-

wise. Define also the identity matrix asI(X, X) = ǫ and
I(X, Y) = 0 if X 6= Y . Then it is well known that ma-
trix Mk(X, Y) contains a regular expression for all traces
(paths) of lengthk from stateX to stateY . Moreover if we
defineM (k) = I +M +M2 + . . .+Mk thenM (k)(X, Y)
contains a regular expression for all traces of lengthat
mostk from stateX to stateY . Finally, in an idempotent
semi-ring as is the case here (In RE, the ‘sum’ represents
set union and is therefore idempotent, and so is a poste-
riori the pointwise addition of matrices over RE) we have
(I + M)k = M (k) for the simple reason that the Pascal tri-
angle coefficients in the expansion of(I+M)k are all equal
to one, since M+M=M. This last identity allows us to apply
successive matrix powers to computeM (k) in O(log k) ma-
trix products.

Finally we observe that ifn is the number of states of
P , thenM (n) contains regular expressions for all traces be-
tween given pairs of states. In particular, ifXP is the ini-
tial state then the sum of rowM (n)(XP ,) is a regular ex-
pression for the trace language ofP . This expression is thus
computed inO(log n) matrix products, without enumerat-

8

ing the potentially exponential set of traces inP . From this
expression, the total functioning cost can be computed in
linear time by interpreting RE operations in bottom-up fash-
ion on the syntax.

The same algorithm, polynomial in the number of states,
can be applied to compute the total service cost from pro-
cessP ′ and hence obtain the QoS value. The advantage of
our synchronous process algebra is then made clear: to ob-
tain finite service descriptions, use explicit dag descriptions
and then reuse classical matrix algorithms without concern
for convergence conditions.

4.3. Examples, Comments on Complexity

Example 2. We study here the client-server configuration
P = (S1 ∗ Ĉ(1))/H, where:

S = n.k̄.θ.S,
S1 = S, i.e., just one server agent,
C = n̄.k.e.0;

The procesŝC(1) is clientC with a timeout bound of1, in
the sense defined above. To present the symbolic model of
the configuration, we first develop the server and the client
as state machines, as follows:

S = n.S′, S′ = k̄.S′′, S′′ = θ.S,
C1 = n̄.D1 + θ.C′

1, C′
1 = n̄.k.e.0,

D1 = k.D2 + θ.D′
1, D′

1 = k.e.0,
D2 = e.0 + θ.e.0

The symbolic model of the configuration is given in Figure
1. The QoS evaluates to0.33, under the assumption that all
the real numbers of Definition 3 are set to1.

theta_(n,_)

theta_(k,C)
theta_(k,_)

theta_(k,_)

theta_(n,C)

S"*D’1

S"*D2

S’*D1

S*C1

0

0

0
0

theta
1

Figure 1. Symbolic Cost Model for Example 2

Example 3.This example illustrates the interest of our cost
model above from a complexity viewpoint. We consider
now the systemP = (S2 ∗ Ĉ(1))/H where

S = n.k̄.θ.S,
S2 = S | S,
C = n̄.k.e.0

and Ĉ(1) is processC with a timeout bound of1, in the
sense defined above. Expansion of the asynchronous paral-
lel composition yields 7 states forS2 which is equivalent to
the following equations, with initial stateSS:

SS = n.ST
ST = k̄.SU + n.TT
SU = θ.SS + n.TU + n.ST
TT = k̄.TU
TU = k̄.UU + θ.ST + k̄.SU
UU = θ.SU + θ.SS

The client procesŝC(2) is equivalent to the following
acyclic equations, with initial stateC2:

C2 = n̄.D + θ.C2′

C2′ = n̄.D
D = k.E + θ.D′

D′ = k.E
E = e.0 + θ.E′

E′ = e.0

Now the synchronous productP = (S2 ∗ Ĉ(1)) is equiv-
alent to the following acyclic equations, with initial state
SS ∗ C2 and 14 states (12 plus two fore.0 andn.0):

SS ∗ C2 = θ.(ST ∗ D) + n.(ST ∗ C2′)
ST ∗ D = θ.(SU ∗ E) + k̄.(SU ∗ D′) + n.(TT ∗ D′)
ST ∗ C2′ = θ.(TT ∗ D)
SU ∗ E = e.0 + θ.0 + n.e.0 + n.0
SU ∗ D′ = k.n.0
TT ∗ D′ = θ.(TU ∗ E)
TT ∗ D = θ.(TU ∗ E) + k̄.(TU ∗ D′)
TU ∗ E = k̄.e.0 + θ.0 + k̄.e.0 + e.0
TU ∗ D′ = θ.(UU ∗ E) + k.(ST ∗ E) + θ.(SU ∗ E)
UU ∗ E = e.0 + θ.e.0 + θ.0
ST ∗ E = k̄.e.0 + n.0
SU ∗ E = e.0 + θ.0 + n.e.0 + n.0

This synchronous product has generated only 14 of the
36 possible states for the product ofS2 and Ĉ(1). As a

result the matrix encoding(S2 ∗ Ĉ(1))/H will be 14*14,
compared to the almost 36*36 matrix that an asynchronous
product model would have generated. Since the overall al-
gorithm for calculating costs isO(n3) ∗ log n (log n prod-
ucts ofn ∗ n matrices, as explained earlier), the practical
gain due to synchronous composition is here estimated to a
factor of(36/14)3 ∼17, even on this small example.

We have also carried out some further calculations (es-
sentially by hand) in order to study the evolution of the QoS

9

measure whenN (the number of servers) andB (the time-
out bound for the client) vary. The following table gives
these numerical results, obtained again under the assump-
tion that all the real numbers of Definition 3 are set to1.

N \ B 0 1 2
1 1.0 0.33 0.08
2 1.0 0.71 0.38

These values confirm the following intended features of
our model and support its relevance:

i) B = 0 forces a server to follow its protocol trace
and thus complete the service. In other words, the client ac-
cepts no delay and is served in 100% of the time.

ii) QoS increases with the number of serversN , even
if some of the service branches get slowed down.

Our current state of work thus confirms the qualitative
value of the QoS measure and its correlation with the pa-
rameters of the protocol being analyzed. Future work on
our model will necessitate an implementation of the poly-
nomial time algorithm for QoS evaluation mentioned at the
end of Section 4.2, and some experimental work to con-
firm the actual numerical values of QoS as a statistics of re-
sponse time.

5. Conclusion

We have proposed in this work a process calculus fo-
cusing principally on the branches of synchronization be-
tween the various agents. It is our belief that such a calcu-
lus is well suited for analyzing the flow of information be-
tween the agents, in particular for the formal analysis of
communication protocols. After having shown in a first part
of the paper that our calculus is powerful enough on the for-
mal side, we have shown in the second part how it can be
used to model formally the cost analysis of communication
protocols. We saw in particular that the cost analysis of a
clients-server configuration, where the servers are assumed
to operate in parallel on a shared memory basis, can be mod-
eled as a process of the formP = (SN ∗ Ĉ(B))/H where
SN = S | S | . . . S (N times) stands forN servers operat-
ing in parallel.

The interleaving semantics of the asynchronousS | S
parallel composition has for (realistic) consequence that
more server actions may slow down some branches of ser-
vice. But there are systems where multiprocessors are used
precisely to improve quality of service in the sense of re-
sponse time; it is possible to adapt our QoS model to a mul-
tiprocessor situation where the multiple serverSN occupies
multiple asynchronous machines, by proceeding as follows.
Let us assume to simplify that the numberN of servers is
equal to the number of available processors. ClientC is
then only slowed down by interleaved actions which oc-
cupy more thanN servers: up toN clients may be served
simultaneously. An extension of the process algebra with

such a vision of cost setup has been defined in [9]; it uses
a new syntax〈S, S, . . . , S〉 to denote ”data-parallel” com-
position i.e. a process whose componentsS are placed on
asynchronous processors. The operational semantics of this
operator is similar toS | S | . . . S except for the possibil-
ity of barrier synchronizations (notion not relevant to this
paper) and the labeling of interleaved actions by their pro-
cessor of origin. The general case withN different from the
number of processors can be treated by a mixture of asyn-
chronous and data-parallel composition.

One direction of possible future work - on the practi-
cal side - is to adapt our “synchronous algebraic vision”
suitably, so as to express the cost calculus of a distributed
memory setup, in a manner similar to the one presented
above for the shared memory case. A possible application
is the parallel implementations of the matrix power algo-
rithm of Section 4.2 for large-scale verification, indepen-
dently of the actual shared- or distributed- memory repre-
sented by the model. A second possible direction for further
developments is on the formal side: it consists in formulat-
ing the notion of non-interference (cf. e.g., [4]) in our syn-
chronous calculus, and to apply such a vision to the formal
analysis of information flow on communicating systems.

References

[1] S. Anantharaman, G. Hains.A Synchronous Bisimulation
Based Approach for Information Flow Analysis, In Proc. AV-
OCS03, Southampton (UK), April 2003.

[2] J.A. Bergstra, A. Ponse, S.A. Smolka (Editors)Handbook of
Process Algebra,Elsevier, Amsterdam, 2001.

[3] J.C. Baeten, C.A. Middelberg.Process Algebra with Timing,
Springer, Berlin-Heidelberg, 1998.

[4] G. Boudol and I. Castellani,Non-Interference for Concur-
rent Programs and Thread Systems. Theoretical Computer
Science, 281(1-2):109–130, June 2002.

[5] M. Gondran, M. Minoux.Graphes et Algorithmes, Chapitre
3, “Les Algèbres de Chemins”, Eyrolles, 1985.

[6] P.C. Kanellakis, S.A. Smolka.CCS expressions, finite state
processes and three problems of equivalence.Information
and Computation, 86 (1):43–68, May 1990.

[7] R. Milner. Communication and Concurrency.Prentice Hall,
1989.

[8] F. Muller, S.A. Smolka.On the Computational Complexity
of Bisimulation, ReduxIn Proc. PCK50, pages 55-59, San
Diego, June 2003, ACM.

[9] A. Merlin, G. Hains.A generic cost model for concurrent and
data-parallel meta-computingIn Proc. AVOCS’04, London,
September 2004.

10

